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Neuropathy is the most common disorder comprising peripheral nerve damage
in diabetic patients. Prolonged hyperglycaemia and oxidative stress cause
metabolic imbalance and are the key reasons for the development of diabetic
neuropathy. Daidzein, a soy isoflavone possesses potent anti-hyperglycaemic
and antioxidant activity. The present study aims to check the protective effect of
Daidzein in diabetic neuropathy in rats. The experimental animal model involved
induction of diabetes in rats by intraperitoneal injection of streptozotocin
(55 mg/kg). Following confirmation of diabetes, the diabetic rats were
subjected to oral treatment with varying doses of Daidzein (25, 50, and
100 mg/kg) and pregabalin (30 mg/kg) for a duration of 4 weeks, initiated
6 weeks after diabetes induction. Results indicated that Daidzein treatment led
to a significant reduction in plasma glucose levels and an improvement in body
weight among diabetic animals. Moreover, Daidzein demonstrated a positive
impact on sensory functions, as evidenced by the effect on tail withdrawal and
response latency. Mechanical hyperalgesia and allodynia, common symptoms of
diabetic neuropathy, were also significantly reduced with both Daidzein and
pregabalin treatment. Notably, nerve conduction velocities exhibited
improvement following the administration of Daidzein and pregabalin. Further
investigation into the molecular mechanisms revealed that Daidzein treatment
resulted in a notable enhancement of antioxidant enzyme levels and a reduction
in the overexpression of NOX-4 in the sciatic nerve. This suggests that Daidzein’s
therapeutic effect is associated with the inhibition of oxidative stress via NOX-4.
In summary, the findings of study suggests that, Daidzein treatment significantly
attenuated diabetic neuropathy by inhibiting oxidative stress via NOX-4 inhibition.
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1 Introduction

Diabetes and associated complications have become important causes of mortality these
days. A prolonged increase in blood glucose level due to pancreatic β cell damage or insulin
resistance is the crucial reason for the development of abnormal metabolic, humoral, and
hemodynamic functions (Domingueti et al., 2016).

Diabetic neuropathy is the most prevalent and painful complication of Diabetes and is
considered the most deceptive and less-understood complication (Schreiber et al., 2015). It
comes under the third most common neurological disorder, which includes approximately 30%
of hospitalized diabetic patients and 20%–30% of community-based people (Dewanjee et al.,
2018). Initially, the chances of developing peripheral neuropathy in adults with type-I Diabetes
are 6%, increasing by 30% after 13–14 years of persistent hyperglycaemia (Schreiber et al., 2015).
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Diabetic neuropathy is a broad term that includes various types
of neuropathies depending on the damaged nerve type. Diabetic
peripheral neuropathy affects all peripheral nerves, including pain
fibers. Numbness and pain are the most common, and foot
amputation and loss of sensation are the least common
symptoms reported in peripheral neuropathy. Prolonged
hyperglycaemia develops oxidative stress and causes alternation
in neuro-immune interactions, neural and glial cell apoptosis,
and inflammation. Increased oxidative stress in hyperglycaemia is
mainly due to auto-oxidative glycosylation, advanced glycation end
products (AGEs) formation, and sorbitol deposition due to the
polyol pathway activation (Nasiry et al., 2017). These pathways
trigger neuroinflammation and neuronal damage by activation of
NADPH oxidase (NOX), which further leads to the development of
inflammatory markers like nuclear factor-kappa beta (NF-kβ),
p38 mitogen-activated protein kinases (p38MAPK),
cyclooxygenase-2 (COX-2), 12/15-lipoxygenase and oxidative
stress enzyme-like PARP (Hosseini and Abdollahi, 2013). NOX
isoform, NOX-4 is an important source of reactive oxygen species
(ROS) in somatic cells. It is also widely expressed in a subset of
nonpeptidergic nociceptors, including astrocytes, microglia,
vascular endothelial cells, and myelinated dorsal root of ganglia,
contributing to medicate pain sensitization (Volpe et al., 2018).
Recent evidence identified that NOX-4 is an early initiator of
neuropathic pain (Geis et al., 2017). Sensitization because of
persistent pain is because of the formation of reactive oxygen
species such as hydrogen peroxide (H2O2) and superoxide (O2

−)
and the active superoxide by-product peroxynitrite due to NOX-4
activation in sciatic nerve (Rayegan et al., 2017).

NOX-4 is a membrane-bound enzyme present in a dissociated
form in a resting state and becomes assembled into a functional
oxidase complex upon stimulation and generates superoxide free
radical by transferring one electron to oxygen from NADPH during
prolonged hyperglycaemia.

Daidzein is a naturally occurring compound mainly present
in legumes, especially soybeans. It belongs to the isoflavone class
and is commonly known as soy isoflavone. Daidzein is reported
to have beneficial effects in the treatment of cardiovascular
diseases (Kim et al., 2009), neurodegenerative diseases (Wei
et al., 2019), cancer (Zheng et al., 2017) and diabetes (Das
et al., 2018). Daidzein shows a beneficial effect against
hyperglycemia by improving impaired glucose and lipid
metabolism (Das et al., 2018). It improves insulin sensitivity
by activating peroxisome proliferator-activated receptor gamma
(PPAR-γ), enhances antioxidant defenses, and exerts anti-
inflammatory effects by inhibiting pro-inflammatory cytokines
(Chen et al., 2016). Daidzein also modulates glucose metabolism
by increasing glucokinase activity and decreasing glucose-6-
phosphatase activity, and it improves lipid profiles by
reducing triglycerides and LDL cholesterol while increasing
HDL cholesterol. Literature reported on Daidzein also reveals
that it possesses potent antioxidant and anti-inflammatory
activity (Peng et al., 2017) and also prevented the progression
of diabetic complications like diabetic retinopathy (Laddha and
Kulkarni, 2021a) diabetic cardiomyopathy (Laddha and
Kulkarni, 2021b), and diabetic cytopathic (Laddha and
Kulkarni, 2022) by inhibiting NADPH oxidase enzyme activity
which is involved in the generation of ROS (Elumalai et al., 2021).

Oxidative stress mediated by NADPH oxidase (NOX-4) plays a
crucial role in diabetic peripheral neuropathy. However, there are no
existing reports on the effects of daidzein on diabetic neuropathy
through NOX-4 inhibition. Therefore, this study was designed to
investigate the effects of daidzein on diabetic neuropathy and to
examine the involvement of NOX-4 in oxidative neuronal damage
under diabetic conditions.

2 Materials Methods

2.1 Experimental animals

Animal experimentation was carried out as per the NIH
guideline for the care and use of laboratory animals (NIH
Publication No. 80–23; revised 1978) 200–220 g male Sprague
Dawley rats were used and were procured from the National
Institute of Biosciences, Pune, India.

2.2 Experimental design

After 1 week of acclimatization, diabetes was induced in rats via
intraperitoneal injection of streptozotocin (Sigma Aldrich, St. Louis,
United States) at a dose of 55 mg/kg. Plasma glucose was determined
after 7 days of streptozotocin (STZ) administration. Animals with
plasma glucose 250 mg/dL were considered diabetic and selected for
study, animals were randomized into six groups (n = 10, each group)
depending on their body weight and plasma glucose and were
treated for the next 4 weeks (Suryavanshi and Kulkarni, 2020).

Group 2 was considered a diabetic control group; animals in this
group were left untreated and received 0.5% of sodium
carboxymethylcellulose (CMC). Group 3 was considered as the
standard drug treatment group; animals in this group received
pregabalin orally at a dose of 30 mg/kg. Groups 4, 5, and 6 were
considered treatment groups; animals in these groups received
Daidzein (Combi-Blocks, Inc. San Diego, United States) orally at
doses of 25, 50, and 100 mg/kg. Group 1 was considered a normal
control group and contained non-diabetic animals. Animals in this
group received 0.5% of CMC as a vehicle.

2.3 Evaluation parameters

2.3.1 Determination of body weight and
plasma glucose

Animals were weighed after 28 days of treatment and blood was
withdrawn from the retro-orbital plexus and collected in a
microcentrifuge tube containing 20 μL of disodium
ethylenediaminetetraacetic acid (EDTA) as an anticoagulant.
Plasma was separated after centrifugation and used for the
determination of glucose using GOD-POD kit (Transasia
Biomedicals Ltd., India).

2.3.2 Behavioural assessment for heat nociception
At the end of the treatment, the latency to the heat stimuli was

used to evaluate the heat nociception threshold by using a hot plate
and tail immersion method.
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In the tail immersion test, animals were restrained for 30 min
before the test. The tail of each rat from a different treatment group
was immersed in a water bath maintained at 55°C ± 1°C until tail
withdrawal or sign of struggle was observed. The cut-off time was
kept at 15 s to avoid injury. The reaction time i.e., time required to
withdraw the tail from hot water, was recorded.

In Eddy’s hot plate test, each animal was kept on hot plate
apparatus (IITC Life Science, United States) maintained at 55°C ±
0.5°C. The latency to the first response in the form of flickering,
licking of the hind paw, or jumping was recorded. The cut-off time
was kept at 15 s to avoid damage to the paw (Oza and
Kulkarni, 2020).

2.3.3 Behavioural assessment for mechanical
hyperalgesia

Mechanical hyperalgesia nociceptive threshold was determined
using the Randall - Selitto test. After 28 days of treatment, animals
were restrained and received increasing pressure stimulus with a
pressure applicator (IITC Life Science, United States) to the dorsal
surface of the hind paw. The maximum pressure where animals try
to withdraw their paw was recorded with Randall Selitto paw
pressure test apparatus (IITC Life Science, United States). The
same was performed three times at an interval of 20 min and the
average reading was considered. The cut-off time was kept at 600 g
to avoid damage because of excessive pressure (Kayser, 2013).

2.3.4 Behavioural assessment for
mechanical allodynia

The nociceptive threshold to the innocuous stimuli was determined
using Von-Frey filament. Animals after treatment were kept in the
elevated cage, which contains wire mesh at the bottom. Animals were
acclimatized in the cage for 20 min. A constantly increasing pressure
stimulus was applied to the ventral surface of the hind paw with an
electronic Von Frey rigid tip (IITC Life Science, United States). The
pressure at which animals showed responses like paw lifting and
withdrawal was recorded with the help of electronic Von Frey
apparatus (IITC Life Science, United States). Readings were recorded
thrice after at least 20min intervals. The cut-off time was kept at 400 g to
avoid damage because of excessive pressure (ÄngebyMöller et al., 1998).

2.3.5 Determination of nerve conduction velocity
Nerve conduction velocities, motor nerve conduction velocity

(MNCV), and sensory nerve conduction velocity (SNCV) were
recorded from the sciatic nerve using a data acquisition system
Power Lab (AD Instruments, Australia). After 28 days of treatment,
animals were anesthetized using urethane (1.2 g/kg, i.p.). The rectal
temperature of animals was continuously monitored using a
homeothermic blanket with a flexible probe (230 VAC, Harvard
Apparatus, United States) and was maintained at 37°C ± 0.5°C. A
24 gauge needle electrode having a single 5 V stimulus was used to
stimulate the sciatic nerve from the sciatic notch and tibial nerve
(proximal to ankle) region. Receiving electrodes (+ve, −ve, and
earth) were placed in the foot muscle. The “M” wave and “H”

wave refluxes were recorded digitally using a data acquisition
system-poerlab (AD Instruments, Australia). The distance
between the stimulation and receiving point was also measured
manually using a ruler (Bhatt and Veeranjaneyulu, 2010). MNCV
and SNCV were recorded from “M” wave and “H” wave latency

using the following formula - MNCV/SNCV (m/s) = (Distance
between stimulating and recording electrode)/latency.

2.3.6 Determination of oxidative stress parameters
At the end of the study, animals were humanely sacrificed, and

the sciatic nerve from the left side of the posture was isolated and
homogenized in 0.1 M phosphate buffer (pH 7.4) using a probe
homogenizer (Polytron PT 2500E, Kinematica, Switzerland). The
protein concentration was determined in tissue homogenate with
the method described earlier (Lowry et al., 1951). Homogenate was
used for the determination of levels of reduced glutathione (GSH),
and malondialdehyde (MDA) according to the standard protocol
mentioned in the literature (Ellman, 1959; Ohkawa et al., 1979).
Some part of the homogenate was centrifuged at 2500 g and
10,000 rpm for 10 min and 20 min, respectively, for separation
of a post-nuclear and post-mitochondrial fraction, which were used
for the determination of catalase (CAT) and superoxide dismutase
(SOD) activity (Paoletti et al., 1990).

2.3.7 Western blot analysis
Expression of NOX-4 in the sciatic nerve of the different

treatment groups was determined using NOX-4 (rabbit; 1:500)
(ABclonal Technology, United States) primary antibody and
peroxidase-labeled goat anti-rabbit IgG secondary antibody. The
quantification was carried out as per the previously reported method
by Oza and Kulkarni (Oza and Kulkarni, 2020).

The results were expressed as relative expression i.e., NOX-4/β-
actin using Image Studio Lite Ver 5.2 software.

3 Statistical analysis

One-way ANOVA followed by Bonferroni compared selected
pairs of column tests were performed using Graph pad Prism
6 software. All the data were expressed in Mean ± SD.

4 Results

4.1 Effect of daidzein on body weight and
plasma glucose

The diabetic control group showed a significant (p< 0.001) decrease
in body weight compared to normal control animals. Treatment with
Daidzein at doses of 50 and 100mg/kg significantly (p< 0.05, p< 0.001)
improved the body weight compared to diabetic control animals.
Daidzein 50 mg/kg dose showed 31.53% and 100 mg/kg dose
showed 45.2% improvement in body weight whereas pregabalin
treatment showed 30.74% improvement. Treatment with pregabalin
also significantly (p < 0.05) improved body weight.

A significant increase in glucose level (p < 0.001) was observed in
diabetic control animals compared to normal control animals.
Daidzein treatment at doses of 50 and 100 mg/kg and pregabalin
at a dose of 30 mg/kg significantly reduced (p < 0.05, p < 0.01, and
p < 0.05) the elevated level of blood glucose when compared with
diabetic control animals. There is 20.78% and 24.33% reduction in
blood glucose in 50 mg/kg and 100 mg/kg doses of daidzein
respectively and 19.71% by pregabalin treatment (Figure 1).
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4.2 Effect of daidzein on behavioural
parameters

Significant decreases in tail withdrawal latency (p < 0.001) and
response latency (p < 0.001) were observed in diabetic control

animals during tail immersion and hot plate tests as compared to
normal control animals. Treatment with Daidzein at a dose of
100 mg/kg significantly improved the tail withdrawal latency (p <
0.001) compared to disease control animals after 28 days of
treatment. Improvement in tail withdrawal latency is 108.82%.

FIGURE 1
Effect of Daidzein on body weight and plasma glucose levels. All values are expressed as Mean ± SD. ***p < 0.001, **p < 0.01, *p < 0.05 indicates the
level of significance when treatment groups compared with the diabetic control group and ###p < 0.001 when the diabetic control group compared with
the normal control group.

FIGURE 2
Effect of Daidzein on behavioural parameters. All values are expressed as Mean ± SD. ***p < 0.001, **p < 0.01, *p < 0.05 indicates the level of
significance when treatment groups compared with the diabetic control group and ###p < 0.001 when the diabetic control group compared with the
normal control group.
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Daidzein at a dose of 50 and 100 mg/kg and pregabalin (30 mg/kg)
significantly improved (p < 0.05, p < 0.01, p < 0.05) the response
latency after 4 weeks of treatment. Response latency is increased by
52.4% and 53.55% by Daidzein 50 mg/kg and 100 mg/kg doses and
46.06% by pregabalin treatment.

Diabetic control animals also showed a significant decrease in
paw withdrawal latency (p < 0.001) measured using a
Randall – Selitto test (Mechanical hyperalgesia) when compared
to normal control animals. Treatment with Daidzein at a dose of
50 and 100 mg/kg and pregabalin (30 mg/kg) significantly improved
(p < 0.05, p < 0.01 p < 0.05) the paw withdrawal latency. Withdrawal
latency in Randall-Selitto test was improved by 86.07% and 112.01%
by mid and high doses of daidzein and 90.28% by
pregabalin treatment.

Diabetic animals showed a significant decrease in paw
withdrawal latency (p < 0.001) compared to normal control
animals measured using Von-Frey filament. Treatment with
Daidzein at a dose of 100 mg/kg and pregabalin (30 mg/kg)
significantly improved (p < 0.001, p < 0.001) the paw withdrawal
latency by 97.68% and 88.35% after 4 weeks of
treatment (Figure 2).

4.3 Effect of daidzein on nerve conduction
velocities

A significant decrease in MNCV (p < 0.001) was observed in
diabetic control animals compared to normal control animals.
Treatment with Daidzein at a dose of 50 and 100 mg/kg and
pregabalin (30 mg/kg) significantly improved (p < 0.01, p <
0.001, and p < 0.001, respectively) the motor nerve conduction
velocity after 28 days of treatment when compared with diabetic
control animals.

Similarly, SNCV was also found to be decreased (p < 0.01) in the
diabetic control group as compared to the normal control

group. Treatment with Daidzein at doses of 50 and 100 mg/kg
and pregabalin (30 mg/kg) significantly improved (p < 0.05, p < 0.01,
and p < 0.01) the sensory nerve conduction velocity by 87.34%,
107.33%, and 91.19% respectively (Figure 3).

4.4 Effect of daidzein on sciatic nerve
oxidative stress

Diabetic animals showed a significant decrease in the level of
GSH, SOD, and CAT (p < 0.01, p < 0.01, and p < 0.001) when
compared to normal control animals. Treatment with Daidzein at a
dose of 100 mg/kg significantly prevented the loss of antioxidant
enzymes (p < 0.05, p < 0.05, and p < 0.001).

MDA level was found to be significantly elevated in diabetic
control animals as compared to normal control animals (p < 0.001).
Treatment with Daidzein at a dose of 25, 50, and 100 mg/kg and
pregabalin (30 mg/kg) significantly reduced the elevated level of
MDA after 4 weeks of treatment (p < 0.05, p < 0.01, p < 0.001, and
p < 0.001 respectively) (Table 1).

4.5 Effect of daidzein on NOX-4 expression

Diabetic animals showed a significant increase in the expression
of NOX-4 when compared to normal control animals. Treatment
with Daidzein significantly reduced NOX-4 (p < 0.01) expression by
52.10%, 42.85%, and 63.02% respectively in the sciatic
nerve (Figure 4).

5 Discussion

Diabetes is a metabolic condition marked by persistent and
unregulated high levels of blood sugar, giving rise to various

FIGURE 3
Effect of Daidzein on nerve conduction velocities. All values are expressed as Mean ± SD. ***p < 0.001, **p < 0.01, *p < 0.05 indicates the level of
significance when treatment groups compared with the diabetic control group and ###p < 0.001 when the diabetic control group compared with the
normal control group.
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complications in both small and large blood vessels. One such
complication is diabetic neuropathy. Extended periods of
elevated blood sugar contribute to the heightened production
of advanced glycation end products (AGEs) and their
corresponding receptors (AGER). This process leads to the
generation of reactive oxygen species (ROS), causing damage
to nerves and disrupting their conduction system (Zhao
et al., 2014).

NOX-4 is a membrane-bound enzyme that utilizes oxygen
and generates reactive oxygen species during hyperglycaemia. In
normal conditions, NOX-4 is present in dissociated form and
becomes assembled into a functional oxidase complex upon
stimulation in a hyperglycaemic state and generates

superoxide free radical by transferring one electron to oxygen
from NADPH. During this process, O2 is transported from the
extracellular space to the cell interior, and the H+ is exported,
which is the main reason behind the development of oxidative
neuronal damage (Bedard and Krause, 2007). Overexpression of
NOX-4 is also responsible for activating inflammatory and
apoptotic mediators such as nuclear factor–kappa beta (NF-
kβ) and tissue necrosis factor (TNF-α) (Laddha and Kulkarni,
2020). In addition, activation of the polyol pathway, protein
kinase C (PKC), poly (ADP-ribose) polymerase pathway due
to prolonged hyperglycaemia also contributes to the development
of neuroinflammation and nerve damage via reactive oxygen
species formation.

TABLE 1 Effect of Daidzein on oxidative stress parameters.

Parameters Treatment groups

Normal
control

Diabetic
control

Diabetic +
pregabalin
(30 mg/kg)

Diabetic +
daidzein

(25 mg/kg)

Diabetic +
daidzein

(50 mg/kg)

Diabetic +
daidzein

(100 mg/kg

GSH (μmol/mg of protein) 19.45 ± 3.27 4.15 ± 0.59## 11.70 ± 2.57 11.07 ± 3.01 12.87 ± 3.95 15.77 ± 3.09*

SOD (U/mg of protein) 0.99 ± 0.16 0.29 ± 0.03## 0.70 ± 0.14 0.58 ± 0.14 0.71 ± 0.13 0.76 ± 0.10*

CAT (μm of H202
decompose/min/mg of

protein)

0.375 ± 0.04 0.022 ± 0.004### 0.212 ± 0.024** 0.075 ± 0.026 0.25 ± 0.046*** 0.319 ± 0.063***

MDA (μmol/mg of
protein)

3.56 ± 0.73 10.75 ± 0.91### 5.66 ± 0.75*** 6.88 ± 0.72* 6.48 ± 0.99** 4.23 ± 0.69***

All values are expressed as Mean ± SD. ***p < 0.001, **p < 0.01 and *p < 0.05 compared with diabetic control. ###p < 0.001 and ##p < 0.01 when compared with normal control.

FIGURE 4
Effect of Daidzein on the relative expression of NOX-4 in sciatic nerve. All values are expressed as Mean ± SD. *p < 0.05, **p < 0.01 indicates the level
of significance when treatment groups compared with the diabetic control group and ###p < 0.001 when the diabetic group compared with the normal
control group. NC, Normal Conrtol; DC, Diabetic Control; Prg- Diabetic + Pregabalin (30 mg/kg), D25-Diabetic + Daidzein (25 mg/kg), D50-Diabetic +
Daidzein (50 mg/kg), D100-Diabetic + Daidzein (100 mg/kg).
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In diabetic neuropathy, abnormal metabolic rates and
insufficient insulin secretion due to pancreatic β-cell damage
impair glucose transportation into cells. Consequently, the body
shifts to utilizing fat for energy, significantly reducing body
weight in diabetic control animals. Daidzein, a phytoestrogen,
enhances insulin sensitivity and glucose metabolism (Ubaid et al.,
2023), resulting in a significant improvement in body weight in
animals treated with daidzein. By preventing pancreatic β-cell
damage through the inhibition of NOX-4 overexpression,
daidzein also helps reduce elevated blood glucose levels (Choi
et al., 2008).

Neuropathic pain linked to excessive generation of
inflammatory cytokines and abnormality in nerve fiber because
of endothelial dysfunction during hyperglycaemia is an essential
characteristic of diabetic neuropathy. Neuronal dysfunction affects
the balance between non-painful and painful stimuli by damaging
the inhibitory pathway or overstimulating the nociceptive pathway,
which causes pain without involving nociceptors (Dubin and
Patapoutian, 2010).

Assessments of behavioural response to mechanical and
thermal stimuli provide an idea about nociception,
hyperalgesia and allodynia and provide valuable information
regarding the mechanisms of abnormal sensation and pain
associated with prolonged hyperglycaemia. ROS damage due
to NOX-4 overexpression in the sciatic nerve is crucial for
abnormal sensation and pain. Diabetic animals showed
thermal nociception, mechanical hyperalgesia, and
mechanical allodynia. Daidzein treatment inhibited
nociceptive pain and reduced thermal nociception,
mechanical hyperalgesia, and mechanical allodynia due to its
anti-inflammatory effects mediated through NOX-4 inhibition.
The inhibition of NOX-4 by daidzein decreases the production
of reactive oxygen species (ROS), which are key contributors to
inflammation and oxidative stress in diabetic neuropathy
(Kallenborn-Gerhardt et al., 2012; Geng et al., 2015). The
results of the treatment groups are comparable with
pregabalin which is the first-line drug for the treatment of
diabetic peripheral neuropathy. In the present study
pregabalin treated group is considered a positive control
group. The effect of pregabalin is also due to its anti-
inflammatory potential (Sałat et al., 2013; FDA, 2019). In
addition to this, impaired nerve conduction because of
axonal degeneration and myelin breakdown is also one of the
important observations of STZ-induced diabetic rats. Increased
influx of polyol pathway leads to deposition of sorbitol in the
sciatic nerve, which affects Na+/K+/ATPase activity and is the
important reason for the reduction in nerve conduction.
Another reason that also plays a crucial role in affecting
nerve conduction by affecting axonal activity is inflammation
(Raccah et al., 1998). Diabetic animals showed a significant
reduction in MNCV and SNCV in the sciatic nerve. Treatment
with Daidzein prevented the ROS damage to the nerve and
improved the nerve conduction velocity. Improvement in the
conduction velocities of daidzein mid and high-dose treatment
is similar to that of standard pregabalin treatment which also
possesses antioxidant properties (Sałat et al., 2013). The

antioxidant defense enzymes, such as glutathione (GSH),
superoxide dismutase (SOD), and catalase (CAT), were found
to be reduced in the sciatic nerve of diabetic subjects, while lipid
peroxidation levels were increased due to elevated ROS
production from activated NOX-4 in hyperglycemic
conditions. This imbalance leads to neuronal demyelination,
abnormal mitochondrial function, and accumulation of
extracellular matrix. Daidzein treatment mitigated these
effects by preserving antioxidant enzyme levels and reducing
lipid peroxidation through ROS scavenging. Additionally,
daidzein’s inhibition of NOX-4 expression further protected
neurons from oxidative damage. This effect of daidzein is
similar to the study carried out in our laboratory against
diabetic cardiomyopathy (Laddha and Kulkarni, 2021b).
NOX-4 encodes an NADPH oxidase enzyme, which produces
reactive oxygen species (such as H2O2) by transferring electrons
from NADPH to molecular oxygen. NOX-4 is primarily
regulated through transcriptional mechanisms. A recent
in vitro study reported in the year 2019 by Yu T and co-
workers showed the role of NOX-4 in the hyperglycaemia-
induced apoptosis of Schwann cells which were involved in
the development of diabetic peripheral neuropathy (Yu et al.,
2019). We have checked the expression of NOX-4 in the sciatic
nerve. Diabetic animals showed a significant increase in the
expression of NOX-4, treatment with Daidzein inhibits NOX-4
expression and prevents the formation of reactive
oxygen species.

In the current investigation, we observed notable intra-group
variability in the Randall Selitto test, contributing to the
significant enhancement in force-bearing capacity among both
normal and treated animals. Moreover, a comparison between
the treatment and disease control groups demonstrates over
100% improvement which does not indicate parameters are
restored to normal levels. The comparison underscores its
substantial impact in mitigating the effect as compared to the
disease control group.

6 Conclusion

The results of the study indicate that Daidzein treatment
mitigates oxidative stress by inhibiting NOX-4, reducing
ROS production, and preserving antioxidant enzymes. This
approach attenuates nerve damage, improves nerve
conduction velocity, and alleviates neuropathic pain,
paralleling effects seen with standard treatments like
pregabalin. These findings highlight daidzein’s potential as a
novel therapeutic strategy against diabetic neuropathy by
targeting oxidative stress pathways.
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