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Background: Although prognostic models based on pyroptosis-related genes
(PRGs) have been constructed in bladder cancer (BLCA), the comprehensive
impact of these genes on tumor microenvironment (TME) and
immunotherapeutic response has yet to be investigated.

Methods: Based on expression profiles of 52 PRGs, we utilized the unsupervised
clustering algorithm to identify PRGs subtypes and ssGSEA to quantify immune
cells and hallmark pathways. Moreover, we screened feature genes of distinct
PRGs subtypes and validated the associations with immune infiltrations in tissue
using the multiplex immunofluorescence. Univariate, LASSO, and multivariate
Cox regression analyses were employed to construct the scoring scheme.

Results: Four PRGs clusters were identified, samples in cluster C1 were infiltrated
with more immune cells than those in others, implying a favorable response to
immunotherapy. While the cluster C2, which shows an extremely low level of
most immune cells, do not respond to immunotherapy. CXCL9/CXCL10 and
SPINK1/DHSR2 were identified as feature genes of cluster C1 and C2, and the
specimen with high CXCL9/CXCL10 was characterized by more CD8 + T cells,
macrophages and less Tregs. Based on differentially expressed genes (DEGs)
among PRGs subtypes, a predictive model (termed as PRGs score) including five
genes (CACNA1D, PTK2B, APOL6, CDK6, ANXA2) was built. Survival probability of
patients with low-PRGs score was significantly higher than those with high-PRGs
score. Moreover, patients with low-PRGs score were more likely to benefit from
anti-PD1/PD-L1 regimens.

Conclusion: PRGs are closely associated with TME and oncogenic pathways.
PRGs score is a promising indicator for predicting clinical outcome and
immunotherapy response.
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1 Introduction

Bladder cancer (BLCA) has been reported as the 11th most
prevalent cancer globally, with about 550,000 new cases per annum
(Lenis et al., 2020; Teoh et al., 2020). According to epidemiological
investigations, smoking is the most crucial risk factor for BLCA.
Furthermore, strategies to inhibit smoking have indicated
improved survival of patients with lung cancer; however, it has
not indicated successful outcomes in BLCA patients
(Cumberbatch et al., 2016). These observations suggest that
BLCA has unique genetic/epigenetic alterations, and immune
responses (Cao et al., 2020). Based on the pathological
characteristics, BLCA can be divided into non-muscular
invasive and muscular invasive types (Wang et al., 2023).
However, different BLCA has different challenges, for instance,
non-muscular invasive BLCA has a high recurrence rate after
surgery, while muscular invasive BLCA indicates a very poor
prognosis, with only few patients surviving more than 5 years.
(Chou et al., 2016; Ghandour et al., 2019). In recent years,
immunotherapy has made great progress. Anti-programmed cell
death protein ligand-1 antibody (αPD-L1) has been approved by
the US Food and Drug Administration (FDA) for BLCA treatment
since 2016, with its usage spanning from non-muscle invasive to
metastatic disease (Schneider et al., 2019). However, a significant
number of BLCA patients do not respond to these treatments
(Galsky et al., 2020; Powles et al., 2021). On the one hand,
numerous tumors exhibit an “immune-cold” phenotype,
characterized by an immunosuppressive tumor
microenvironment (TME), rendering them unresponsive to
current immunotherapeutic agents (Lee et al., 2022; Zhang
et al., 2023). On the other hand, αPD-L1 is a viable choice only
for programmed cell death protein-ligand 1 (PD-L1) positive
BLCA patients, while PD-L1 expression varies between
individuals (Afonso et al., 2020). Therefore, it is essential to
identify driving factors in genetic/epigenetic and immune level
and construct a new predictive model for immunotherapy
response and survival in BLCA (He et al., 2021).

Pyroptosis is a kind of programmed cell death, with
inflammation triggered by detrimental signals or pathogenic
microbial infection (Frank and Vince, 2019). Furthermore, it
is manifested with cell swelling, lysis, and cytoplasmic content
secretion. It is an essential host resistance mechanism against
infection by pathogenic microbes. However, increased or
uncontrolled pyroptosis is harmful and even fatal for the
host. Previous studies indicated that pyroptosis was linked
with the initiation and progression of various cancers, as well
as affecting the TME. Much literature has revealed that
pyroptosis is critically involved in tumor development (Fang
et al., 2020). Additionally, crosstalk between TME and
pyroptosis has also been indicated (Orning et al., 2019; Erkes
et al., 2020). TME primarily comprises endothelial cells,
fibroblasts, extracellular matrix, immune and inflammatory
cells, and diffuse chemokines and cytokines, which are
notably associated with tumor initiation and progression
(Runa et al., 2017). Currently, because of technical
limitations, most research only investigated 1 or 2 pyroptosis-
related genes (PRGs) in cell and animal models. However,
antitumor effects require highly coordinated interactions

among many genes. Therefore, comprehensive research on
the characteristics of various PRGs-mediated TME cell
infiltration is essential and may furnish crucial data on
mechanisms of BLCA oncogenesis and progression, as well as
predict the immunotherapy response.

This study aims to classify subtypes of different immune
infiltrates by analyzing the PRGs in BLCA patients and construct
a scoring model, for prognosis prediction and clinical treatment
guidance. TCGA-BLCA patients were used to identify and
validate four pyroptosis-linked subtypes that were related to
immune infiltration and prognosis. Based on differentially
expressed genes (DEGs) assessed by the 4 pyroptosis
subtypes, the patients were categorized into two geneClusters.
Moreover, the LASSO-Cox method was employed to establish
the pyroptosis correlation model and elucidate the risk score.
Overall, the four pyroptosis-related subtypes and scoring
systems constructed in this study could predict immune
infiltration, prognosis, and immunotherapy response.
Additionally, the acquired data indicated a potential link
between TME, pyroptosis, immunotherapy response, and
prognosis in BLCA patients.

2 Materials and methods

2.1 Data sources

Figure 1 indicates the study’s flowchart. BLCA sample’s
clinicopathological and gene expression (fragments per
kilobase million, FPKM) data were acquired from The Cancer
Genome Atlas (TCGA; 406 BLCA patients) (https://portal.gdc.
cancer.gov/) and the Gene Expression Omnibus (GEO;
165 BLCA patients) (https://www.ncbi.nlm.nih.gov/geo/).
Detailed information on the selected BLCA patients is given
in Supplementary Table S1. Clinical information included
tumor grade, age, TNM stage, follow-up time, sex, and
survival status. Data in this research were downloaded from
publicly available datasets, therefore ethics committee approval
was not required.

2.2 Consensus clustering for pyroptosis-
related genes in BLCA

Using the “REACTOME_PYROPTOSIS” item of MSigDB
(http://www.broad.mit.edu/gsea/msigdb/) and previous literature
(Ye et al., 2021), 52 PRGs were identified (details in
Supplementary Table S2). Furthermore, based on the expression
profiles of these PRGs, unsupervised clustering was conducted by
using the “ConsensusClusterPlus” package to categorize participants
into distinct molecular subtypes (termed: PRGs clusters). To ensure
the cluster’s reliability, clustering was repeated 1,000 times. DEGs
between the different PRGs clusters were identified using the
“limma” package in R with a fold-change of 1.5 and an adjusted
p-value of <0.001. Finally, we screened and identified 240 DEGs.
Additionally, based on expression of DEGs, unsupervised clustering
was carried out to classify patients into distinct clusters (termed:
geneClusters).
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2.3 Construction and validation of the PRGs-
DEGs risk score system

Using the “caret” package, TCGA acquired 406 BLCA patients
who were randomly categorized in a 1:1 ratio into the train and test
cohorts. Then the risk scoring system was constructed in the TCGA-
train cohort. Briefly, survival-related genes were assessed via the
univariate Cox regression using PRGs-DEGs, and then LASSO
regression was carried out to exclude overfitting genes. To build

the predictive model, the filtered genes were subjected to
multivariate Cox regression using the forward/backward method.

The PRGs-DEGs risk score was calculated as follows:

PRGs − DEGs risk score � Σ Expi * coefi( )

Where Expi and Coefi indicated the expression of each gene and risk
coefficient, respectively. According to the median risk score value
from the TCGA-train cohort, other patients from the TCGA-test
and GEO cohorts were categorized into high-risk (HR) and low-risk

FIGURE 1
Study flow chart.
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(LR) subgroups. The log-rank test and the Kaplan-Meier curve were
applied to determine the survival differences between LR and HR
subgroups. Moreover, the area under the curve (AUC) value of the
receiver operating characteristic (ROC) curve was assessed to
elucidate the reliability of the predictive model.

2.4 Clinical correlation and
stratification analyses

The PRGs cluster’s clinical value was identified via consensus
clustering. Moreover, the association of PRGs clusters with
clinicopathological features (including tumor grade, age, TNM
stage, and sex) was compared. Furthermore, Kaplan-Meier curves
were drawn by the “survival,” whereas using the “survminer” R
packages, the differences between overall survival (OS) and
progression-free survival (PFS) among different PRGs clusters
were assessed. Additionally, Chi-square tests were utilized to
elucidate the relationship between PRGs-DEGs risk score and
clinical features. Furthermore, univariate and multivariate
analyses were conducted to evaluate if the risk score was
independent of other clinicopathological parameters using the
BLCA cohort. A stratified analysis was also carried out to assess
if the risk score maintained its predictive ability across subgroups
based on the aforementioned clinicopathological parameters.

2.5 Tumor purity analysis and single sample
gene set enrichment analysis (ssGSEA)

According to the gene expression profiles, the ESTIMATE
algorithm in R was employed to calculate the tumor purity of
each patient including immune and stromal scores. Furthermore,
the expression profiles were converted into the scoring matrix of
hallmark pathways/phenotypes or immune infiltrations via the R
“GSVA” package (method = “ssGSEA”). The reference hallmark
gene set was acquired from GSEA (https://www.gsea-msigdb.org/
gsea). Then, differential analyses of ssGSEA scores were carried out
for distinct PRGs clusters, geneClusters, or HR/LR score clusters. As
a continuous variable, the PRGs-DEGs risk score was evaluated for
the correlation with ssGSEA scores related to hallmark pathways/
phenotypes and immune infiltrations. Additionally, the association
of the risk signature gene levels with ssGSEA scores of substantially
altered pathways/phenotypes and immune infiltrations was
assessed, respectively.

2.6 Quantitative real-time PCR (qRT-PCR)

The BLCA and para-carcinoma tissues used in this study were
gifted from another research group. This research was authorized by
the Institutional Research Ethics Committee of West China
Hospital. For the detection of the mRNA levels of marker genes
and prognostic genes, qRT-PCR was employed. Briefly, whole RNA
was acquired using Trizol (Thermo Fisher Scientific), reverse
transcribed to single-strand cDNA. For qRT-PCR amplification,
qRT-PCR was conducted using SYBR® Green Real-time PCRMaster
Mix (TOYOBO). GAPDH was utilized for normalizing the relative

mRNA levels. Supplementary Table S3 enlists the sequences of
primers employed.

2.7 Immunofluorescence (IF)

The tissues of BLCA and para-carcinoma obtained above were
paraffin-embedded. CD163, CD8, and FoxP3 were used as specific
markers for tumor-associated macrophages (TAMs), CD8 + T cells,
and regulatory T cells (Tregs), respectively. The samples were
dewaxed in xylene, rehydrated using alcohol, blocked with the
help of endogenous peroxidase, treated overnight with specific
antibodies at 4°C in a humidified box, and then tagged with
secondary antibodies. Lastly, the samples were counterstained
with hematoxylin and visualized by diaminobenzidine.

2.8 Immunotherapy susceptibility analysis

Tumor mutational burden (TMB) was compared between the
LR and HR score groups. The clinical and transcriptome data of the
IMvigor210 cohort were acquired from a freely available software
and data package (http://research-pub.gene.com/
IMvigor210CoreBiologies). The anti-PD-L1 treated advanced
urothelial carcinoma patient’s dataset was utilized to assess the
predictive capability of the PRGs-DEGs scoring system for
immunotherapy response. The proportions of various
immunotherapy responses, including the stable disease (SD),
partial response (PR), complete response (CR), and progressive
disease (PD). Moreover, the survival differences between the LR
and HR subgroups were compared.

2.9 Establishment and validation of a
nomogram for overall survival

According to the independent predictive factors such as the
PRGs-DEGs scoring system (p < 0.05), a nomogram risk score for
OS was constructed using the R “rms” package. Then, the calibration
curve analysis, ROC, and decision curves analysis were carried out to
elucidate the performance of the nomogram scoring system.
Furthermore, calibration curves were plotted for the survival
probability at 1-, 3-, and 5-year to elucidate the precision of the
combined model. The clinical utility of each predictive variable was
assessed via decision curve analysis. Additionally, AUC values of
ROC curves were utilized to assess the reliability of each single
predictive variable and the combined nomogram model.

2.10 Statistical analyses

For statistical measurement, the R software (version 4.2.5) was
employed. Correlations among variables were analyzed by Pearson
or Spearman coefficient. The intergroup differences in continuous
variables were compared via the t-test. Based on the Kaplan-Meier
method, the survival curves were drawn. Furthermore, the ROC
curves were employed to assess the accuracy of PRGs-DEGs risk
score for predicting survival and PRGs clusters. All the statistical
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FIGURE 2
Genetic and transcriptional alterations of PRGs in BLCA. (A) The expression difference of 29 PRGs between normal tissue and BLCA tissue. (B)
Interactions among PRGs in BLCA. (C) TheCNV variation frequency of PRGs. Red circle: amplified frequency; blue circle: missing frequency. (D) Locations
of CNV alterations in PRGs on 23 chromosomes. (E) Mutation frequencies of PRGs in the patients with BLCA from the TCGA cohort. (F) The correlation
network of the PRGs. The asterisk represents the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). PRGs, pyroptosis-related genes; BLCA,
bladder cancer; TCGA, The Cancer Genome Atlas; CNV, copy number variant.
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FIGURE 3
Pyroptosis subtypes and clinicopathological and biological characteristics of four distinct subtypes of samples divided by consistent clustering. (A)
Consensus matrix heatmap defining four clusters (k = 4) and their correlation area. (B) The OS Kaplan-Meier curve of different clusters in BLCA patients.
(C) The PFS Kaplan-Meier curve of different clusters in BLCA patients. (D) PCA analysis showing a remarkable difference in transcriptomes between the
four subtypes. (E) The distribution of immune score, and (F) stromal score inferred by ESTIMATE algorithm between the four clusters in the TCGA
BLCA cohort. (G) The heatmap showing the results of GSVA enrichment analysis among different pyroptosis clusters. The asterisk represents the statistical
p value (*p < 0.05; **p < 0.01; ***p < 0.001). PRG, pyroptosis-related gene; BLCA, bladder cancer; OS, overall survival; PFS, progression-free survival;
GSVA, gene set variation analysis.
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measurements were two-sided, and p < 0.05 was set as the
significance level. The Wilcoxon and Kruskal–Wallis analyses
were conducted to compare two or more clusters, respectively.
The log-rank method was employed for Kaplan-Meier survival
analysis to assess the statistical significance. Moreover, for Lasso
Cox regression analysis, the R “glmnet” package was utilized. AUC
values of ROC curves in different cohorts were calculated using the R
“timeROC” package.

3 Results

3.1 Genetic and transcriptional landscape of
PRGs in BLCA

The expression profiles of 52 PRGs were compared in the TCGA-
BLCA cohort, and 29 DEGs were assessed between the tumor and
adjacent tissues (Figure 2A). Furthermore, a pyroptosis network was
constructed to illustrate the comprehensive profile of PRGs
interactions, modulator associations, and their prognostic value for
BLCA (Figure 2B). The gain or loss copy number variation (CNV)was
very common in DEGs. For example, the frequency of gain CNV in
AIM2 was up to 18.5%, and that of loss CNV in CASP8 was up to
11.1% (Figure 2C). Figure 2D demonstrates CNV alterations of the
PRGs on the chromosome. Moreover, the somatic mutation of these
DEGs in the TCGA-BLCA cohort was also described. It was revealed
that TP53 had the highest mutation frequency (49%); however, the
mutation frequencies of other DEGs were all <3% (Figure 2E). The
correlation network between PRGs is shown in Figure 2F.
Additionally, a notable difference was observed between the
expression levels and genetic profile of PRGs of BLCA and control
samples, suggesting the potential role of PRGs in BLCA oncogenesis
and development.

3.2 PRGs-based identification of
molecular subtypes

To explore the association between expression profiles of DEGs
and BLCA subtypes, consensus cluster analysis was performed on
TCGA-BLCA patients. The increase of clustering variable (k) from
2 to 10, indicated that at k = 4, the intra-group associations were the
highest, while the intergroup associations were lowest, suggesting
that the TCGA-BLCA patients could be grouped into four clusters
according to the expression of PRGs (Figure 3A). The expressions of
PRGs in the four clusters were shown in Supplementary Figures
S1A, B. Kaplan-Meier curve for PFS and OS among the four clusters
indicated that patients in cluster C1 had the best prognosis, while
those in C3 had the worst prognosis (p < 0.001, Figures 3B, C). Based
on the expression profiles of DEGs, patients in four subtypes were
easily distinguished (Figure 3D). Moreover, the “ESTIMATE”
algorithm was employed to elucidate the stromal and immune
scores of patients, which revealed that cluster C1 had the highest
immune and stromal scores, proving that tumor tissues from cluster
C1 patients were infiltrated by more immune cells (Figure 3E) and
by more fibro-blasts/endothelial cells (Figure 3F). Additionally, the
transcriptomic matrix was transformed into a pathway matrix via
the GSVA algorithm, and then the correlation of PRGs clusters with

KEGG pathways was assessed. Different immune-related pathways
were observed to be activated in cluster C1 (Figure 3G), including
the T cell receptor signaling pathway, antigen processing-
presentation, B cell receptor signaling pathway, Chemokine
signaling pathway, Natural killer cell-mediated cytotoxicity, and
Toll-like receptor signaling pathway.

3.3 Infiltrating immune cells and
identification of feature genes related to
PRGs clusters

First, the transcriptomic data of all genes were transformed into
scores of 28 infiltrating immune cells using the ssGSEA algorithm
from the R “gsva” package, and then the differential analysis of these
scores among four PRGs clusters was performed. Surprisingly,
ssGSEA scores of almost all immune cells in cluster C1 were
substantially increased than the cluster C2 (Figure 4A;
Supplementary Figure S1C). Therefore, C1 was defined as an
“immune-hot” tumor and C2 as an “immune-cold” tumor.
Moreover, the differential expression assessment genes linked
with immune checkpoints among four clusters showed that
CD274, PDCD1, CTLA4, LAG3, and TIGIT were expressed at
the highest level in cluster C1 (Supplementary Figure S1D).

To promote the clinical application of novel prognostic
biomarkers, key PRGs characteristic of each cluster were
identified. First, using a heatmap of differentially expressed genes
was employed to characterize four subtypes (Figure 4B). Then, the
correlation of feature genes of C1 and C2 with ssGSEA scores of
28 immune cells was assessed. It was revealed that feature genes of
the C1 subtype (immune-hot) were predominantly positively
correlated with activated CD4 T cells, M1 macrophages, and
CD8 T cells, while those of the C2 subtype (immune-cold) were
mainly positively correlated with Tregs (Figure 4C). Among features
genes, CXCL9/CXCL10 were upregulated in C1 and downregulated
in C2, while SPINK1/DHES9 were upregulated in C2 and
downregulated in C1 (Figure 4D). Furthermore, the expression
levels of these features genes of C1 (CXCL9/CXCL10) and C2
(SPINK1/DHES9) in tumor tissues were validated and one C1
(sample A, CXCL9/CXCL10 high + SPINK1/DHES9 low) and
one C2 (sample B, SPINK1/DHES9 high + CXCL9/CXCL10 low)
sample were screened for subsequent immunofluorescence assay
(Figure 4E). The detailed clinical features of the two BLCA patients
are shown in Supplementary Table S4. Consistent with
bioinformatics analysis, sample A had abundant infiltration of
CD8 + T cells and CD68 + macrophages, which corresponded to
C1 features, while sample B with high SPINK1 and
DHRS2 expression had notably more M2 macrophages and Treg
infiltration, which corresponded to C2 subtype features (Figure 4F).

3.4 Differentially expressed genes-based
identification of molecular subtypes

To assess the underlying genetic alterations, first, 240 DEGs
(PRGs-DEGs) among four clusters were identified. Then, based on
these genes, unsupervised clustering was carried out to categorize
TCGA-BLCA patients into geneClusters A (n = 98) and B (n = 308)
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FIGURE 4
The immune features andmarker genes of the fourmolecular clusters. (A) The infiltration abundance of 28 immune cell subsets evaluated by ssGSEA
for four clusters. (B) Heatmap of differentially expressed genes for four clusters. (C) The association between the abundance of immune cells and the
most significantly differentially expressed genes in the four clusters. (D) Expression of C1 and C2 cluster marker genes in the four clusters. (E) The
expression of C1 and C2 subtype marker genes in tumor samples was detected by PCR. (F) The infiltration of CD8 + T cells, macrophages and Tregs
in tumor samples was detected by immunofluorescence. The asterisk represents the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). ssGSEA, single
sample gene set enrichment analysis.
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(Figure 5A). Kaplan-Meier curve revealed that geneCluster A
patients had longer OS and PFS than geneCluster B patients,
although the difference in OS was not significant (p = 0.059)
(Figures 5B, C). Moreover, PCA analysis also validated that both
geneClusters were well distinguishable by PRGs-DEGs (Figure 5D).

Additionally, the immune and stromal scores between the two
geneClusters were assessed, which indicated that immune and
stromal scores in geneCluster A were both markedly increased
than geneCluster B (p < 0.001) (Figures 5E, F). This might be
why geneCluster A patients had longer OS and PFS than geneCluster

FIGURE 5
Identification of geneClusters based on PRGs-DEGs. (A) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B)
Kaplan-Meier curves for OS of the two geneClusters. (C) Kaplan-Meier curves for PFS of the two geneClusters. (D) PCA analysis showing a remarkable
difference in transcriptomes between the two geneClusters. (E) The distribution of immune score, and (F) stromal score inferred by ESTIMATE algorithm
between the two geneClusters in the TCGA BLCA cohort. (G) The infiltration abundance of 28 immune cell subsets evaluated by ssGSEA for the two
geneClusters. The asterisk represents the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). DEGs, differentially expressed genes; OS, overall survival;
PFS, progression-free survival; PRGs, pyroptosis-related genes.
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FIGURE 6
Construction and validation of the PRGs-DEGs risk score in the training and test set. (A,B) The LASSOmethod of PRGs associated with prognosis. (C)
Forrest plot of the multivariate Cox regression analysis of five genes. (D) Kaplan–Meier curves of survival in TCGA training set. (E) Kaplan–Meier curves of
survival in TCGA test set. (F) Kaplan–Meier curves of survival in GEO test set. (G) Time-dependent ROC curve of the risk score model for predicting 1, 3,
5 years in TCGA training set. (H) Time-dependent ROC curve of the risk scoremodel for predicting 1, 3, 5 years in TCGA test set. (I) Time-dependent
ROC curve of the risk score model for predicting 1, 3, 5 years in GEO test set. (J) The distribution, survival status, and heat map of risk scores in the TCGA
training set. (K) The distribution, survival status, and heat map of risk scores in the TCGA test set. (L) The distribution, survival status, and heat map of risk
scores in the GEO test set. The asterisk represents the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). PRGs, pyroptosis-related genes; LASSO, least
absolute shrinkage and selection operator; PCA, principal component analysis; OS, overall survival; ROC, receiver operating characteristic.
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B patients. Furthermore, ssGSEA scores of almost all infiltrating
immune cells in geneCluster A were remarkably higher than those in
geneCluster B (Figure 5G).

3.5 Construction and validation of PRGs-
DEGs risk scoring system

The prognostic model was established using the TCGA training
set and its performance was evaluated through internal testing with
the TCGA test set and external testing with the GEO test set. Based
on 240 PRGs-DEGs, the risk scoring system was generated using the
TCGA-BLCA train cohort. The univariate Cox regression analysis
identified 46 survival-related genes, which were further screened to
10 by LASSO regression analysis (Figures 6A, B). Subsequently, the
predictive model was generated using the multivariate Cox
regression analysis, and 5 genes were identified. According to the
hazard ratio in the model, CACNA1D, PTK2B, and APOL6 were
tumor suppressor genes, while CDK6 and ANXA2 were oncogenes
(Figure 6C). The PRGs score was calculated as follows: PRGs score =
(−0.216021228 × CACNA1D) + (0.199209604 × CDK6) +
(−0.310925889 × PTK2B) + (0.360364278 × ANXA2) +
(−0.56043276 × APOL6).

The patients were then categorized as LR and HR cohorts based
on the median PRGs score. PCA analysis confirmed that the PRGs
score based on the above five genes could well distinguish the two
risk groups (Supplementary Figure S2A). Moreover, the correlation
analysis also validated that PRGs score was negatively linked with
tumor suppressor genes (CACNA1D, PTK2B, and APOL6) and
positively linked with oncogenes (CDK6 and ANXA2)
(Supplementary Figures S2B–F). The expression of PRGs between
the HR and LR groups is illustrated in Supplementary Figure S2G. It
was observed that BLCA patients’ prognosis in the LR cohort was
better than the HR cohort in both the training and internal test sets
(Figures 6D, E). ROC analysis revealed that AUC for 1/3/5 years OS
was 0.722/0.723/0.702 for the training set and 0.681/0.628/0.609 for
the internal test set, respectively (Figures 6G, H). Additionally, with
the help of the heatmap, the expression levels of the 5 PRGs of the
prognostic model in the LR and HR cohorts were visualized (Figures
6J, K). It was validated that the constructed model could help predict
the outcomes of BLCA patients.

For validating the prognostic model in the external test set, each
patient’s PRGs score was assessed based on the aforementioned
PRGs score formula. The external test set patients were categorized
into the LR and HR cohorts based on the training set’s median PRGs
score value. In line with the data acquired for the training set, the HR
group patients in the external test set indicated a poorer prognosis
than the LR group patients (Figure 6F). Additionally, the ROC
analysis revealed an AUC of 0.714/0.671/0.666 for 1/3/5 years OS
(Figure 6I). Figure 6L demonstrates the survival status and the
heatmap of these 5 prognostic genes in the external test set. Overall,
these results indicated that the constructed prognostic model could
accurately predict a BLCA patient’s prognosis from the
external test set.

To validate the expression of the five genes involved in the risk
signature in BLCA patients, we collected clinical BLCA samples and
paired normal tissues, and analyzed them using qPCR. As
demonstrated in Figure 7, CDK6 and ANXA2 exhibited elevated

expression levels in tumors, whereas CACNA1D, PTK2B, and
APOL6 exhibited significantly reduced expression levels in
tumors. These distinctions align with our bioinformatic findings,
suggesting that these genes may serve as innovative biomarkers for
prognostic prediction of BLCA.

3.6 The association of PRGs-DEGs risk score
with clinicopathologic characteristics

The clinical relevance of the PRGs-DEGs risk model was
assessed. The chi-square test was carried out to elucidate the
differences in clinicopathological features between LR and HR
subgroups. The heatmap indicates that the pathologic T stage,
tumor grade, and pathologic N stage were closely linked with the
PRGs score (p < 0.001) (Figure 8A). Furthermore, the proportions of
high tumor grade, pathologic T3 + T4 stage and lymph node (+) in
the HR subgroup were substantially greater than in the LR subgroup,
whereas proportions of low tumor grade, pathologic T1 + T2 stage,
and lymph node (−) in the HR subgroup were markedly reduced
than in LR subgroup (Figures 8B–D). Additionally, the difference in
PRGs score among distinct sub-groups was assessed based on
clinicopathological characteristics. It was revealed that the PRGs
score in high-grade, T3 + T4, and lymph node (+) subgroups were
remarkably higher than those in low-grade, T1 + T2, and lymph
node (−) subgroups (Figures 8E–G). To explore whether the PRGs
score applies to different clinical subgroups, Kaplan-Meier curves
curves were used to assess the presence of prognosis differences
between LR andHR groups among diverse clinical groups. Markedly
significant differences were observed between the HR and LR
cohorts in the age ≤ 65, age > 65, female, male, low grade, high
grade, T1-2, T3-4, N0, N1-3, and M0 groups. Overall, compared
with HR, the LR cohort had a significant survival advantage
(Supplementary Figure S3).

3.7 Correlation analysis of PRGs-DEGs risk
score with oncogenic pathways and
immune cells

To elucidate the mechanism by which the risk signature affects
BLCA initiation and progression, the relation of PRGs score with the
hallmark oncogenic pathways and infiltrating immune cells was
assessed. The differential analysis of the ssGSEA score of hallmark
pathways revealed 20 of 50 items, which were remarkably altered
between LR andHR subgroups. Specifically, epithelial-mesenchymal
transition, KRAS signaling, mtorc1 signaling, and TNFα signaling
via NF-κB were greatly enriched in the HR subgroup (Figure 9A;
Supplementary Figure S4A). Additionally, the proportions of
intratumoral immune cells were quantified via the CIBERSORT
algorithm. The proportions of NK and CD8 + T cells were
substantially increased in the LR subgroup than in the HR
subgroup, while opposite data was acquired for M2-type
macrophages (type of suppressive immune cells) (Figure 9B;
Supplementary Figure S4B). In particular, the PRGs score was
markedly negatively linked with CD8 + T cells (Figure 9C;
Supplementary Figure S5). Moreover, the relationship between
these 5 signature genes and immune cell abundance was also
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elucidated, which indicated Tregs, plasma cells, CD8 + T cells, as
well as M2- and M0-type macrophages were notably correlated with
these genes (Figure 9D). Particularly, the APOL6 gene was markedly
positively linked with CD8 T cell infiltration (Figure 9E).

3.8 The role of the PRGs-DEGs risk score in
predicting immunotherapy response

Accumulating evidence has shown that high TMB patients
benefit from immunotherapy because of enhanced neoantigens.
Our genomic data analysis of the TCGA-BLCA cohort indicated
a lower TMB in the HR subgroup than in the LR subgroup (p =
0.043; Figure 9F), implying that LR subgroup patients are more
likely to benefit from anti-PD-1/PD-L1 immunotherapy.
Moreover, a public dataset IMvigor210 cohort was also
analyzed to ensure the predictive significance of PRGs score in
immunotherapy. Individuals were classified into LR and HR
subgroups based on the median score. It was noticed that the
proportion of responders (CR/PR/SD) in the LR subgroup was
notably increased than in the HR subgroup, whereas the
proportion of non-responders (PD) was substantially reduced
in the LR subgroup than in the HR subgroup (Figure 9G;
Supplementary Figures S4C, E). The PRGs score in the HR
subgroups was markedly higher than that in the LR subgroup
(p = 0.0015, Figure 9H; Supplementary Figures S4D, F). In
addition, the Kaplan-Meier survival curve indicated that HR
patients had a shorter OS than the LR patients (p <
0.001, Figure 9I).

3.9 The nomogram based on clinical
characteristics and PRGs-DEGs risk score

Univariate and multivariable Cox regression analyses were
carried out to elucidate independent prognostic factors in BLCA
patients. The univariate Cox regression analysis revealed that PRGs
score and most clinical parameters were prognostic factors
(Figure 10A); however, multivariate Cox regression indicated that
only PRGs score, pathologic T stage, and age were independent
prognostic factors for OS (Figure 10B). Therefore, according to the
PRGs score, tumor stage, and age, a nomogram was generated to
predict BLCA patients’ 1-, 3-, and 5-year survival probability
(Figure 10C). One point was given to each patient for each
prognostic parameter, and higher total points depicted a worse
outcome. Moreover, calibration plots revealed that the
nomogram had a similar performance to an ideal model
(Figure 10D). Additionally, ROC and DCA data also illustrated
that the nomogram had a high efficiency for clinical implementation
(Figures 10E–H).

4 Discussion

Much literature has indicated the essential activity of pyroptosis
in antitumor mechanisms and innate immunity (Wang et al., 2020;
Tsuchiya, 2021). However, most of these researches were focused on
a single TME cell or PRG; therefore, the overall influence and TME
infiltration characteristics regulated by the simultaneous influence of
different PRGs remain undetermined. This investigation indicated

FIGURE 7
The expression of CACNA1D (A), CDK6 (B), PTK2B (C) ANXA2 (D) and APOL6 (E) in normal bladder tissue and BLCA tissue of patients. t-test was used
to compare the expression of genes between normal and tumor. The asterisk represents the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). BLCA,
bladder cancer.
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global transcriptional and genetic level changes of PRGs in BLCA.
Here, four distinct PRGs clusters were identified based on 52 PRGs.
Subtype C1 patients had the highest OS and PFS than other
subtypes. Furthermore, by analyzing the differences in the TME
between four clusters, we found that PRGs subtype C1 and C2
showed distinct and typical characteristics. Specifically, PRGs
subtype C1 showed an “immune-hot” phenotype, which was
characterized by substantial immune activation, such as antigen

presentation and processing, natural killer cell-induced
cytotoxicity, the B and T-cell receptor signaling pathways, the
JAK-STAT signaling pathway, and the NOD-like, Toll-like, and
RIG-I-like receptor signaling pathways; however, PRGs subtype
C2 showed “immune-cold” characteristics. Additionally, two
geneClusters were also identified according to the DEGs between
the PRGs clusters. Therefore, the results of this study revealed that
PRGs are a potential predictor for elucidating BLCA’s clinical

FIGURE 8
Clinical evaluation of the panel by PRGs-DEGs risk score. (A) A band chart of risk score and clinical features of BLCA patients. (B) The proportion of
patients with different grade category in high- and low-risk groups. (C) Comparison of the risk score between the patients with different grade category
(p= 0.039, Wilcoxon test). (D) The proportion of patients with different T category in high- and low-risk groups. (E)Comparison of the risk score between
the patients with different T category (p = 0.0011, Wilcoxon test). (F) The proportion of patients with different N category in high- and low-risk
groups. (G)Comparison of the risk score between the patients with different N category (p = 0.0091, Wilcoxon test). The asterisk represents the statistical
p value (*p < 0.05; **p < 0.01; ***p < 0.001). BLCA, bladder cancer.
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outcomes and immunotherapy response. Thus, a robust and
efficient prognostic PRGs-DEGs risk score model was established
and its predictive ability was assessed. The pyroptosis patterns
characterized by immune suppression and stimulation indicated
HR and LR scores, respectively. The LR and HR patients indicated
markedly different clinicopathological features, mutation,
prognosis, immune checkpoints, TME, and anti-PD1/PD-
L1 immunotherapy susceptibilities. Lastly, by integrating risk
score, stage, and age, a quantitative nomogram was established,
further improving the model’s performance and facilitating the
application of the risk score. After construction and validation,

our prediction model, compared to previous models, can not only
predict the prognosis of BLCA but also assess the tumor immune
microenvironment and the efficacy of immunotherapy. This
provides valuable diagnostic and therapeutic assistance to
clinicians. The prognostic model can be employed for prognostic
stratification of BLCA patients, assists in better identification of
BLCA molecular pathways, and provides novel strategies for
targeted therapies.

Pyroptosis is observed in pathogen-infected cells as a
programmed mechanism of death and thus stimulates the body’s
inflammatory response (Bedoui et al., 2020). Under pathogenic

FIGURE 9
Comprehensive analysis of the PRGs-DEGs risk score in BLCA. (A) Differences in biological function between high- and low-risk groups. (B) The
differences of immune cells between high- and low-risk groups based on ssGSEA. (C)Correlations between risk score and CD8 + T cells. (D)Correlations
between the abundance of immune cells and 5 genes in the proposedmodel. (E) Correlations between APOL6 gene and CD8 + T cells. (F)Differences in
TMB between high- and low-risk groups. (G) The proportion of patients with (CR/PR/SD) or without (PD) response to PD-L1 blockade therapy in the
high- and low-risk groups in the IMvigor210 cohort. (H)Different risk score in CR/PR/SD group and PD group in IMvigor210 cohort (p <0.05). (I)OS curves
for the high- and low-risk groups in IMvigor210 cohort (p = 0.002). The asterisk represents the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).
BLCA, bladder cancer; ssGSEA, single sample gene set enrichment analysis; TMB, tumor mutation burden; OS, overall survival; SD, stable disease; PD,
progressive disease; CR, complete response; PR, partial response.
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stimulation, apoptosis can transform into pyroptosis. Furthermore,
pyroptosis has been associated with different pathways in various
cancers. Moreover, it has been indicated to inhibit tumor growth in
liver, colorectal, and skin cancers (Zaki et al., 2010; Ellis et al., 2011;
Ma et al., 2016); however, it has a two-way impact on breast cancer
(Chen et al., 2012). Therefore, assessing the prognostic value based
on the levels of different gasdermins alone is controversial. In BLCA
patients, the association between PRGs and that between PRGs and
TME remains unclear. This research investigated all the direct
pathways linked with pyroptosis and elucidated a prognostic
signature by assessing the impact of these pathways on TME.
Currently, pyroptosis has been utilized in anti-tumor therapy,

and this research suggests that it is closely linked with
immunotherapy efficacy and could be employed as a biomarker
for efficacy prediction.

The inhibition of immunoinhibitory molecules such as PD-1
and PD-L1 can lead to tumor regression by restoring the cytotoxicity
of immune cells (Bellmunt et al., 2017). To date, several immune
checkpoint inhibitors (ICIs), such as atezolizumab (PD-
L1 inhibitor) and nivolumab (PD-1 inhibitor), have been
approved by the FDA for the treatment of advanced BLCA
(Aggen and Drake, 2017; Lobo et al., 2017). However, patient
responses to ICI therapy vary greatly, with some patients
achieving complete remission while others experience continuous

FIGURE 10
Nomogram construction and prognostic value of the signature. (A) Univariate and (B)Multivariate Cox regression analysis of clinical factors and risk
score. (C) The nomogram for predicting the survival rate of 1-, 3-, and 5-years in BLCA patients. (D)Calibration plots of the nomogram. (E)Decision curve
analysis of the nomogram of the panel. The time-dependent ROC analysis of nomogram predicting the survival rate of 1-years (F), 3-years (G), and 5-
years (H) in BLCA patients. The asterisk represents the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). BLCA, bladder cancer; ROC, receiver
operating characteristic.
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disease progression (Jiang et al., 2020). Here, we demonstrated that
PRGs can enhance anti-tumor immune responses by regulating
inflammatory responses and the immune microenvironment,
thereby affecting immune cell infiltration and activation in
tumors. Additionally, the PRGs-DEGs risk score was significantly
associated with the response of BLCA to ICI therapy, with a low-risk
score indicating increased sensitivity to ICIs. This suggests that the
application of the PRGs-DEGs risk score could assist in decision-
making for the treatment of BLCA.

After conventional chemotherapy, BLCA prognosis is substandard,
with increased levels of tumor-infiltrating lymphocytes, tumor
neoantigens, and checkpoints. Although immunotherapy has
undergone many advances, BLCA patients’ prognosis remains
heterogeneous, suggesting that TME may play an important role.
The TME comprises tumor-infiltrating immune cells (TIICs),
fibroblasts, bone marrow-derived inflammatory cells, lymphocytes,
blood vessels, and extracellular matrix (ECM) (Turley et al., 2015).
It has been indicated that TME is essentially involved in tumor
development, progression, and drug resistance (Hinshaw and
Shevde, 2019). Here, the pyroptosis pattern manifested by immune
inhibition (subtype C2) was linked with an HR score, while those
characterized by immune activation (subtype C1) were related to an LR
score. Furthermore, it was discovered that the TME characteristics and
the relative abundance of 22 TIICs were substantially different between
different PRGs clusters and PRGs score. These results indicated the
essential role of PRGs in BLCA’s TME. Much research has indicated
that effector memory T cells, T cells, and T-cell differentiation are
crucially linked with immune defense in BLCA (Yang et al., 2022). The
γδ-T cells can efficiently identify and kill BLCA cells, thereby inhibiting
tumor progression (Nguyen et al., 2022). In addition, the density of
T cells infiltrating BLCA tissue was positively correlated with prognosis
(Poch et al., 2018; Bunch et al., 2020). Subtype C1 and the LR group had
a better prognosis and indicated increased infiltration of activated
memory CD4 + and CD8 + T cells, as well as γδ-T cells, indicating
their positive involvement in BLCAprognosis. Tregs infiltration inhibits
the anti-cancer immune response and has been linked with substandard
prognosis (Tanaka and Sakaguchi, 2017). This is consistent with the
results of the current study, where more Tregs were observed in the
TME of C2 patients and the HR group.

Recent literature has indicated that B cells are also associated
with the immune response (Cabrita et al., 2020; Helmink et al.,
2020). Petitprez et al. (2020) suggested that B-cell enrichment was a
significant prognostic factor for long-term survival and was
positively linked with PD-1 blockade response in soft-tissue
sarcomas. Furthermore, Helmink et al. (2020) suggested that the
expression of B-cell-associated genes JCHAIN, MZB1, and
IGLL5 was notably increased in patients who responded to
immune checkpoint inhibitors than in non-responders.
Moreover, tumor-infiltrating B cells were linked with a favorable
prognosis in BLCA (Jiang et al., 2019; Zhou et al., 2021). Overall,
these data suggest that B cells are not just bystanders in anti-tumor
immunotherapy, instead, they offer new directions for
immunotherapy and are powerful weapons against tumors. Here,
a marked difference was observed in B-cell infiltration between the
risk score groups and PRGs subtypes. Furthermore, naive B cell
abundance in the C2 and HR groups with worse OS was notably
lower than that in the C1 and the LR cohort. Therefore, B cell

infiltration suppressed BLCA progression, consistent with previous
literature (Jiang et al., 2019; Zhou et al., 2021).

With the development of molecular biology and tumor
immunology, immunotherapy has opened new directions for
treating tumors. Such therapies mainly include ICIs, cell therapy,
and therapeutic antibodies. Currently, much research on ICIs for PD-
1, CTLA-4, and PD-L1 is underway, and clinical trials have revealed
their efficacy and safety in BLCA (Carosella et al., 2015; Farina et al.,
2017; Hussain et al., 2018). This investigation identified increased
levels of PD-1 and PD-L1 in the LR cohort, which showed a better
response to anti-PD1/PD-L1 immunotherapy. In addition, TMB is a
new essential characteristic of cancer and is related to microsatellite
instability (Hatakeyama et al., 2018; Steuer and Ramalingam, 2018). In
the human cancer genome, enhanced TMB is caused by a
combination of endogenous factors and environmental damage
(Roberts and Gordenin, 2014). It has been indicated that high
TMB patients benefit better from immunotherapy (Carbone et al.,
2017). Therefore, TMB has become another emerging biomarker for
the prediction of the response to immunotherapy (Klebanov et al.,
2019). Here, higher TMB was identified in the LR group, and the
correlation analysis suggested that TMB was negatively correlated
with the risk score. In addition, tremelimumab (anti-CTLA-4) has
indicated good tolerance in BLCA patients who have not responded
well to other immunotherapies (Chung et al., 2010). Overall, it was
concluded that patients with LR scores; higher PD-1, CTLA-4, and
PD-L1, expression; and increased TMB might respond well to ICIs.

5 Limitations

This research has certain limitations. 1) This investigation
utilized data from a public database and was validated with a
small clinical sample, therefore, additional in vivo and in vitro
analyses and large-scale prospective research are required to
validate the acquired data. 2) Some essential clinical information,
including the data on neoadjuvant chemotherapy, surgery, and
chemoradiotherapy, was not assessed in this study, which may
affect the outcome of pyroptosis state and immune response.

6 Conclusion

In summary, this comprehensive investigation indicated the
regulatory mechanism of PRGs, which affects the clinicopathological
features, tumor’s immune-stromal microenvironment, and prognosis
of BLCA patients. Furthermore, the therapeutic liability of PRGs in
immunotherapy was also indicated. This research highlights the
essential evidence for the clinical implications of PRGs and
furnishes a novel strategy for guiding personalized immunotherapy
for BLCA patients.
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