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Introduction: Increasing evidence shows that hyperactive aryl hydrocarbon
receptor (AHR) signalling is involved in renal disease. However, no currently
available intervention strategy is effective in halting disease progression by
targeting the AHR signalling. Our previous study showed that barleriside A
(BSA), a major component of Plantaginis semen, exhibits renoprotective effects.

Methods: In this study, we determined the effects of BSA on AHR expression in 5/
6 nephrectomized (NX) rats. We further determined the effect of BSA on AHR,
nuclear factor kappa B (NF-ƙB), and the nuclear factor erythroid 2-related factor 2
(Nrf2) signalling cascade in zymosan-activated serum (ZAS)-stimulated
MPC5 cells.

Results: BSA treatment improved renal function and inhibited intrarenal nuclear
AHR protein expression in NX-treated rats. BSA mitigated podocyte lesions and
suppressed AHR mRNA and protein expression in ZAS-stimulated MPC5 cells.
BSA inhibited inflammation by improving the NF-ƙB and Nrf2 pathways in ZAS-
stimulated MPC5 cells. However, BSA did notmarkedly upregulate the expression
of podocyte-specific proteins in the ZAS-mediated MPC5 cells treated with
CH223191 or AHR siRNA compared to untreated ZAS-induced MPC5 cells.
Similarly, the inhibitory effects of BSA on nuclear NF-ƙB p65, Nrf2, and AHR,
as well as cytoplasmic cyclooxygenase-2, heme oxygenase-1, and AHR, were
partially abolished in ZAS-induced MPC5 cells treated with CH223191 or
AHRsiRNA compared with untreated ZAS-induced MPC5 cells. These results
indicated that BSA attenuated the inflammatory response, partly by inhibiting
AHR signalling.

Discussion: Both pharmacological and siNRA findings suggested that BSA
mitigated podocyte lesions by improving the NF-ƙB and Nrf2 pathways via
inhibiting AHR signalling. Therefore, BSA is a high-affinity AHR antagonist that
abolishes oxidative stress and inflammation.
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1 Introduction

Aryl hydrocarbon receptor (AHR) is a cytoplasmic ligand-mediated
transcription factor (Cao et al., 2022;Ouyang et al., 2020). The biological
functions of AHR include immune regulation, cell cycle regulation,
mucosal barrier function, and organogenesis, which are associated with
ligand-mediated receptor activation (da Silva et al., 2022; Ouyang et al.,
2020; Wu et al., 2022). AHR can transcribe various drug-metabolizing
enzymes including cytochrome P450 family 1 subfamily A member 1
(CYP1A1), cytochrome P450 family 1 subfamily A member 2 (CYP1A2),
and cytochrome P450 family 1 subfamily B member 1 (CYP1B1) (Miao
et al., 2020). High-affinity AHR ligands have been identified as
xenobiotics, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (Cao et al.,
2022). Previous study has suggested that hyperactive AHR signal was
implicated in patients with podocyte damage-associated renal disease
such as immunoglobulin A nephropathy (IgAN), diabetic kidney
disease (DKD) and idiopathic membranous nephropathy (IMN)
(Miao et al., 2020). Our previous study showed increased intrarenal
AHR mRNA and protein expression in patients with chronic kidney
disease (CKD) (Miao et al., 2022). However, no currently available
therapy is effective for halting disease progression. Therefore,
identification of novel AHR ligands plays a critical role in targeting
this enigmatic receptor for the treatment of various diseases.

Mounting evidence suggests that traditional Chinese medicines
(TCM) are a key source of new drugs and are used for treatment of
various diseases (Newman and Cragg, 2020; Hou et al., 2022; Li, et al.,
2022a; Marena et al., 2022; Zhao et al., 2022a; Kong et al., 2023). Natural
compounds form TCM were widely used for improving renal function
and treating renal injury (Ren et al., 2021; Hu et al., 2022; Zhou et al.,
2022; Shao et al., 2023; Sun et al., 2023). Substantial achievements have
shown a myriad of natural compounds that can directly modulate AHR
signalling (Goya-Jorge et al., 2021). Our previous studies have
demonstrated that a number of flavonoids, such as barleriside A
(BSA), rhoifolin, 5,7,3′,4′,5′-pentahydroxy flavanone and 5,6,7,8,3′,4′-
hexamethoxyflavone, and lignans, including matairesinol and erythro-
guaiacylglycerol-β-ferulic acid ether as AHR antagonists, attenuate renal
fibrosis by suppressingAHR signalling (Miao et al., 2020; Cao et al., 2022;
Miao et al., 2022). In addition, astragaloside IV attenuates renal damage
and AHR signalling in mice (Mo et al., 2023). In vitro experiments have
shown that astragaloside IV suppresses inflammation and AHR
signalling in indoxyl sulfate-treated HK-2 cells (Mo et al., 2023).
Moreover, a previous study showed that lycopene mitigated Di (2-
ethylhexyl) phthalate-induced renal cell injury by suppressing AHR
signal (Li et al., 2021). Collectively, naturally derived compounds,
such as AHR inhibitors, attenuated renal fibrosis.

Numerous studies have reported that inflammation plays a central
role in CKD (Singh et al., 2022; Wang et al., 2023b; Yuan et al., 2022).
Cyclooxygenase-2 (COX-2) is produced by transcription factors including
AHR and nuclear factor kappa B (NF-ƙB) p65. Several studies have
shown that AHR interacts with NF-ƙB in CKD (Addi et al., 2019; Brito
et al., 2019; Curran and Kopp, 2022). Our recent study showed that
inhibitor of kappa B (IƙB)/NF-ƙB pathway was a downstream target of
AHR signal in IMN (Wang et al., 2023b). However, there are no agents
that inhibit NF-ƙB pathway by targeting AHR signalling. Plantaginis
semen is widely used as a diuretic to improve renal function and treat
renal diseases in patients (Wen et al., 2023a). Our previous study showed
that BSA, amajor component of P. semen, exhibits renoprotective effects
(Miao et al., 2020). In this study, we first determined the effect of BSA on

AHR signals in 5/6 nephrectomized (NX) rats. We further revealed that
BSA, an AHR antagonist, ameliorated podocyte injury through IƙB/NF-
ƙB and kelch-like ECH-associated protein 1 (Keap1)/nuclear factor
erythroid 2-related factor 2 (Nrf2) signalling cascade in zymosan
activation serum (ZAS)-stimulated MPC5 cells. Our study will
uncover that BSA ameliorate podocyte damage-associated renal
disease by improving IƙB/NF-ƙB and Keap1/Nrf2 pathways via
suppressing hyperactive AHR expression.

2 Materials and methods

2.1 Chemicals, antibodies and reagents

Zymosan A was purchased from Sigma–Aldrich (St. Louis, MO,
USA). Primary antibodies, Healthy human and Western quick
horseradish peroxidase chemiluminescent substrate were
presented in the previous publications (Wang et al., 2023).

2.2 NX-induced CKD rats treated by BSA

Male Sprague Dawley rats were purchased from the Animal
Center of the Xi’an Jiaotong University (Xi’an, Shaanxi, China). NX
rats were reproduced as described in the previous publication (Miao
et al., 2020). Rats were divided into three groups: Sham, NX and NX
+ BSA (n = 8/group). BSA was administered at 10 mg/kg/day by
gastric irrigation for 4 weeks from ninth to 12th week. Urine was
collected for 24 h after 12 weeks. All rats were euthanized after
anesthetization with 10% urethane. Serum and kidney tissue
samples were also collected. The animal care and experiments are
approved by Ethics Committee for Animal Experiments of
University (No. 20200713-06).

2.3 ZAS preparation and cell treatment

Mouse podocyte cell culture was performed as described in the
previous publication (Wang et al., 2023a). C5b-9 was prepared as
described in our previous study (Wang et al., 2023a). MPC5 cells
were stimulated with 10% ZAS for 24 h in the absence or presence of
BSA (20 μM) and CH223191 (10 μM). The treated cells
were collected.

2.4 Serum and urine biochemical analysis

Creatinine and urea levels in serum were measured using a
Beckman AU680 automatic analyzer. Proteinuria was measured
using a Roche Cobas C501 Chemistry Analyzer.

2.5 Quantitative real-time polymerase chain
reaction (RT-PCR)

Extracted total RNA, quantitative RT-PCR and specific primers
were shown in the previous publications (Miao et al., 2020; Cao et al.,
2022; Miao et al., 2022).

Frontiers in Pharmacology frontiersin.org02

Li et al. 10.3389/fphar.2024.1386604

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1386604


2.6 Immunohistochemistry

Kidneys were incubated overnight at 4°C with an anti-AHR
primary antibody, and then incubated with a secondary antibody.
Analysis was carried out using a light microscope.

2.7 Immunofluorescence

MPC5 cells were incubated with antibodies against podocin,
AHR, NF-ƙB p65, COX-2, Nrf2, and haem oxygenase-1 (HO-1).
Details of the immunofluorescence methods are presented in the
previous publication (Wang et al., 2023).

2.8 Western blot analysis

Western blot analysis was performed in the previous publication
(Cao et al., 2022). The expression levels were normalized to those of
α-tubulin and histone H3. The relative levels were quantified using
the ImageJ software.

2.9 Statistical analysis

The experimental results are presented as the mean ± standard
error of mean. The statistical significance was analyzed using one-
way ANOVA using the GraphPad Prism software. The values for P <
0.05 were considered statistically significant.

3 Results

3.1 BSA improved kidney function and
suppressed nuclei AHR expression in NX-
induced CKD rats

Compared to Sham rats, NX rats presented a markedly
increase in the serum levels of creatinine and urea, as well as
proteinuria levels, while BSA treatment markedly reduced levels
of three renal function markers in NX-induced CKD rats
(Figure 1A), indicating that BSA improved renal function in
NX-induced CKD rats.

Compared to Sham rats, NX rats presented a significant
reduction in intrarenal cytoplasmic AHR protein expression in
NX-induced CKD rats, which was accompanied by a significant
increase in intrarenal nuclei AHR protein expression in NX-induced
CKD rats (Figures 1B, C). BSA treatment markedly preserved
cytoplasmic AHR protein expression and markedly reduced
nuclear AHR protein expression in renal tissues of NX-induced
CKD rats (Figures 1B, C). This result was further verified using
immunohistochemical analysis (Figure 1D). These data suggest that
activating AHR signalling in CKD and AHR may be an effective
therapeutic target. BSA is a novel aryl hydrocarbon receptor
antagonist.

To elucidate the renoprotective mechanism of BSA, we first
determined its effect on ZAS-stimulated MPC5 cells. BSA could
markedly inhibit the downregulation of the protein expression

of podocin and nephrin in ZAS-treated MPC5 cells in a
concentration-dependent manner (10–40 μM) within 24 h
(Figures 1E, F). The concentrations of 20 and 40 μM BSA had
a stronger effect on the upregulated podocin and nephrin
protein expressions than did 10 μM BSA (Figures 1E, F). But,
the effect at 20 μM was similar to that observed at 40 μM.
Therefore, 20 μM was used for this experiment.
Immunofluorescence staining further verified that BSA
treatment preserved podocin expression in the ZAS-
stimulated MPC5 cells (Figure 1G).

3.2 BSA inhibited AHR signalling in the ZAS-
stimulated MPC5 cells

Compared to ZAS-stimulated MPC5 cells, BSA treatment
markedly inhibited the mRNA expression of AHR and its four
target genes, such as CYP1A1, CYP1A2, CYP1B1 and COX-2
in ZAS-induced MPC5 cells (Figure 2A), which was
accompanied by reduced AHR nuclear translocation
(Figure 2B), which was in line with the protein expression of
increasing cytoplasmic AHR and decreasing nuclear AHR
(Figures 2C, D). Luciferase assay uncovered that BSA
treatment markedly inhibited AHR-driven reporter activity in
ZAS-stimulated MPC5 cells (Figure 2E). These data indicate that
BSA inhibits activating AHR signalling in ZAS-
stimulated MPC5 cells.

3.3 BSA inhibited hyperactive IƙB/NF-ƙB
pathway in the ZAS-stimulated MPC5 cells

Compared to ZAS-stimulated MPC5 cells, BSA treatment
markedly reduced nuclear p65 expression in ZAS-stimulated
MPC5 cells (Figures 3A–C). This is acspanied by markedly
inhibiting protein expressions of p-IƙBα and p65 downstream
target gene products such as COX-2, inducible nitric oxide
synthase (iNOS), monocyte chemotactic protein-1 (MCP-1),
12-lipoxygenase (12-LOX), p67phox and p67phox in the
ZAS-stimulated MPC5 cells (Figures 3B, C), which were
consistent with markedly inhibiting cytoplasm COX-2
protein expression in the ZAS-stimulated MPC5 cells
(Figure 3D). Therefore, these data suggest that BSA inhibits
the hyperactive IƙB/NF-ƙB pathway in ZAS-
stimulated MPC5 cells.

3.4 BSA improved impaired Keap1/
Nrf2 pathway in the ZAS-
stimulated MPC5 cells

Compared to untreated ZAS-stimulated MPC5 cells, treatment
with BSA markedly increased nuclear Nrf2 expression in ZAS-
stimulated MPC5 cells (Figures 4A–C). This is also accompanied
by markedly reduced protein expression of Keap1 and increased
Nrf2 target gene products, such as HO-1, catalase, glutamate-
cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase
modifier subunit (GCLM), manganese superoxide dismutase
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(MnSOD), and nicotinamide adenine dinucleotide phosphate
quinone dehydrogenase 1 (NQO-1), in ZAS-stimulated
MPC5 cells treated with BSA compared to untreated ZAS-
stimulated MPC5 cells (Figures 4B, C). In addition, BSA
treatment markedly increased cytoplasmic HO-1 protein
expression in ZAS-stimulated MPC5 cells (Figure 4D). These
results suggest that BSA improves the impaired Keap1/
Nrf2 pathway in ZAS-induced MPC5 cells. Collectively, these
results indicate that BSA improves the activating IƙB/NF-ƙB and
impaired Keap1/Nrf2 pathway in MPC5 cells.

3.5 BSA ameliorated podocyte injury by
improving IƙB/NF-ƙB and Keap1/
Nrf2 pathways via AHR signal

We determine whether BSA mitigates MPC5 cell damage by
improving IƙB/NF-ƙB and Keap1/Nrf2 pathways via suppressing
AHR signalling. BSA treatment downregulated the expression of
podocyte-specific proteins in ZAS-mediated MPC5 cells (Figures
5A, B). However, BSA did not significantly upregulate podocyte
protein expression in ZAS-induced MPC5 cells treated with

FIGURE 1
BSA inhibits AHR expression in the NX-induced rats. (A) Serum levels of creatinine and urea and proteinuria in the control and NX-induced rats with
or without BSA. (B)Cytoplasm and nuclei AHR protein expression in the renal tissues of control andNX-induced rats with or without BSA. (C) Protein levels
of cytoplasm and nuclei AHR in the renal tissues of control and NX-induced rats with or without BSA. (D) Immunohistochemical analysis with intrarenal
anti-AHR antibody in the control and NX-induced rats with or without BSA. (E) Protein expression levels of podocin and nephrin in the ZAS-induced
MPC5 cells treated with the different concentrations of BSA. (F) Quantitative analysis of protein expression of podocin and nephrin in ZAS-induced
MPC5 cells treated with the different concentrations of BSA. (G) Immunofluorescent analysis with anti-podocin antibody in the control and ZAS-
stimulated MPC5 cells with or without BSA. *P < 0.05, **P < 0.01 compared with sham or CTL; #P < 0.05, ##P < 0.01 compared with NX or ZAS-
stimulated MPC5 cells.
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CH223191 compared with only ZAS-mediated MPC5 cells (Figures
5A, B). Similarly, the inhibitory effect of BSA on nuclear NF-ƙB
p65 and Nrf2 as well as cytoplasmic COX-2, MCP-1, HO-1 and
catalase was partially abolished in ZAS-mediated MPC5 cells treated
with CH223191 compared with only ZAS-induced MPC5 cells
(Figures 5C, D). The results were also demonstrated in the ZAS-
induced AHR siRNA-transfected MPC5 cells treated with BSA
(Figures 6A, D). These results indicate that BSA attenuates
inflammatory response via inhibiting AHR signalling. Totally,
both pharmacological and siRNA results demonstrate that BSA
attenuates podocyte lesion by modulating IƙB/NF-ƙB and Keap1/
Nrf2 pathways via suppressing AHR signalling.

4 Discussion

Increasing publications have suggested that TCM improved
various diseases by regulating AHR signalling (Wen et al., 2023b;
Ying et al., 2024; Zhang et al., 2023; Wang et al., 2024). Accumulated
evidence has showed increasing serum AHR activity in CKD

patients (Dou et al., 2018; Kim et al., 2013; Kim et al., 2020).
Dou et al. demonstrated that CKD patients with stages
3–5 showed strong serum AHR-activating potential and
upregulated mRNA levels of CYP1A1 and AHR repressor in
whole blood compared to serum from healthy controls (Dou
et al., 2018). Kim et al. demonstrated that serum AHR
transactivation activity was higher in DKD patients with
microalbuminuria and macroalbuminuria than in those with
normoalbuminuria (Kim et al. (2013), indicating that high serum
AHR transactivation is a high risk factor for DKD. The same
research group further demonstrated that serum AHR
transactivation activity was increased in non-dialysis CKD
patients compared to patients on dialysis, whereas its activity was
increased in patients undergoing hemodialysis compared to
undergoing peritoneal dialysis (Kim et al., 2020). Hemodialysis
treatment could decrease AHR transactivation activity in patients
with hemodialysis dialysis (Kim et al., 2020). Some studies have
shown hyperactive AHR signalling in renal tissues of CKD patients
and animal models (Miao et al., 2020; Miao et al., 2022; Cao et al.,
2022; Miao et al., 2024). First, our previous study demonstrated

FIGURE 2
BSA inhibits AHR signalling in the ZAS-stimulated MPC5 cells. (A) The mRNA levels of AHR and its target genes, including CYP1A1, CYP1A2, CYP1B1
andCOX-2 in the control and ZAS-stimulated MPC5 cells with or without BSA. (B) Immunofluorescent analysis with anti-AHR antibody in the control and
ZAS-stimulated MPC5 cells with or without BSA. (C) Cytoplasm and nuclei AHR protein expression in the control and ZAS-stimulated MPC5 cells with or
without BSA. (D) Protein levels of cytoplasm and nuclei AHR in the control and CBSA-induced MN rats with or without MSG. (E) Luciferase assay of
AHR activation in the control and ZAS-stimulated MPC5 cells with or without BSA. *P < 0.05, **P < 0.01 compared with CTL; #P < 0.05, ##P <
0.01 compared with ZAS-stimulated MPC5 cells.
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increased intrarenal mRNA expression ofAHR and its genes, such as
CYP1A1, CYP1A2 and CYP1B1 in CKD patients at five stages,
accompanied by elevating AHR nuclear translocation (Miao
et al., 2022). Second, our previous study revealed elevated
intrarenal AHR nuclear translocation in patients with DKD,

IgAN and IMN (Miao et al., 2020). Our latest study further
showed increased intrarenal mRNA expression of AHR and its
genes, including CYP1A1, CYP1A2 and CYP1B1 in patients with
IMN, accompanied by elevated AHR nuclear translocation (Miao
et al., 2024; Wang et al., 2023). Similar findings were also

FIGURE 3
BSA inhibits activation of IƙB/NF-ƙB pathway in the ZAS-stimulated MPC5 cells. (A) Immunofluorescence analysis with anti-p65 antibody in the
control and ZAS-stimulated MPC5 cells with or without BSA. (B) Protein expression of p-IƙBα and nuclei p65 and its downstream gene products including
COX-2, MCP-1, iNOS, 12-LOX, p47phox and p67phox in the control and ZAS-stimulated MPC5 cells with or without BSA. (C) Protein levels of p-IƙBα, NF-ƙB
p65, COX-2, MCP-1, iNOS, 12-LOX, p47phox and p67phox in the control and ZAS-stimulatedMPC5 cells with or without BSA. (D) Immunofluorescence
analysis with and COX-2 antibody in the control and ZAS-stimulated MPC5 cells with or without BSA. *P < 0.05, **P < 0.01 compared with CTL; #P < 0.05,
##P < 0.01 compared with ZAS-stimulated MPC5 cells.
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demonstrated in several rat or mice models treated with NX,
adenine, unilateral ureteral obstruction and cationic bovine
serum albumin (CBSA) (Miao et al., 2020; Cao et al., 2022; Miao
et al., 2022). These data show that AHR signalling is activated in
various pathological types of CKD. Therefore, AHR is a promising
therapeutic target for improving renal function in CKD patients.

Natural products have been demonstrated to be effective
therapies for intervention in glomerular-related diseases
including glomerulonephritis (Wang et al., 2021; Zhao et al.,
2022b; Qin et al., 2023), DKD (Huang et al., 2022; Li et al., 2022b;
Liu et al., 2022b; Pei et al., 2022) and IMN (Miao et al., 2024;
Wang et al., 2023). In this study, we identified BSA as an AHR

FIGURE 4
BSA improves impairment of Keap1/Nrf2 pathway in the ZAS-stimulatedMPC5 cells. (A) Immunofluorescence analysis with anti-Nrf2 antibody in the
control and ZAS-stimulated MPC5 cells with or without BSA. (B) Protein expression of Nrf2, Keap1, HO-1, catalase, GCLC, GCLM, MnSOD and NQO-1 in
the control and ZAS-stimulatedMPC5 cells with or without BSA. (C) Protein levels of Nrf2, Keap1, HO-1, catalase, GCLC, GCLM,MnSOD andNQO-1 in the
control and ZAS-stimulated MPC5 cells with or without BSA. (D) Immunofluorescence analysis with anti-HO-1 antibody in the control and ZAS-
stimulated MPC5 cells with or without BSA. *P < 0.05, **P < 0.01 compared with CTL; #P < 0.05, ##P < 0.01 compared with ZAS-stimulated MPC5 cells.
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antagonist and it could ameliorate podocyte lesion through
improving IƙB/NF-ƙB and Keap1/Nrf2 pathways (Figure 7).
BSA inhibited the mRNA expression of AHR, CYP1A1,
CYP1A2, CYP1B1 and COX-2 in ZAS-stimulated MPC5 cells,
which was accompanied by inhibiting nuclear translocation of
AHR. Accumulating evidence suggests that many natural
product-derived components can directly regulate AHR
signalling. Previous studies have shown that AHR ligands
from vegetable extracts mediate CYP1A1 activity (Zhao et al.,
2019). Cruciferous family members, including broccoli,
cauliflower, white cabbage, and Brussels sprouts, contain rich
sources of AHR ligands, such as indole-3-carbinol and indole-3-
acetonitrile (Zhao et al., 2019). Polyphenols are common
components of the plant kingdom. Polyphenols are divided
into five categories according to their chemical structures:
phenolic acids, flavonoids, lignans, tannins and stilbenes.
Extensive studies have demonstrated that phenolic acids and
flavonoids are the most affluent polyphenolic components in diet
and can be classified into flavanols, flavonols, flavones,
flavanones, isoflavones, anthocyanins and proanthocyanidins
(Zhao et al., 2019).

Recent studies suggested that TCM including Bupi Yishen
formula, Dahuang Fuzi decoction and Jian-Pi-Yi-Shen formula
attenuated CKD by inhibiting AHR signalling (Mo et al., 2021;
Gu et al., 2022; Liu et al., 2022a). Our previous publications have

demonstrated that some compounds such as matairesinol,
rhoifolin, 5,6,7,8,3′,4′-hexamethoxyflavone, 5,7,3′,4′,5′-
pentahydroxy flavanone and erythro-guaiacylglycerol-β-ferulic
acid ether attenuated renal fibrosis by suppressing AHR
signalling (Miao et al., 2020; Cao et al., 2022; Miao et al.,
2022). BSA is a flavonoid glycoside. Previous studies suggested
that BSA could decrease the activities of superoxide scavenging
and xanthine oxidase, as well as inhibit the protein expression of
extracellular matrix proteins, including collagen I, α-smooth
muscle actin, and fibronectin in NRK-52E cells mediated by 1-
aminopyrene (Karim et al., 2009; Miao et al., 2020). Our previous
study showed that BSA inhibited mRNA expression of AHR,
CYP1A1, CYP1A2 and CYP1B1 in renal tissues of NX-induced
rats and NRK-52E cells mediated by 1-aminopyrene, which was
accompanied by the protein expression of upregulated
cytoplasmic AHR and downregulated nuclear AHR (Miao
et al., 2020). Molecular ligand docking analysis revealed that
BSA could bind to the active AHR site and exhibited a strong
interaction with AHR. Collectively, the current study and other
studies suggest that BSA is an effective AHR antagonist and
suppresses AHR expression using in vivo and in vitro
experiments (Figure 7).

Mechanistically, this study further illuminated that treatment
with BSAmitigated podocyte lesion by suppressing hyperactive IƙB/
NF-ƙB pathway and enhancing impaired Keap1/Nrf2 pathway via

FIGURE 5
BSA inhibits podocyte injury through improving IƙB/NF-ƙB and Keap1/Nrf2 pathways via AHR signalling in the ZAS-inducedMPC5 cells with BSA and/
or CH223191. (A) Podocyte-specific protein expression in the ZAS-inducedMPC5 cells with BSA and/or CH223191. (B) Podocyte-specific protein levels in
the ZAS-induced MPC5 cells with BSA and/or CH223191. (C) Protein expression of NF-ƙB p65, Nrf2, COX-2, MCP-1, HO-1 and catalase in the ZAS-
induced MPC5 cells with BSA and/or CH223191. (D) Protein levels of NF-κB p65, Nrf2, COX-2, MCP-1, HO-1 and catalase in the ZAS-induced
MPC5 cells with BSA and/or CH223191. *P < 0.05, **P < 0.01 compared with CTL; #P < 0.05, ##P < 0.01 compared with ZAS-stimulated MPC5 cells.
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inhibiting AHR signalling in the ZAS-stimulated MPC5 cells
(Figure 7). Both oxidative stress and inflammation change
expression of a number of genes, including NF-ƙB and Nrf2. Our
latest study showed that the NF-ƙB signalling was a downstream
target of AHR pathway in IMN (Wang et al., 2023). Several studies
have demonstrated that AHR interacts with NF-ƙB in CKD (Addi
et al., 2019; Brito et al., 2019; Curran and Kopp, 2022). Brito et al.
reported that increasing AHR protein levels were positively
associated with increasing NF-ƙB protein levels in hemodialysis
and non-dialysis-dependent patients (Brito et al., 2019). Our latest
study showed increased protein expression of nuclear AHR and
cytoplasmic COX-2 in the renal tissues of IMN patients (Wang et al.,
2023). In addition, increased protein expression of nuclear AHR and
cytoplasmic COX-2 was observed in renal tissues of rats treated with
CBSA and ZAS-mediated MPC5 cells (Ma et al., 2023; Wang et al.,
2023). Treatment with Moshen granules inhibited their expression
in the renal tissues of rats treated with CBSA (Ma et al., 2023). Addi
et al. demonstrated that an AHR ligand indole-3 acetic acid
mediated activating tissue factor via AHR/NF-ƙB pathway (Addi
et al., 2019). This research group further revealed that COX-2 levels
were markedly suppressed in indole-3 acetic acid-induced umbilical
vein endothelial cells treated with BAY 11-7082 and CH223191
(Dou et al., 2015). In addition, Lee et al. reported that ochratoxin
A-treated HK-2 cells showed increased mRNA expression of AHR

and its target genes, such as CYP1A1 and CYP1A2 representing
phase I enzymes, as well as upregulated mRNA expression of phase
II enzymes, such as GCLC, NQO1 and HO-1 by the activation of
Nrf2 translocation (Lee et al., 2018). However, AHR deficiency
ameliorates oxidative stress-induced macrophage infiltration,
activating mesangial cell and kidney fibrosis in DKD mice (Lee
et al., 2016).

Accumulated evidence has reported that renoprotective effect
of natural products were associated with suppressing AHR, IƙB/
NF-ƙB and Keap1/Nrf2 pathways. Dhulkifle et al. reported that
treatment with 6-formylindolo(3,2-b)carbazole improved septic
acute kidney injury and inflammation by increasing intrarenal
mRNA expression of H O -1 and NQO1 via AHR and Nrf2
(Dhulkifle et al., 2023). Recent publication showed that
Dahuang Fuzi decoction blunted CKD by suppressing AHR/
NF-ƙB pathway (Gu et al., 2022). Moreover, Zhao et al.
showed that the beneficial effect of Tangshen formula for NF-
ƙB p-p65 expression was related to AHR inhibition in renal
tissues of DKD rats (Zhao et al., 2020). Our earlier publication
showed that poricoic acids abolished AHR, IƙB/NF-ƙB and
Keap1/Nrf2 pathways in mice with renal fibrosis (Wang et al.,
2020). Collectively, this study demonstrated that BSA dampened
podocyte lesion partly by modulating IƙB/NF-ƙB and Keap1/
Nrf2 pathways via attenuating AHR signalling.

FIGURE 6
BSA inhibits podocyte injury through improving IƙB/NF-ƙB and Keap1/Nrf2 pathways via AHR signalling in the ZAS-induced AHRsiRNA-transfected
MPC5 cells treated with BSA. (A) Podocyte-specific protein expression in the ZAS-induced AHRsiRNA-transfected MPC5 cells treated with BSA. (B)
Podocyte-specific protein levels in the ZAS-induced AHRsiRNA-transfected MPC5 cells treated with BSA. (C) Protein expression of NF-ƙB p65, Nrf2,
COX-2, MCP-1, HO-1 and catalase in the ZAS-induced AHRsiRNA-transfected MPC5 cells treated with BSA. (D) Protein levels of NF-ƙB p65, Nrf2,
COX-2, MCP-1, HO-1 and catalase in the ZAS-induced AHRsiRNA-transfected MPC5 cells treated with BSA. *P < 0.05, **P < 0.01 compared with CTL;
#P < 0.05, ##P < 0.01 compared with ZAS-stimulated MPC5 cells.
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5 Conclusion

In conclusion, this study showed that treatment with BSA
suppressed AHR expression at both the mRNA and protein
levels in the renal tissues of NX rats and ZAS-stimulated
MPC5 cells. We further illuminated that BSA mitigated
podocyte lesion by suppressing hyperactive IƙB/NF-ƙB
pathway and enhancing hypoactive Keap1/Nrf2 pathway via
inhibiting AHR signalling in the ZAS-stimulated MPC5 cells.
Mechanistically, both pharmacological and genetic results
suggested that BSA ameliorated podocyte damage by
modulating IƙB/NF-ƙB and Keap1/Nrf2 pathways via AHR
signalling. Therefore, BSA is a high-affinity AHR antagonist
that abolishes oxidative stress and inflammation. These
findings may provide a leading drug for treating podocyte

damage-related renal disease through oxidative stress and
inflammation.
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