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Aims: The population pharmacokinetic (PPK) model-based machine learning
(ML) approach offers a novel perspective on individual concentration prediction.
This study aimed to establish a PPK-based ML model for predicting tacrolimus
(TAC) concentrations in Chinese renal transplant recipients.

Methods: Conventional TAC monitoring data from 127 Chinese renal transplant
patients were divided into training (80%) and testing (20%) datasets. A PPK model
was developed using the training group data. ML models were then established
based on individual pharmacokinetic data derived from the PPK basic model. The
prediction performances of the PPK-based ML model and Bayesian forecasting
approach were compared using data from the test group.

Results: The final PPKmodel, incorporating hematocrit andCYP3A5 genotypes as
covariates, was successfully established. Individual predictions of TAC using the
PPK basic model, postoperative date, CYP3A5 genotype, and hematocrit showed
improved rankings in ML model construction. XGBoost, based on the TAC PPK,
exhibited the best prediction performance.

Conclusion: The PPK-based machine learning approach emerges as a superior
option for predicting TAC concentrations in Chinese renal transplant recipients.
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1 Introduction

Tacrolimus (TAC), a calcineurin inhibitor, is widely employed to prevent allograft
rejection in transplant recipients following solid organ transplantation (SOT) (Zhang et al.,
2017; Yu et al., 2018). TAC has a narrow therapeutic window (Mac Guad et al., 2016).
Patients with elevated TAC exposure may experience toxicity, such as neurotoxicity,
nephrotoxicity, and post-transplant diabetes mellitus. Conversely, insufficient TAC
exposure may be associated with allograft rejection or even graft loss (Yaowakulpatana
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TABLE 1 Patients’ demographic and clinical information and genotype of CYP3A5.

Characteristics Training data set (80%) Test data set (20%)

No. of patients 103 24

Age, years 41.2 ± 11.2 44.7 ± 8.91

Gender (Male/Female) 64/39 17/7

Hight, cm 168.1 ± 7.72 169.3 ± 7.12

Weight, kg 63.3 ± 12.9 62.6 ± 11.0

Post Operation Days 130 ± 231 175 ± 242

WBC, x 109/L 9.15 ± 4.08 10.0 ± 4.51

RBC, x 1012/L 3.06 ± 0.61 2.98 ± 0.51

PLT, x 109/L 150.6 ± 54.3 126.8 ± 53.5

ALP, mmol/L 58.2 ± 24.9 63.0 ± 44.6

TBIL, μmol/L 11.3 ± 4.49 11.8 ± 4.11

DBIL, μmol/L 2.58 ± 1.17 2.91 ± 1.45

BUN, mmol/L 18.8 ± 10.5 243.0 ± 14.4

CR, μmol/L 212.5 ± 208.5 305.5 ± 340.6

HCT 0.29 ± 0.056 0.27 ± 0.051

TP, g/L 55.6 ± 5.54 53.6 ± 5.06

ALB, g/L 34.0 ± 3.69 33.1 ± 4.04

Concomitant medication

Calcium Antagonists 81 (78.6%) 21 (87.5%)

Proton Pump Inhibitors 102 (99%) 24 (100%)

Voriconazole 21 (20.4%) 8 (33.3%)

Genotype of CYP3A5

*1/*1 10 (9.7%) 2 (8.3%)

*1/*3 35 (34%) 8 (33.3%)

*3/*3 58 (56.3%) 14 (58.3%)

TABLE 2 Population pharmacokinetic parameters of structue model and final model.

Parameters Structure model Final model Test set final model

Estimates RSE % Estimates RSE% Estimates RSE%

Ka (1/h) θ1 3.86 (fixed) 3.86 (fixed) 3.86 (fixed)

V/F L) θ2 2,620 10.3 2,560 10.7 2,330 37.2

CL/F (L/h) θ3 41.1 14.2 70.6 9.75 114 20.7

HCT on CL/F θ4 −0.122 47.1 −0.161 31.2

CYP3A5 on CL/F θ5 −0.348 12.2 −0.395 23.3

IIV

ωV/F (%) η1 73.6 21.5 65.0 22.5 69.6 33.1

ωCL/F (%) η2 31.8 18.9 23.0 23.1 12.8 18.7

Residual error (%) δ 37.7 12.4 35.6 12.0 33.3 21.6
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et al., 2016; Thongprayoon et al., 2020). TAC is rapidly absorbed,
with peak blood concentration occurring 0.5–1 h post-
administration. Its bioavailability in patients in a steady state is
approximately 25% (5%–93%). Absorbed TAC undergoes extensive
metabolism by CYP3A4 and CYP3A5 in the gut mucosa and liver,
resulting in over ten different metabolites (Zuo et al., 2013b). More
than 95% of the metabolites are eliminated through bile (Chitnis
et al., 2013; Taber et al., 2021). TAC exhibits variable
pharmacokinetic (PK) properties, and even slight dose variations
can significantly impact individuals (Teng et al., 2022). Various
factors, including genetic polymorphisms, pathophysiological
indices, and concomitant drugs, may influence TAC PKs.
CYP3A5 genotype is the most frequently studied factor (Ghafari
et al., 2019), accounting for 40%–50% of the variability in TAC
clearance (Benkali et al., 2010; Vannaprasaht et al., 2013; Zhang
et al., 2013; Cheng et al., 2015; Mac Guad et al., 2016; Tang et al.,
2016; Yaowakulpatana et al., 2016; Htun et al., 2018; Uno et al., 2019;
Bezerra et al., 2020; Cheung et al., 2020). Additionally, factors such
as postoperative date (POD), hematocrit (HCT), body weight, liver
function, and the concurrent use of voriconazole or Wuzhi capsules
may impact the exposure and dosing regimen of TAC (Degraeve
et al., 2020).

Therapeutic drug monitoring (TDM) is commonly employed to
ensure optimal exposure to TAC (Vannaprasaht et al., 2013; Chen
et al., 2017; Tron et al., 2020; Franken et al., 2022). Trough
concentration (C0) serves as a conventional surrogate index for
assessing TAC exposure (Ghafari et al., 2019). It is valuable in the
regulation of TAC dosing regimen. However, there are limitations of
C0 in the estimation of TAC exposure, especially the influence of
various factors on the TAC PK is not estimated. Through modeling
and simulating based on results of TDM and patients’
characteristics, the individualized therapeutic regimen can be
designed and adjusted. The maximum a posteriori (MAP) model,
derived from the a priori population pharmacokinetic (PPK) model,
proves valuable in formulating and regulating TAC dosing regimens.
This approach offers the advantage of assessing and incorporating
various factors into the PPK model to enhance predictive accuracy
(Jing et al., 2021). While the MAP method excels in interpreting the
mechanical characteristics of TAC PK data and accounting for inter-
and intra-individual variations, it is noteworthy that individual
trough concentration prediction errors may be relatively high due
to inaccurate parameter assumptions or covariate effect modeling.

The use of machine learning (ML) in TDM and individualized
therapy has rapidly developed in recent years. Its major advantage is the

FIGURE 1
Goodness of fit of final PPK model of TAC in Chinese renal allograft recipients (A). Population predicted concentration (PRED) vs. measured
concentration (CONC); (B). individual predicted concentration (IPRE) vs. CONC; (C). Conditional weighted residual error (CWRES) vs. PRED; (D). CWRES
error vs. time.
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capability to process large amounts of data and explore the inherent
characteristics of different data. ML can provide accurate predictions
with a fast and efficient selection of covariates in large datasets (Fu et al.,
2021; Sibieude et al., 2022). This method has been used to estimate the
TAC concentration or dosage based on various factors, including body
weight, age, pathophysiological status, concomitant drugs, and genetic
polymorphisms of drug-metabolizing enzymes or transporters
(Woillard et al., 2021). The ML method is suitable for predicting
targets affected by many variables and sometimes shows stronger
generalization and better accuracy (Huang et al., 2022; Song et al.,
2023). Despite the higher accuracy of ML algorithms, there are some
limitations to this strategy, such as inexplicable results (Destere et al.,
2023). It can be assumed that a proper combination of two methods
may provide more reliable predictions (Damnjanović et al., 2023).

This study aimed to establish a model of TAC ML combined
with PPK in Chinese patients undergoing renal transplantation. The
performances of different ML models and MAP in predicting the
trough concentration of TAC were also compared.

2 Methods

2.1 Study design and population

A total of 127 adult Chinese renal transplant recipients who
underwent their first renal transplantation were included in this
study. The inclusion criteria for patients were as follows: i)
primary renal transplant recipients meeting standard renal
donor criteria and ii) administration of immunosuppressive
drugs only after transplant surgery. The exclusion criteria
included: i) combined organ transplantation, ii) panel reactive
antibody positivity, iii) allergy or intolerance to TAC, and iv)
pregnancy or lactation.

All patients received a postoperative triple immunosuppressive
regimen consisting of TAC, mycophenolate mofetil (MMF), and
steroids. TAC (Prograf, Astellas) was orally administered at
0.1 mg kg-1·day-1 twice daily, then adjusted to C0: 10–13 ng mL-1

in the first month and 5–9 ng mL-1 thereafter. A 1000 mg dose of

FIGURE 2
Visual predictive check based on the PPK model of TAC in Chinese renal allograft recipients. The solid lines represent the 50th observed data, the
upper and lower dashed lines represent the 95th and fifth observed data, and the black solid cycles represent the observed data. Shaded areas correspond
to simulated 95% confidence intervals.

TABLE 3 Hyperparameters of machine learning model.

Model Core hyperparameters

MLP alpha = 0.007509; h_layer1 = 56; h_layer2 = 211; h_layer3 = 25; lr_init = 0.0003293

SVR C = 9.244; degree = 41; gamma_svr = 0.014

Xgboost colsample_bytree = 0.8357; esr = 36; eta = 0.061; gamma = 2.3214; max_depth = 7; min_child_weight = 0.72; n_estimators = 175; reg_lambda =
0.57835; subsample = 0.61
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MMF (Cellcept, Roche) was administered within 6 h before renal
transplantation, and the same dose was given every 12 h after
transplantation. Methylprednisolone (Pfizer, Puurs) was
administered intravenously during surgery, progressively tapered,
and then maintained at 5–10 mg oral prednisone daily after the first-
month post-transplantation. Patients’ pathophysiological
characteristics were collected on the day of TAC TDM.
Demographic data, such as age, sex, and body weight (WT), and
clinical data, including red blood cell count (RBC), hematocrit
(HCT), platelet count, alkaline phosphatase (ALP), total bilirubin
(TBIL), creatinine clearance (CLcr), and albumin (ALB), were
recorded. Postoperative date (POD) was defined as the period
between the day of the operation and the day of data collection.
Blood samples were collected at 8:00 a.m., just before the morning
dose. The collected data were randomly divided into training (80%)
and testing (20%) datasets.

2.2 Determination of tacrolimus
concentration and CYP3A5 genotypes

Whole blood TAC levels were determined using the enzyme-
multiplied immunoassay technique with the SYVA VivaEmit
2000 kit (Siemens Healthcare Diagnostics Inc., Erlangen,
Germany). Whole blood (200 µL) was collected from patients for
genotype analysis, and the detection range was 2–50 ng/mL.

Leukocyte DNA was extracted from peripheral blood samples
using the TIANamp Blood DNA Kit (Tiangen Biotech Co., Beijing,
China), following themanufacturer’s standard protocol. TheCYP3A5*3
(rs776746) genotype was identified through PCR-sequencing. The
primer sequences were as follows: CYP3A5*3: 3A5P1 (5′GCC CTT
GCA GCA TTT AGT CCT T3′) and 3A5P2 (5′CCT GCC TTC AAT
TTT TCA CTG 3′). The 50 μL reaction mixture contained 15–50 ng
genomic DNA, 1 U of Taq DNA polymerase, 1× buffer, 0.2 mmol/L
dNTPmixture, 1.5 mmol/LMgCl2, and 0.5 μmol/L of each primer. The
reaction conditions were as follows: 7 min at 94°C, followed by 30 cycles
at 94°C for 30 s, 60°C for 30 s, and 72°C for 30 s, with a final extension at
72°C for 7 min. The resulting product was purified and sequenced using
an automated genetic analyzer (ABI 3730 Sequence Detection System;
Applied Biosystems).

2.3 Population pharmacokinetic modeling

The PPK model was developed using the nonlinear mixed-
effects modeling software NONMEM version 7.4.1 (Icon

FIGURE 3
SHAP summary plot of features in the final model for the estimation of TAC in Chinese renal allograft recipients.

TABLE 4 Evaluation results of PPK model and machine learning models in
test dataset.

Model MAE MAPE (%) RMSE R2 score

PPK Basic 1.85 26.9 2.44 0.46

PPK Final 1.77 25.3 2.35 0.48

MLP 2.04 30.5 2.54 0.25

SVR 1.67 25.8 2.12 0.48

XGboost 1.61 23.7 2.03 0.52
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Development Solutions, Hanover, Maryland, USA), Pirana (version
23.1.1, Certara) and Notepad++ and PsN (Perl-speaks-NONMEM,
version 5.3.1). R (version 4.3.0) was used in data processing and
graphing. The first-order conditional estimation (FOCE) method
was employed to estimate relevant parameters. Model selection
relied on the objective function value (OFV), parameter
estimates, and standard errors.

To ensure that random effects were distributed around zero,
concentrations were log-transformed. Inter-individual variation
IIV) of the parameters was modeled exponentially, while the
residual error was analyzed additively to maintain variation
within the same order of magnitude. The structural model is
defined by the following equation:

Pi � TV Pi( ) × eηi (1)
lnCobs � ln Cpred + ε (2)

where Pi and TV (Pi) are the individual and population values of the
parameters described in the equation, respectively. ηi was the
random error of Pi. The values of ηi were assumed to be
independently normally distributed with a mean of 0 and a
variance of ω2. In the second equation, Cobs is the observed
concentration, Cpred is the predicted concentration, and ε is the
residual error with a mean of 0 and a variance of σ2.

Patient physiological and pathological characteristics, along
with genetic polymorphisms, were assessed as potential covariates
in the TAC PPK model. For categorical covariates including

FIGURE 4
Plot of observed versus individual predicted TAC concentration by various machine learning models and Bayes estimation based on PPK model in
the validation group of Chinese renal allograft recipients. (n = 328).
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CYP3A5 genotype, discrete numbers were given to each index: 0 and
one for male and female patients. 0, 1, 2 for CYP3A5 *1/*1, *1/*3 and
*3/*3 patients, respectively. Both forward inclusion and backward
elimination methods were employed in constructing the final
regression model. Each candidate covariate was scrutinized by
incorporating it into the baseline model, and weighted residuals,
along with changes in the objective function value (OFV), were
observed throughout the model-building process. Changes in the
OFV approximate the χ2 distributions with degrees of freedom (df)
equal to the number of covariates introduced. A covariate was
deemed statistically significant if the OFV decreased by 6.63 or
more (p < 0.01, df = 1) upon its addition to the base model during
forward inclusion. The full model included all covariates that

exhibited a significant decrease in OFV. Subsequently, each
covariate retained in the model was eliminated by fixing its value
to zero. This procedure was repeated until the value of the objective
function failed to increase by 7.88 (p < 0.005, df = 1) (backward
elimination). Individual PPK parameters, arithmetic means, and
standard deviations were calculated using NONMEM Bayesian
estimates from the POSTHOC output.

The test dataset was utilized to evaluate the accuracy and
applicability of the final model and ensure its stability and
predictive power. A visual predictive check (VPC) was
conducted by simulating 1,000 datasets to assess the
performance of the TAC PPK model. The distribution of
concentration-time data for the simulated population (5%, 50%,

FIGURE 5
Box plots of prediction error with machine learning model and Bayesian forecasting in different scenarios (1st to sixth TDM results post
transplantation).
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and 95% quartiles) was compared with that of the original dataset
to investigate the accuracy and predictive capability of the
established model.

2.4 Machine learning models development
and evaluation

Amultilayer perceptron (MLP), support vector machine (SVM),
and extreme gradient boosting (XGBoost) were utilized to develop
the MLmodels. The indicators collected previously were included in
the model: WT, AMT, POD, RBC, HCT, DBIL, BUN, CLcr, ALB,
and the genotype of CYP3A5, while combinations of drugs were also
integrated. The total unit dose per kilogram of body weight since the
last blood concentration (UDOSE) was also calculated. Additionally,
the individual concentration prediction (IPRE) of the TAC PPK
basic model was tested.

To avoid biased performance estimates, nested cross-validation was
performed using an inner 10-fold cross-validation for training and
tuning, and an outer 10-fold cross-validation was used for validation
after all training and tuning trials. The tuning process was performed
using a Tree-structured Parzen Estimator (TPE), which employs the
sum of the mean values of the mean absolute error (MAE) and mean
absolute percentage error (MAPE). Each ML model pipeline was
iterated 100 times within a predefined hyperparameter search space.
The prediction performances in the training and tuning processes were
evaluated using the R2 score, MAE, MAPE, and root mean squared
error (RMSE). The equations are as follows:

R2 � 1 − ∑i ŷi − yi( )2∑i �y − yi( )2
MAE � 1

n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣
MAPE � 1

n
∑n
i�1

ŷi − yi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ × 100%

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√

where yi is the actual value of TAC C0, ŷi is the predicted value, �y is
the mean value. The highest R2 score and lowest MAE, MAPE, and
RMSE indicated the highest fitting degree, and the best fitting result
was used as the basis for the algorithm selection.

The performances of the MLP, SVM, and XGBoost models
based on PPKwere validated using the test dataset. The performance
of the predictions based on the final PPK model was also validated.
R2, MAE, MAPE, and RMSE were used as the performance indices.
We also compared the prediction performance of various models
among different TDM results.

3 Results

3.1 Patient characteristics

A total of 2041 concentrations from 127 renal transplant
recipients were included in the model training (n = 103) and test

(n = 24) sets. The patient demographics, laboratory data,
concomitant medications, and genetic information of the training
and testing datasets are shown in Table 1. This study included
81 male and 46 female patients, with an average age of 42.2 ±
11.0 years and weight of 62.6 ± 12.2 kg. TAC was administered
between 3 and 1,622 days after transplantation. During therapy,
54.3% and 7.91% of patients received calcium antagonists and
voriconazole, respectively. There were 9.45%, 33.9%, and 56.7%
of patients with CYP3A5 *1/*1, *1/*3, and *3/*3 genotype,
respectively.

3.2 Population PK modeling

As only C0 of TACwas used in establishing the TAC PPKmodel,
a one-compartment model with first-order elimination was applied
to the structural model. The value of ka was fixed at 3.84 h-1. The
clearance (CL/F) and volume of distribution (V/F) of the training
data were 41.1 ± 13.8L/h and 2,620 ± 1,624 L, respectively. The PPK
parameters of the structure and final model have been listed
in Table 2.

The final model was formed after analyzing all covariates by
forward inclusion and backward elimination. The HCT and
CYP3A5 genotypes (*1/*1, *1/*3, *3/*3 were set to 0, 1, and 2,
respectively, and introduced in the model) showed significant
changes in OFV when tested as covariates of CL/F. The final CL/
F model is as follows:

CL/F � 70.6 × e CYP3A5×− 0.348( ) × e HCT×− 0.122( )

The goodness-of-fit (GOF) of the final model is shown in
Figure 1, where the population prediction (PRED) and IPRE
correlated well with the measured concentrations.

Through a Bayesian estimation method, the individual
predicted TAC concentrations of validation group
(24 patients, 331 points) were compared with the observed
data. The MPE (95% CI) was 1.23% (−1.67%, 4.12%), and the
MRSE% was 23.7%. The bias was not significantly different from
0. The predictive performance of the final model was assessed
through VPC in validation group (Figure 2). The predicted and
actual values exhibited a significant correlation, with the majority
of the measured TAC C0 values falling within the 95% CIs of the
predicted concentrations.

3.3 Machine learning modeling

The MLP, SVM, and XGBoost algorithms of the MLmodel were
developed based on various features, including post hoc prediction of
the test dataset of PPK basic model parameters. The
hyperparameters of the ML models were obtained from 100 TPE
iterations using the training set. The optimal parameters of the ML
model are listed in Table 3.

Shapley Additive Explanations (SHAP) was used to explain the
model output (Figure 3). IPRE of the TAC PPK basic model, POD,
CYP3A5 genotype, and HCT were ranked higher than those of the
other factors.
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3.4 Comparison of predictive performances

The TAC C0 prediction performed well in the test dataset using
MAP based on the final PPK model, as well as with the MLP, SVR,
and XGBoost models based on the basic PPK model (Table 4;
Figure 4). Among these models, XGBoost, based on the PPK
basic model, exhibited the highest performance (Table 4).

TheMPEof C0 at various time points after TAC administrationwas
compared in test group. Starting from the second dose, the prediction
errors from various methods tended to approach zero. Simultaneously,
MAE and RMSE of the different methods showed significant
improvement compared to the first administration, with XGBoost
based on PPK demonstrating superior performance (Figure 5). This
suggests that, by utilizing individual parameters and incorporating prior
mechanisms such as inputting the IPRE, ML methods can effectively
manage more covariates and complex effects, leading to reliable
predictions through proper training and pipeline tuning.

4 Discussion

In this study, we developed an approach that combines PPK and
ML models to enhance the prediction performance of C0 for TAC in
Chinese renal transplant recipients. The PPK-based XGBoost model
outperformed the PPK final, PPK-based SVR, and PPK-based MLP
models in predicting C0.

Various PPK models have been established for different patient
populations. The two-compartment model is commonly utilized as a
structural model for PPK studies in patients following an intense
sampling strategy (Zhu et al., 2014; Riva et al., 2023). Conversely,
the single-compartment model is the most frequently employed PPK
model based on conventional TDM data (Reséndiz-Galván et al., 2019;
Teng et al., 2022). Approximately 60% and 40%of publishedmodels are
one- and two-compartment models, respectively. In our previous study,
we established a two-compartment TAC PPK model using rich-time
PK data and conventionally monitored C0 data from Chinese patients.
Based on thismodel, we estimated the Bayesian estimator of TACAUC.
We found that the two- and one-compartmentmodels were suitable for
intense PK and C0 data, respectively. The difference in CL/F obtained
using the one- and two-compartment models was not statistically
significant (Chen et al., 2017). The AUCs estimated using different
models were comparable.

A number of factors have been reported to influence the PK of
TAC. Campagne et al. found that among 63 published PPK models,
CYP3A5 genotype, HCT, POD, WT were the most commonly
reported covariates. These covariates impacted TAC PK
parameters and necessitated dosing adjustments to achieve
similar drug exposure among patients (Campagne et al., 2019).

The CYP3A5*3 allele (resulting from the 6986A>G mutation in
CYP3A5 intron 3) leads to a splice defect in the mRNA, resulting in the
production of an unstable and nonfunctional CYP3A5 enzyme (Dai
et al., 2001; Hsieh et al., 2001). The CYP3A5*3 genotype is widely
accepted to significantly affect the CL/F (Zuo et al., 2013a; Bergmann
et al., 2014; Han et al., 2014) of TAC. In the present study, we found that
the CL/F of CYP3A5*1/*3 and *3/*3 patients were 70.6% and 49.9% of
those with the *1/*1 genotype, respectively. Including the CYP3A5*3
genotype as a covariate of the CL/F of TAC resulted in an 8.85%
decrease in interindividual variation in CL/F.

As TAC is highly bound to erythrocytes, HCT may reflect the level
of unbound TAC and further affect CL/F. It has been reported that
HCT is lower in the early postoperative period in renal transplant
recipients and increases with the recovery of renal function (Han et al.,
2013). In the present study, we found that HCT as a covariate decreased
the inter-individual variation in CL/F by 6.21%.

The integration of AI technology into medicine has revolutionized
the approach to medical data mining. Unlike traditional statistical
methods, which often struggle to uncover the inherent
characteristics of flat data, ML algorithms excel at processing vast
and complex datasets without mechanistic assumptions. The accuracy
and practicality of models can be continually optimized with increasing
of the participant data. ML algorithms have found extensive application
in clinical drug therapy, with numerous models developed to predict
dosage or exposure (Fu et al., 2021; Bououda et al., 2022; Ponthier et al.,
2022). Woillard et al. (Woillard et al., 2021) introduced the XGBoost
MLmodel, leveraging two or three concentrations (pre-dose, and 1 and
3 h post-dosing), which underwent rigorous testing across six
independent full-PK datasets from renal, liver, and heart transplant
patients. Their ML models, integrating four covariates (dose, type of
transplantation, age, and time between transplantation and sampling),
demonstrated superior performance compared to the MAP model. In
another investigation, Zhang et al. conducted a comparative analysis of
various ML and deep learning algorithms for predicting TAC dosing
regimens. They determined that the TabNet algorithm exhibited the
highest performance. Noteworthy variables influencing the TAC daily
dose in their final prediction model included the last TAC daily dose,
last TAC therapeutic drug monitoring value, time post-transplantation,
HCT, Scr, aspartate aminotransferase, weight, CYP3A5 genotype, body
mass index, and uric acid (Zhang et al., 2022).

In the present study, we establishedMLmodels based on the results
of the PPKbasicmodel and patient demographic and pathophysiological
data. Utilizing SHAP analysis, we compared the impacts of various
factors on the prediction performance of TACC0 levels. The IPRE of the
TAC PPK basic model, POD, CYP3A5 genotype, and HCT ranked
higher than those of other factors. Additional indicators such as ALP,
CREA, previous TAC dosage, and BUN also influenced machine
learning modeling algorithms to varying degrees. Although used in
limited patients during therapy in certain stage of therapy, co-
administered voriconazole was proved to be a factor influence the
prediction of TAC concentration. Among these factors, only CYP3A5
genotype andHCTwere proved to be the covariates of TACPPKmodel.

The model established in this study represents a pipeline that
combines the advantages of PPK and ML. It serves as a
complementary tool to address oversimplification and mis-
specification of pharmacokinetic mechanisms due to mathematical
modeling (Stankevičiūtė et al., 2023). Based on the IPRE from the
basic PPK model, the XGBoost algorithm demonstrated better
predictions compared to other algorithms, as well as the final PPK
model, when applied to the data of the test group. This finding
indicates a significant improvement in prediction performance. In the
test group, the MPE of 2-6 TDM sessions were 13.1%, 11.6%, 11.2%,
11.5%, and 8.68%, respectively. Additionally, 68 samples (54.8%)
exhibited a PE within the range of ±20% (Figure 5).

By leveraging the established model, previous dosing regimens,
and TDM results, regulated dosages can be estimated. Each dose can
be paired with another index to simulate C0, allowing for the
selection of the optimal dose regimen.
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By predicting the concentration after the next dose, clinicians can
gain a clear understanding of dose exposure. They can then judge
whether the concentration falls outside the therapeutic range to adjust
the dose accordingly, thereby enhancing control over the patient’s drug
exposure. This adjustment can lead to a reduction in adverse effects and
minimize the risk of graft loss.We also explored labeling dose-exposure
data to predict the direct dose amount and provide dosage
recommendations, although further research is necessary in this regard.

This study has certain limitations. Firstly, only the C0 of TAC was
considered, and TAC concentrations at other time points may offer
additional insights into pharmacokinetics. Secondly, other factors such
as genetic polymorphisms of transporters and other co-administered
drugs (i.e., Wuzhi capsules) could potentially influence prediction
accuracy. Thirdly, this study is a single-center study, while the data
were split into training and test groups, validation with data from other
centers could provide more robust validation for the established model.

5 Conclusion

In summary, we utilized PPK model-based machine learning
algorithms to develop a TAC concentration prediction model
tailored for Chinese renal transplant recipients. Through comparison
with various algorithms and the MAP method, we found that the PPK
model combined with XGBoost yielded superior prediction
performance. The model developed in this study offers a promising
avenue for designing personalized TAC dosing regimens for Chinese
patients undergoing renal transplantation.
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