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Objectives: This study was conducted to examine the potential health benefits of
thonningianin A (TA) on renal injury and interstitial fibrosis in diabetic
nephropathy (DN) mice.

Methods: In this study, a DN mice model was established using male C57BL/
6 mice injected with streptozotocin (STZ, 50 mg/kg) intraperitoneally and treated
with TA for 12 weeks. Firstly, the therapeutic and anti-fibrotic effects of TA on DN
were evaluated. Secondly, the effect of TA on renal inflammation was evaluated
and Western blot was used to detect the changes of NLRP3/ASC/Caspase-
1 pathway-related protein expressions in kidney. Furthermore, the effect of TA
on impairments in the intestinal mucosa barrier was evaluated and the changes of
lipopolysaccharide (LPS) levels in feces and serumwere detected by ELISA. Finally,
16S rRNA sequencing was used to detect alteration of gut microbiota diversity
and abundance in mice after TA treatment.

Results: The results showed that TA markedly mitigated blood glucose (Glu),
decreased 24-h urinary total protein (24hUTP), improved renal dysfunction and
kidney index (KI) in DN mice. Furthermore, TA significantly alleviated renal injury
and interstitial fibrosis, repressing renal inflammation. Western blot results
showed that the NLRP3/ASC/Caspase-1 signaling pathway-related proteins
decreased after TA treatment. In addition, TA also ameliorated impairments in
the intestinal mucosa barrier and restored the expressions of intestinal tight
junction proteins (Claudin-1, Occludin and ZO-1). Subsequently, it reduced LPS
levels of DN mice in fecal and serum. Furthermore, 16S rRNA high-throughput
sequencing showed that TA modulated gut microbiota dysbiosis and decreased
the abundance of Gram-negative bacteria (Proteobacteria and
Escherichia-Shigella).

Conclusion: This study suggested that TA might exert a beneficial effect on renal
interstitial fibrosis in DN mice by modulating gut microbiota dysbiosis,
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ameliorating impairments in the intestinal mucosa barrier, reducing the production
and release of LPS, inhibiting the activation of NLRP3/ASC/Caspase-1 signaling
pathway, and repressing renal inflammatory.

KEYWORDS

thonningianin A, renal interstitial fibrosis, diabetic nephropathy, gut microbiota,
inflammation

1 Introduction

Diabetic nephropathy (DN) is one of the most serious
microvascular complications of diabetes mellitus, which is the
leading cause of end-stage renal disease (ESRD) (Fox et al.,
2012). The etiology and pathogenesis of DN are complicated and
have not been fully elucidated. Interstitial fibrosis and
glomerulosclerosis are typical pathological characteristics of DN.
Renal interstitial fibrosis is defined by excessive extracellular matrix
(ECM) accumulation and is associated with a decreased kidney
function (Eddy, 2000). Increased inflammation is a major culprit of
renal fibrosis development, but the mechanism of how inflammation
starts is still un-known (Kumawat and Kaur, 2023). Recent studies
have shown that gut microbiota dysbiosis is related to the occurrence
and development of inflammation in DN (Feng et al., 2019; Zhao
et al., 2019).

Gut microbiota dysbiosis enables leakage of proinflammatory
bacterial products, which contribute to renal inflammation and
interstitial fibrosis (Ramezani and Raj, 2014; Evenepoel et al.,
2016). The increased abundance of Gram-negative bacteria in
DN patients led to excessive production of lipopolysaccharide
(LPS), which urther damages the mechanical barrier formed by
intestinal epithelial cells and the tight junction between them (Linh
et al., 2022). Studies have shown that LPS can enter the blood
through the damaged intestinal mucosa and initiate renal
inflammatory in DN (Fritsche, 2015). In addition, studies have
shown that the NLRP3/ASC/Caspase-1 signaling pathway can be
induced and activated by the pro-inflammatory mediator LPS, and
the secretion of pro-inflammatory cytokines interleukin-1β (IL-1β)
and interleukin-6 (IL-6) promotes cell death and induces automatic
defense and inflammatory responses (Faustino Viviane et al., 2018;
Andrade-Oliveira et al., 2019; Wang et al., 2022).

At present, the American Diabetes Association recommends the
application of ACEIs, ARBs, SGLT2 inhibitors, GLP-1 agonists,
mineralocorticoid receptor antagonists, and endothelin antagonists
to slow the progression of renal disease and prevent or delay the
onset of ESRD (Hu Q. et al., 2023). Clinical evidence has confirmed
that long-term or excessive use of these drugs may lead to adverse
reactions, such as hyperkalemia or hypokalemia, increasing
cardiovascular risk and mortality (Pelle et al., 2022). Therefore,
the bioactive components of non-toxic or low-toxic natural plants
have attracted more and more attention. Thonningianin A (TA) is
one of the main components of the natural medicine Penthorum
chinense Pursh (PCP) (Wang et al., 2020). Modern pharmacological
studies have confirmed that TA has anti-oxidation, anti-
inflammatory and anti-fibrosis effects (Hu J. et al., 2023).
However, there is no report on the anti-fibrotic effect of TA on
DNmice, and the role of gut microbiota in the therapeutic efficacy of
TA in DN remains to be further investigated.

In this study, a DN mouse model was established by STZ injection
and treated with TA. Firstly, the therapeutic, anti-fibrotic and anti-
inflammatory effects of TA on DNwere evaluated. Secondly, the effects
of TA on impairments in the intestinal mucosa barrier and LPS level
were evaluated and Western blot was used to detect the changes of
NLRP3/ASC/Caspase-1 signaling pathway-related proteins in kidney.
Finally, 16S rRNA high-throughput sequencing was used to detect
alteration of gut microbiota diversity and abundance in mice after TA
treatment. This can help to elucidate the mechanism of TA in
ameliorating renal interstitial fibrosis by modulating gut microbiota
dysbiosis, ameliorating impairments in the intestinal mucosa barrier,
reducing LPS release into blood, inhibiting NLRP3/ASC/Caspase-
1 signaling pathway, and repressing renal inflammation in DN mice.

2 Materials and methods

2.1 Materials and reagents

Streptozotocin (STZ) (S0130-1G) was purchased from Sigma
Chemical Co., Ltd. (St. Louis, MO, United States). TAwas purchased
from Shanghai Winherb Medical Science Co., Ltd. (Shanghai,
China). ELISA kits for IL-6 (item number: E-MSEL-M0001) and
IL-1β (item number: E-MSEL-M0003) were purchased fromWuhan
Elaite Biotechnology Co., Ltd. (Wuhan, China). Lipopolysaccharide
(LPS) (Cat No. 21100201) was purchased from Tianjin Zhengdao
Biotechnology Co., Ltd. (Tianjin, China). Tissue lysates were
prepared using a radioimmunoprecipitation assay (RIPA) lysis
buffer (CWBIO) containing a protease/phosphatase inhibitor
mixture. The following primary antibodies were used: E-cadherin
(1:20,000, rabbit, 20874-1-AP, Proteintech, United States), α-SMA
(1:1,000, rabbit, 14395-1-AP, Proteintech, United States), NLRP3 (1:
500, rabbit, CAT # YT5382, ImmunoWay Biotechnology,
United States), ASC (1:1,000, rabbit, 67824T, Cell Signaling
Technology, United States), Caspase-1 (1:2,000, 22915-1-AP,
Proteintech, United States), anti-ZO-1 (1:2,000, rabbit, 21773-1-
AP, Proteintech, United States), Occludin (1:5,000, rabbit, 27260-1-
AP, Proteintech, United States) and claudin-1 (1:2,000, rabbit,
ab211737, Abcam, United Kingdom), β-actin (1:500, mouse,
ab8226, Abcam, United Kingdom). The corresponding
horseradish peroxidase (HRP) -conjugated secondary antibodies
(7074V and 7076V) were purchased from CST (United States).

2.2 Animals and treatments

A total of 40 C57BL/6 male mice with average body weight 20 g
were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (SCXK-2023-0011). The housing
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environment was maintained at 25°C ± 2°C, relative humidity was
50% ± 10%, light-dark cycle was 12 h/12 h, and animals were given
ad libitum access to food and water. The experimental design is
shown in Figure 1B. Mice were randomly divided into four groups
(10 mice for each group): negative control (NC) group, DN group,
TA group, and Semaglutide (SE) group. After 1 week of adaptive
feeding, then DN, TA and SE groups were intraperitoneally injected
with STZ (50 mg/kg, dissolved in 0.01 M sodium citrate buffer, pH:
4.2) for five consecutive days to induce diabetic nephropathy (Du
et al., 2023). NC group was given equal citrate buffer as controls. The
blood glucose (Glu) level of the mice was stable after a week.
Subsequently, blood was taken from the mouse tail veins, and the
level of fasting blood glucose (FBG) was measured. And FBG
level >11.1 mmol/L for three consecutive days was considered to
indicate DN (Yuan et al., 2019), and the mice were used for further
research. TA group was given 0.1 mg/kg/d of TA, and SE group was
given 40ug/kg/3d of SE for 12 weeks, while NC group and DN group
were given equal normal saline during this time. The dosages of TA
were referred to Sun et al. (2020). The dosages of SE were referred to
Cardoso et al. (2023). The body weight and FBG of mice were
measured every 2 weeks, and 24 h urine was collected every 4 weeks.
Serum creatinine (Scr) and blood urea nitrogen (BUN) were tested
at 12 weeks after treatment. At the end of the study, mice were fasted

overnight, sacrificed by cervical dislocation. The blood samples were
collected from the eyeballs and centrifuged (3,000 r/min, 15 min) to
obtain serum for biochemical analysis. Subsequently, the kidney
tissues were rapidly harvested and weighed to calculate kidney-to-
body weight ratio (kidney index, KI). The renal and colonic tissues
were used for Western blot, immunohistochemical assay, histologic
examinations and other biochemical analysis. All serum and tissues
samples were cryopreserved at −80°C. Colonic content was collected
for the detection of LPS and microorganisms. All experimental
procedures were approved by the Animal Ethics Committee of
Beijing University of Chinese Medicine (Permission BUCM-
2023042003-2110).

2.3 Biochemical parameter analysis

Levels of Scr and BUN were measured with commercial kits
purchased from the Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). For the 24 h urinary protein (24hUTP)
concentration, metabolic cages were used to record the 24 h total
urine volume and collect 24 h urine samples from all mice. Then the
supernatant of urine samples were collected to determine the
24hUTP levels using colorimetric methods as described previously.

FIGURE 1
Thonningianin A (TA) improved body parameters in DNmice. (A) The molecular structure of thonningianin A (TA); (B) Flow diagram of the study; (C)
Glu (n = 10); (D) 24hUTP (n = 5); (E) Scr; (F) BUN (n = 10); (G) KI (n = 10). Data are presented as mean ± SEM, **P < 0.01, ***P < 0.001, DN vs. NC; #P < 0.05,
##P < 0.01, ###P < 0.001, TA, SE vs. DN.
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2.4 Pathology staining

Kidney and colon tissues were fixed in 4% paraformaldehyde for
48 h, followed by a sequential process of dehydration through an
ethanol gradient, clearance in xylene, immersion in wax, and
embedding in paraffin, to prepare sections with a thickness of
3 μm. After deparaffinization and rehydration, the tissue sections
were stained according to the instructions provided in the staining
kit using Hematoxylin and Eosin (H&E), Periodic Acid-Schiff
(PAS), or Masson’s Trichrome (MASSON) stains. Pathological
alterations in the renal and colon tissues were examined under a
light microscope, and representative images were captured for
further analysis.

2.5 Immunohistochemistry

Following deparaffinization, antigen retrieval, and inhibition of
endogenous peroxidase activity, the 3 μm-thick paraffin-embedded
kidney tissue sections were incubated with primary antibodies
against IL-1β (1:2,000, ab32362, Abcam, United Kingdom) and
IL-6 (1:1,000, ab216341, Abcam, United Kingdom), and Colon
tissue sections were incubated with primary antibodies against
ZO-1 (1:2,000, rabbit, 21773-1-AP, Proteintech, United States),
occludin (1:5,000, rabbit, 27260-1-AP, Proteintech, United States)
and claudin-1 (1:2,000, rabbit, ab211737, Abcam, United Kingdom),
at 4°C overnight.

2.6 Enzyme linked immunosorbent assay

After 12 weeks of TA intervention, renal levels of interleukin-1β
(IL-1β) and interleukin-6 (IL-6) were measured in each group using
ELISA kits (Elabscience, Wuhan, China), which was performed
according to the manufacturers’ instructions.

2.7 Immunofluorescence staining

Kidney tissue sections were incubated with primary antibodies
including NLRP3 (1:100, rabbit, # YT5382, ImmunoWay
Biotechnology, United States), ASC (1:400, rabbit, 67824T, Cell
Signaling Technology, United States), Caspase-1 (1:100, 22915-1-
AP, Proteintech, United States) at 4°C overnight. The corresponding
fluorescent secondary antibody was added and incubated at room
temperature for 1 h. Dihydrochloride (DAPI) was added and
incubated for 5 min. All sections were imaged using a laser
scanning confocal microscope (Olympus, Tokyo, Japan). Semi-
quantitative statistical analysis was performed using ImageJ
1.48 version (National Institutes of Health, Bethesda, MD,
United States) based on six fields of view.

2.8 Western blot analysis

Kidney and colon tissue samples were mechanically disrupted and
lysed using RIPA lysis buffer (Applygen, Beijing, China) to facilitate
protein extraction. Following centrifugation, the supernatant containing

the proteins was harvested. The protein concentration was subsequently
determined through a BCAprotein assay, followed by heat denaturation
in the presence of a loading buffer. Equal volumes of the protein
samples (10 μL per well) were loaded onto an SDS-PAGE gel for
electrophoretic separation. After the separation process, the proteins
were transferred onto a nitrocellulose membrane utilizing the wet
transfer method. The membrane was then blocked with 5% skim
milk and subsequently incubated overnight at 4°C with primary
antibodies, including E-cadherin, α-SMA, NLRP3, ASC, Caspase-1,
ZO-1, occludin, claudin-1 and β-actin. Post incubation, the membrane
was washed with TBST to remove unbound antibodies, before
incubation with HRP-conjugated secondary antibodies (either anti-
rabbit or anti-mouse IgG) for 1 h. The relative expression of target
proteins was calculated using β-actin as an internal reference. ImageJ
software was employed to analyze the densitometric values of the bands
and to calculate the relative expression of the proteins of interest.

2.9 Determination of LPS levels in serum and
fecal samples

The collected whole blood samples were placed at room
temperature for 2 h and centrifuged at 1,000 xg for 20 min. The
supernatant was taken and the serum LPS content was determined
using a LPS ELISA kit. The collected fecal samples (greater than 50 mg)
were washed three times with phosphate buffered saline (PBS), and the
precipitate was collected by centrifugation and heavy. PBS buffer (9 mL
PBS buffer per Gram of feces) was added, and they were crushed with
4,000 g ultrasound for 10 min. The supernatant was taken and the fecal
LPS content was measured using the LPS ELISA kit.

2.10 16S rRNA high-throughput sequencing
analysis of gut microbiota

DNA was extracted frommouse cecum feces using the HiPure Soil
DNA Kit (Magen, Guangzhou, China), and the purity and
concentration of the extracted DNA were determined with 2%
agarose gel electrophoresis. The primer sequences 341F (5′-
CCTACGGGNGGCWGCAG-3′) and 806R (5′-
GGACTACHVGGGTATCTAAT-3′) were used to amplify the V3-
V4 hyper-variable region of the bacterial 16S rRNA gene (45). The
samples were then sequenced in parallel utilizing Illumina DNA Prep
Kit (Illumina, CA, United States) according to the user manual. The
resulting raw data files were manipulated and filtered with the QIIME
(version 1.9.1) software package. Raw sequences were imported into
FASTP (version 0.18.0), and FLASH software (version 1.2.11) was used
for pair-end double-end sequence splicing and screening for sequence
optimization. Sequences with >97% similarity were clustered and
annotated to generate operational taxonomic units (OTUs) using
UPARSE software (version 9.2.64). Alpha diversity and microbial
taxon distribution analyses were performed with QIIME software.

2.11 Statistical analysis

All data were reported as mean ± standard error of the mean
(SEM). One-way analysis of variance (ANOVA) followed by post

Frontiers in Pharmacology frontiersin.org04

Zhang et al. 10.3389/fphar.2024.1389654

https://www.frontiersin.org/articles/10.3389/fnut.2022.1053348/full
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1389654


hoc Fisher’s least significant difference (LSD) and post hoc
Tamhane’s test was used in assessing the differences between the
two groups. All statistical analyses were performed using SPSS
20 software (SPSS Inc., Chicago, IL, United States). P < 0.05 was
considered statistically significant.

3 Results and analysis

3.1 TA improves physical and biochemical
indicators of in DN mice

Figure 1A is the molecular structure of thonningianin A.
Figure 1B shows the flow diagram of the study. In this research,
we established a DN mice model by continuous intraperitoneal
injection of low-dose STZ. As shown in Figure 1C, Glu of the DN

group exceeded 11.1 mmol/L for three consecutive days, a significant
increase compared to the NC group, while SE treatment significantly
reduced Glu, confirming the success of the modeling. And TA
dramatically mitigates Glu (p < 0.05). DN is characterized by
persistent microalbuminuria, a decreased glomerular filtration
rate (GFR) and increased urine albumin excretion. Urinary
protein and microalbuminuria are sensitive indicators of
glomerular dysfunction and tubular impairment. As shown in
Figure 1, as compared to the NC group, the DN mice exhibited
remarkable increases in the levels of 24hUTP (Figure 1D),
Scr(Figure 1E), BUN(Figure 1F) and KI(Figure 1G). In particular,
TA supplementation greatly downregulated the levels of 24hUTP
(Figure 1D), Scr(Figure 1E), BUN(Figure 1F), and KI (Figure 1G)
(p < 0.05). According to the results, TA markedly mitigated blood
glucose, decreased 24-h urinary total protein, improved renal
dysfunction and KI in DN mice.

FIGURE 2
TA attenuated renal injury and interstitial fibrosis. (A) Pathological changes in representative kidney sections from each group of mice by H&E
staining (original magnifications, ×400), PAS-staining (original magnifications, ×400), and Masson’s trichrome staining (original magnifications, ×400); (B)
Mesangial matrix area; (C) Fibrosis area; (D) RepresentativeWestern blots showing the detection of E-cadherin and α-SMA; (E) Relative protein expression
of E-cadherin; (F) Relative protein expression of α-SMA. Data are presented as mean ± SEM, n = 5. **P < 0.01, ***P < 0.001, DN vs. NC; #P < 0.05,
##P < 0.01, ###P < 0.001, TA, SE vs. DN.
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3.2 TA ameliorated renal injury and
interstitial fibrosis in DN mice

We further explored the effect of TA on renal injury and
interstitial fibrosis using the representative images from renal
sections as stained for hematoxylin–eosin (H&E), PAS and
Masson. As shown in Figure 2A, HE staining revealed
significant pathological changes in the DN group compared
to the NC group, including glomerular hypertrophy, enlarged

Bowman’s capsule space, and renal tubular dilation, along with
vacuolar degeneration, swelling, or desquamation of renal
tubular epithelial cells. Masson’s trichrome staining revealed
intact glomeruli, renal tubules, and interstitium in the NC group,
with only weak blue staining observed. In contrast, the DN group
demonstrated a substantial increase in blue-stained areas within
the kidney tissue, indicating an increased degree of fibrosis. PAS
staining revealed that compared with the NC group, the
mesangial region in the DN group was significantly widened,

FIGURE 3
TA repressed the renal inflammation in DN mice. (A) Expression level of IL-1βand IL-6 in kidney tissue was detected by immunohistochemistry
(original magnifications, ×400); (B) Relative IL-1β expression examined by immunohistochemistry was analyzed and shown in histogram; (C) Relative IL-6
expression examined by immunohistochemistry was analyzed and shown in histogram.; (D) ELISA analysis indicated that the expression levels of IL-1β in
kidney tissue; (E) ELISA analysis indicated that the expression levels of IL-6 in kidney tissue. Data are presented as mean ± SEM, n = 5. **P < 0.01,
***P < 0.001, DN vs. NC; #P < 0.05, ##P < 0.01, ###P < 0.001, TA, SE vs. DN.

Frontiers in Pharmacology frontiersin.org06

Zhang et al. 10.3389/fphar.2024.1389654

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1389654


FIGURE 4
TA downregulated NLRP3/ASC/Caspase-1 signaling pathway. (A) Immunofluorescence observation and semiquantitative analysis of the expression
level of mouse kidney ASC protein (original magnifications, ×400); (B) ASC mean Fluorescence Intensity in mouse kidney; (C) Immunofluorescence
observation and semiquantitative analysis of the expression level ofmouse kidney Caspase-1 protein (original magnifications, ×400); (D)Caspase-1mean
Fluorescence Intensity in kidney; (E) Immunofluorescence observation and semiquantitative analysis of the expression level of mouse kidney
NLRP3 protein; (F) NLRP3 mean Fluorescence Intensity in mouse kidney; (G) Western blot assay of NLRP3, ASC, and Caspase-1 expression in kidney
tissue; (H) Relative protein expression of ASC; (I) Relative protein expression of Caspase-1; (J) Relative protein expression of NLRP3. Data are presented as
mean ± SEM, n = 5. **P < 0.01, ***P < 0.001, DN vs. NC; #P < 0.05, ##P < 0.01, ###P < 0.001, TA, SE vs. DN.
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the mesangial matrix was proliferated (Figure 2B) and the
Glomerular basement membrane was thickened. Overall, TA
significantly improved various renal pathological lesions of the
above-mentioned DN mice (Figure 2C). In addition, E-cadherin
expression in the DN group was significantly decreased, while α-
SMA expression was significantly increased compared with the
NC group (Figure 2D). TA significantly increased E-cadherin
(Figure 2E) expression and reduced α-SMA (Figure 2F)
expression in DN mice (p < 0.01). The above results indicate
that TA treatment effectively protected against renal injury,
especially renal interstitial fibrosis. Overall, the results
described above indicated that TA could alleviate renal injury
and interstitial fibrosis in the DN mice.

3.3 TA repressed renal inflammation in
DN mice

We further explored whether TA alleviated kidney injury
and fibrosis is associated with mitigating renal inflammation by
detecting the levels of IL-6 and IL-1β in kidney tissue of mice in
each group. As shown in Figure 3A, immunohistochemistry
analysis exhibited that little staining was observed in normal
kidney tissue. Conversely, as compared with the NC group,
the DN group exhibited strong and diffuse immune
expression of IL-1β (Figure 3B) and IL-6 (Figure 3C) in the
kidney tissue sections (p < 0.001), while the intensity of staining
was significantly decreased with low immune expression when
treated with TA (p < 0.001). ELISA analysis showed that the
levels of IL-1β (Figure 3D) and IL-6 (Figure 3E) in DN group
were significantly increased (p < 0.01), while the levels of IL-1β
and IL-6 in TA group were significantly decreased (p < 0.01).
The above results showed that TA repressed renal inflammation
by regulating the inflammatory mediators in DN mice.

3.4 TA downregulated the NLRP3/ASC/
Caspase-1 signaling pathway

It has been confirmed that the NLRP3/ASC/Caspase-1 signaling
pathway is activated in DN, thus contributing to the occurrence of
renal inflammation (Ding et al., 2018; Al Mamun et al., 2021; Yang
et al., 2021). Immunofluorescence staining and Western blotting
were conducted to investigate the molecular mechanisms underlying
the alleviation effect of TA on renal interstitial fibrosis and kidney
inflammatory responses. Immunofluorescence staining and
semiquantitative analysis showed that the expression of ASC
(Figures 4A, B), Caspase-1 (Figures 4C, D) and NLRP3
(Figures 4E, F) in the kidneys of mice in the DN group was
significantly increased compared with that in the NC group,
indicating that inflammation and pyroptosis were accompanied
by the process of kidney injury in DN. However, the process was
reversed after treatment with TA. Moreover, protein levels were also
evaluated by Western blotting of kidney tissue, and a similar trend
was seen, as shown in Figures 4G–J. Taken together, these results
provided evidence that TA could repressed renal inflammatory by
suppressing the NLRP3/ASC/Caspase-1 signaling pathway that were
activated in the kidneys of DN mice.

3.5 TA ameliorated impairments in the
intestinal mucosa barrier and reduced fecal
and serum LPS levels in DN mice

In order to further explore whether the inhibition of NLRP3/
ASC/caspase-1 signaling pathway by TA is related to intestinal
mucosal barrier and LPS, we detected the colonic mucosal
structure by HE and PAS staining, the expression of ZO-1,
occludin and claudin-1 in the colon by immunohistochemistry
and WB, and the levels of LPS in feces and serum. As shown in
Figures 5A, B, the DN group showed thickening of the basal layer
of the colonic crypt, branching of the colonic crypt, and atrophy
of the colonic crypt, while the TA group showed significant
improvement (p < 0.01). The TA administration also restored
the expressions of intestinal tight junction proteins (Figures 5C,
D), including Claudin-1 (Figure 5F), Occludin (Figure 5G), and
ZO-1 (Figure 5H), which were decreased in the DN group. In
addition, the level of LPS in feces (Figure 5I) and serum
(Figure 5J) of DN group was significantly higher than that of
the NC group, while TA showed a significant decrease (p < 0.05).
The above results indicate that TA ameliorated impairments in
the intestinal mucosa barrier and reduced the release of LPS into
the blood in DN mice.

3.6 TA modulated gut microbiota dysbiosis
in DN mice

To further investigate whether the antifibrotic effect of TA is
related to the intestinal microbiot, we analyzed the microbiota in the
feces of the mice in each group. 16S rRNA could determine the
diversity and species richness of intestinal microorganisms in mice
from different treatment groups (Figures 6A–D). The alpha diversity
of the gut microbial community was assessed by calculating the
Shannon (Figure 6E), Simpson (Figure 6F), ACE (Figure 6G) and
Chao (Figure 6H) indices. Alpha diversity analysis revealed that the
diversity and richness of faecal microbiota were considerably
reduced in DN mice After TA treatment, the Chao, ACE and
Shannon indices were significantly elevated, while the Simpson
indices was significantly reduced, indicating that faecal
microbiota diversity and richness increased (P < 0.05). Next, we
analyzed the differences in beta diversity by principal coordinate
analysis (PCoA). The PCoA results showed that the samples in the
DN group were significantly separated from those in the NC group,
while the samples in the TA group were distributed in a similar area
to those in the NC group (Figures 6D). Furthermore, we analyzed
the relative abundances of gut microbiota at the phylum and genus
levels in each group. At the phylum level, Firmicutes and
Bacteroidetes were the dominant taxa in gut microbiota at the
phylum level for each group (Figures 6I). The Firmicutes/
Bacteroidetes (F to B) ratio and the relative abundances of
Proteobacteria (Figure 6J) was significantly higher in the DN
group compared to the NC group, while it was decreased after
TA treatment (P < 0.01). At the genus level, the relative abundances
of Verrucomicrobiota (Figure 6K) and Akkermansia (Figures 6L, M)
were significantly lower in the DNmodel compared, and the relative
abundances of Escherichia-shigella (Figures 6L, N) was significantly
higher, and to the NC group (p < 0.01). Compared to the DN group,
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FIGURE 5
Effects of TA on the intestinal mucosa barrier and LPS levels in DNmice. (A) Pathological assessment of H&E-stained and PAS-stained mice colonic
sections; Expression of Occludin and ZO-1 in colon tissues was detected by immunohistochemistry (original magnifications, ×200); (B)Number of goblet
cells; (C) Statistical analysis of Occludin by immunohistochemical staining; (D) Statistical analysis of ZO-1 by immunohistochemical staining; (E)Western
blot assay of Claudin-1, Occludin, and ZO-1 expression in colon tissue; (F)Relative protein expression of Claudin-1; (G)Relative protein expression of
Occludin; (H) Relative protein expression of ZO-1; (I) Fecal LPS levels in DNmice; (J) Serum LPS levels in DNmice. Data are presented asmean ± SEM, n =
5. **p < 0.01, ***p < 0.001, DN vs. NC; #P < 0.05, ##P < 0.01, ###P < 0.001, TA, SE vs. DN.
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FIGURE 6
TAmodulates DN-induced gut microbiota dysbiosis. (A)OTU numbers; (B) Shannon index on OTU; (C) log10 (relative abundance); (D) Unweighted
UniFrac PCoA (principal coordinates analysis); (E) Shannon index; (F) Simpson index; (G) ACE index; (H) Chao index; (I) Relative abundance of intestinal
microbiota at the phylum level, (J) Proteobacteria and (K) Verrucomicrobiota. (L) Abundance changes in representative bacteria at the genus level are
shown in a heatmap. Genera that were statistically different with TA treatment: the relative abundance of (M) Akkermansia and (N) Escherichia-
Shigella group. All data were expressed as themean ± SD (n = 6). #P < 0.05, ##P < 0.01, ###P < 0.001 vs. NC group; *P < 0.05, **P < 0.01 vs. DN group. Data
are presented as mean ± SEM, n = 5. **P < 0.01, ***P < 0.001, DN vs. NC; #P < 0.05, ##P < 0.01, ###P < 0.001, TA vs. DN.
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the relative abundances of Verrucomicrobiota (Figure 6K) and
Akkermansia (Figure 6M) were significantly increased, and the
relative abundances of Escherichia-shigella (Figure 6N)
significantly decreased in the TA group.

4 Discussion

Diabetic nephropathy is the most serious microvascular
complication of diabetes, with an important pathological feature

FIGURE 7
Summarizing figure of the mechanism of TA in ameliorating renal interstitial fibrosis in DN mice. Multiple effects of TA on gut microbiota, fecal and
serum LPS levels, intestinal mucosa barrier, NLRP3/ASC/Caspase-1 signaling pathway, renal inflammation, renal injury and interstitial fibrosis and physical
and biochemical indicators.
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of renal interstitial fibrosis (Lin et al., 2018). However, there is still a
lack of effective measures against renal interstitial fibrosis to delay
renal failure. Penthorum chinense Pursh (“Gan-Huang-Cao” or
“Che-Gen-Cai” in Chinese; Penthoraceae) is widely used in
China’s local and traditional medical systems and is also available
as a vegetable or functional drinks (Chen et al., 2022).
Thonningianin A (TA), a substance derived from PCP,
significantly reversed the liver injuries, via antioxidation,
oxidative stress, apoptosis, mitochondrial signaling pathways, and
related geness (Wang et al., 2020). In the present study, we found
that TA modulated gut microbiota dysbiosis and suppressed the
inflammatory response may be a potential therapeutic strategy for
the treatment of renal interstitial fibrosis. Through 16S rRNA
analysis, we found that TA modulated gut microbiota dysbiosis
and reduced the abundance of Gram-negative bacteria to reduce the
production and release of LPS, thereby ameliorated impairments in
the intestinal mucosa barrier, inhibited the NLRP3/ASC/Caspase-
1 signaling pathway and further repressed the impact of
inflammation on renal interstitial fibrosis in DN mice (Figure 7).

C57BL/6 mice are considered a good animal model for DN
(Kitada et al., 2016). The DN group exhibited an enhancement of
FBG and 24hUTP, an increased Scr, BUN, and KI, which could be
significantly reduced by TA supplementation. Epithelial-
mesenchymal transition (EMT) is the most important cause of
renal interstitial fibrosis and is characterized by renal tubular
epithelial cells that acquire mesenchymal phenotypes and
myofibroblast functionss (Li et al., 2019). The transition of
EMT induces kidney epithelial cells to decrease the expression
of adherens junction proteins such as E-cadherin, and strongly
induces the expression of fibroblast markers, including vimentin
and α-smooth muscle actin (α-SMA) (Liu, 2011). In our study,
renal interstitial fibrosis was aggravated in the DN group
compared to the NC group, while TA treatment significantly
ameliorated renal interstitial fibrosis. The expression of
E-cadherin was significantly restored with TA, while α-SMA
was remarkably downregulated compared with the DN
group. The results further indicated that TA had beneficial
anti-fibrotic effects, providing evidence with respect to the
potential therapeutic impact on renal interstitial fibrosis.

The correlation between fibrosis and inflammation has been
established and supported by morphological evidence. A large
number of studies have shown the vital role of chronic
inflammation in the initiation of the fibrotic response and the
progression of fibrosiss in DN (Zheng and Zheng, 2016; Kriz
et al., 2023). In our present study, the secretion and expression
of IL-1β and IL-6 in kidney tissue of the TA group were remarkably
downregulated. Studies have shown that the activation of NLRP3/
ASC/Caspase-1 signaling pathway can lead to inflammatory
response, the production of inflammatory cytokines and the
recruitment of acute inflammatory cells mediated by chemokines,
which is the upstream signaling pathway to regulate inflammation
(Elliott and Sutterwala, 2015). Our results showed that the
expression levels of NLRP3/ASC/Caspase-1 signaling pathway-
related proteins in kidney tissue of DN mice were significantly
increased, while significantly decreased after TA treatment.
Therefore, it is believed that the activation of the NLRP3/ASC/
Caspase-1 signaling pathway is a primary factor promoting renal
micro-inflammation and interstitial fibrosis in DN mice. In our

present study, TA had a beneficial effect on renal inflammation in
DN mice by reducing the release of pro-inflammatory cytokines,
along with suppressing the NLRP3/ASC/Caspase-1 signaling
pathway, and further reduces renal interstitial fibrosis.

LPS is a component of Gram-negative bacteria to induce
production of pro-inflammatory mediators. DN is accompanied
by gut microbiota dysbiosis and an increase in the relative
abundance of Gram-negative bacteria, which leads to a high
level of production of LPS, and in turn damages the intestinal
mucosal barrier and enters the blood circulation to reach the
kidneys (Deng et al., 2022). A recent study has shown that LPS
can activate the NLRP3/ASC/Caspase-1 signaling pathway,
leading to renal inflammation and interstitial fibrosis (Ding
et al., 2018; Wan et al., 2022). Our results showed that relative
to the NC group, mice in the DN group had a significant increase
in the relative abundance of Gram-negative bacteria
(Proteobacteria and Escherichia-shigella), accompanied by
impaired colonic mucosal barrier, decreased expression of
intestinal tight junction proteins, and significantly increased
LPS levels in feces and serum. In contrast, TA reduced the
relative abundance of Gram-negative bacteria, repaired the
intestinal mucosal barrier, elevated the expression of intestinal
tight junction proteins, and decreased LPS levels in feces and
serum. In addition, it has been demonstrated that decreased
Bacteroidetes abundance and increased Firmicutes abundance
were shown to be associated with low levels of inflammations
(Turnbaugh et al., 2006). Another study showed that the
abundance levels of Verrucomicrobiota and Akkermansia were
positively correlated with intestinal barrier integrity and
intestinal tight junction protein expression, but negatively
correlated with serum LPS concentration (Barlow et al., 2015;
Gryaznova et al., 2022). TA could increase the abundance of
Bacteroidetes, Verrucomicrobiota, and Akkermansia, while
decrease the abundance of Firmicutes.

In conclusion, our study is the first attempt to evaluate the
protective effects of TA on DN and associated renal fibrosis by
maintaining the gut microbiota homeostasis. The results indicated
that TA could ameliorate renal interstitial fibrosis in DN mice
through modulating gut microbiota dysbiosis, ameliorating
impairments in the intestinal mucosa barrier, reducing the
production and release of LPS, inhibiting the activation of
NLRP3/ASC/Caspase-1 signaling pathway, and repressing renal
inflammatory. Hence, as an adjuvant therapy, TA may be
clinically valuable.
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