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Lung cancer is still one of the deadliest malignancies today, and most patients
with advanced lung cancer pass away from disease progression that is
uncontrollable by medications. Super-enhancers (SEs) are large clusters of
enhancers in the genome’s non-coding sequences that actively trigger
transcription. Although SEs have just been identified over the past 10 years,
their intricate structure and crucial role in determining cell identity and
promoting tumorigenesis and progression are increasingly coming to light.
Here, we review the structural composition of SEs, the auto-regulatory
circuits, the control mechanisms of downstream genes and pathways, and the
characterization of subgroups classified according to SEs in lung cancer.
Additionally, we discuss the therapeutic targets, several small-molecule
inhibitors, and available treatment options for SEs in lung cancer. Combination
therapies have demonstrated considerable advantages in preclinical models, and
we anticipate that these drugs will soon enter clinical studies and benefit patients.
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1 Introduction

Lung cancer remains one of the most prevalent and severe tumors, although the
mortality risk continues to decline thanks to improvements in early identification and
treatment strategies (Siegel et al., 2022). Of all lung cancer histologic subtypes, the most
common (85%) is non-small cell lung cancer (NSCLC), with the remaining 10%–15% being
small cell lung cancer (SCLC) and other rare cancers (Siegel et al., 2020). Frustratingly, with
a 5-year survival rate of just seven percent, SCLC is the most aggressive subtype of lung
cancer (Frese et al., 2021). With the advance of targeted medicines and immunotherapies,
the long-term prognosis of lung cancer has dramatically improved; however, it is still less
than satisfactory for most advanced lung cancers (Wang et al., 2021).

Genetic mutations have been extensively studied in lung cancer, which change coding
sequences (e.g., sequences directly coding for oncoproteins) and non-coding sequences
(e.g., promoters and enhancers), directly or indirectly favoring clonal proliferation in cancer
cells (Lengauer et al., 1998). Current targeted therapies for lung cancer are also mainly based
on genetic mutation. However, disturbances in epigenetic regulation can also lead to the
occurrence and metastasis of lung cancer (Dong et al., 2023; Kostyrko et al., 2023). For
example, the MYC proto-oncogenes family can broadly affect cell proliferation and
apoptosis through complex regulatory networks (Carroll et al., 2018). In addition to the
copy number increases from genetic mutations, MYC overexpression is also inextricably
linked to surrounding regulatory sequences, with a growing number of studies
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demonstrating that super-enhancers (SEs) act as culprits in this
process. Studies have revealed that the mechanism of SE formation
involves mutations, and the uniqueness of epigenetic modifications
at SEs loci is related to the progression of acute myeloid leukemia
(Cao et al., 2022), colorectal cancer (Liu Q. et al., 2022), and
esophageal carcinoma (Shi et al., 2022).

Hence, we introduce the structure and function of SEs and
summarize the oncogenic mechanism, classifying functions, and
potential therapeutic targets and drugs of SEs in lung cancer here.

2 Subsections

2.1 Identification and structural
characterization of SEs

In the 1980s, a 72 bp sequence, later called “enhancer,” was
identified in the genome of the SV40/hemoglobin β1 recombinant
gene, accompanied by the overexpression of the rabbit β globin gene
(Banerji et al., 1981). Enhancers are cis-regulatory elements that
interact with promoters from different positions and distances to
increase the expression of controlled genes (Blackwood and
Kadonaga, 1998). Richard A. Young identified larger clusters of
enhancers, known as SEs (or stretch enhancers), which drove high
transcription levels of key genes and defined cell identity in
pluripotent embryonic stem cells (ESCs) (Whyte et al., 2013).
Researchers have created some online repositories such as
dbSUPER (Khan and Zhang, 2016) (https://asntech.org/dbsuper/
), SEdb (Jiang et al., 2019; Wang Y. et al., 2023) (https://bio.liclab.
net/sedb/), SEanalysis (Qian et al., 2019) (https://bio.liclab.net/
SEanalysis/), and SEA (Wei et al., 2016; Chen et al., 2020)
(http://sea.edbc.org/) to share SEs (and related genes) and their
genetic and epigenetic annotations. The constituent enhancers of
SEs are with multiple overlapping enrichments of H3K4me1 and

H3K27ac of active enhancers (AEs) marks (Yoo et al., 2019; Barral
and Déjardin, 2023) (Figure 1). The Rank Ordering of Super
Enhancers (ROSE) algorithm is the most commonly used
method to identify SEs (Lovén et al., 2013). The algorithm ranks
H3K27ac chromatin immunoprecipitation sequencing (ChIP-Seq)
signals and defines enhancers above the inflection point (slope >1)
as SEs. However, there is still no consensus on an arbitrary cutoff of
enrichment level within certain proximity for considering whether
an active enhancer is a super-enhancer. As ChIP-seq has advanced,
more and more SEs have been discovered to be involved in
carcinogenesis, tumor immune evasion (Xu et al., 2019), and
various autoimmune disorders (Parker et al., 2013; Vahedi et al.,
2015; Yamagata et al., 2022). It is worth mentioning that other
techniques, including 4C-seq (Jiang et al., 2020), Hi-C (Huang J.
et al., 2018), ChIA-PET (Dowen et al., 2014), ChIP-STARR-seq
(Barakat et al., 2018), GRO-seq (Hah et al., 2015), DNase-seq (Kang
et al., 2021), and ATAC-seq (Adam et al., 2020), have also been
employed to detect SEs in recent years. Lately, Jialiang Huang’s team
refined the hierarchical structure of SEs into hub enhancers and
non-hub enhancers by hierarchical scoring (Huang J. et al., 2018).
Hub enhancers outperform non-hub enhancers in the interaction
with regulatory factors and effects on activating target gene
transcription.

As a member of the bromodomain and extra-terminal domain
(BET) family and closely associated with SE-related oncogenic
transcription, bromodomain-containing protein 4 (BRD4) binds
to acetylated modified histones and recruits additional proteins
(such as TEFb and Mediator) to indirectly participate in the
initiation of transcription and the control of transcriptional
elongation (Yang et al., 2005). BET inhibitors (BETi) separate
BET proteins from chromatin by competitively binding with
histone-acetylated lysines of the BET bromodomain. SEs are
highly sensitive to BETi (Fontanals-Cirera et al., 2017). JQ1 is the
first reported BETi (Filippakopoulos et al., 2010) and has been

FIGURE 1
General definition of SEs. SEs characterized bymultiple overlapping enrichments (peaks) of H3K4me1 and H3K27ac are usually composed of several
AEs, but there is no consensus on the cutoff of peaks. Multiple coactivators cluster around SEs in a phase-separated manner to activate pro-
transcriptional functions. TFs: Transcription factors; AEs: Active enhancers; SEs: Super-enhancers.
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widely used for SE identification (Das et al., 2023; Zheng et al., 2024).
JQ1 disrupts the transcriptional activity of the master regulators
ETS2, HNF4A, and JUNB, suppresses the TGF-induced EMT status,
and decreases tumor cell migration and invasion in NSCLC cells
(Chang et al., 2016). JQ1, in combination with NSD2 knockdown,
inhibits the activation of RAS-driven transcriptional programs in
lung cancer cells (García-Carpizo et al., 2016). JQ1 downregulates
the expression of HK2, whose promoter is specifically SEs hijacked
in a dose-dependent manner in LUAD (Song et al., 2022). In
addition, JQ1 exhibits this dose-dependent pharmacological
profile in acute myeloid leukemia (Jang et al., 2017), uterine
carcinoma (Bonazzoli et al., 2018), and diffuse large B-cell
lymphoma (Trabucco et al., 2015).

2.2 Transcription factors (TFs) and core TF
involved in coding SE-associated genes

Chromatin accessibility allows physical contact between cis-
acting elements and trans-acting factors to regulate transcription
processes (Klemm et al., 2019). Breast cancer cells undergoing SE
reprogramming produced the accessible chromatin structure and
had a higher propensity for lung metastasis (Li K. et al., 2019). TFs
are proteins that bind to specific DNA sequences (Spitz and Furlong,
2012). If abnormally enriched at oncogene promoters or enhancers,
however, they can result in gene overexpression and carcinogenesis
(You et al., 2018). SE-driven genes encode core TFs, which can bind
to their SEs or others and interact with other core TFs to regulate the
expression of additional genes and form cell- or tissue-specific core
regulatory circuits (CRC) (Saint-André et al., 2016; Feng C. et al.,
2023). For example, the three specifically SE-activated core TFs
ELF3, EHF, and TGIF1 constituted the major component of a CRC
with an interdependent pattern that tightly regulated cell migration
and invasion in lung adenocarcinoma (LUAD) (Zhang T.
et al., 2020).

2.3 Essential SE-associated transcriptional
coactivators

Transcriptional coactivators are a variety of proteins with
transcription-related functions. As mentioned above, BRD4 is a
crucial part of SEs and plays an essential role in the transcriptional
activation of oncogenes. Besides, MED1, Mediator, and CBP/
p300 with acetyltransferase activity bind to TFs to assist in the
assembly of the transcription preinitiation complex and stabilize the
transcriptional activity of RNA polymerase II (Ogryzko et al., 1996;
Mao et al., 2019; Rengachari et al., 2021). Benjamin R Sabari’s team
proposed that transcriptional coactivators enhance transcriptional
activity by forming droplets around SEs through a phase separation
process (Sabari et al., 2018). However, whether SE-dependent
transcriptional enhancement depends on this mechanism is still
debatable (Trojanowski et al., 2022).

Overall, the effects of SEs on transcriptional activation are more
forceful than that of typical enhancers (TEs) due to their higher
region spanning, higher histone modifications, TFs, and RNA
polymerase II enrichment, and more binding sites for
transcriptional coactivators (Hnisz et al., 2013; Whyte et al., 2013).

2.4 Epigenetic modification associated
with SEs

Two key epigenetic regulatory mechanisms involved in SEs are
histone modifications (mostly methylation and acetylation) and
DNA methylation. Modified histones in the presence of catalytic
enzymes (histone lysine methyltransferases or histone
acetyltransferases, etc.) can alter chromatin accessibility, affect the
assembly of transcriptional complexes, and enhance or reduce the
interaction of TFs to gene structures, resulting in altered levels of
transcription and translation of downstream genes, which can
trigger the development of cancer, autoimmune diseases, and
even chronic diseases (Arrowsmith et al., 2012; Fatma et al.,
2022; Yang J. et al., 2023). For instance, in a mouse model of
LUAD, the deletion of KMT2D (a histone methyltransferase) caused
decreased global levels of H3K4me1 and H3K27ac of SEs, leading to
the suppression of SE-associated antioncogene Per2 (an
antioncogene that inhibits glycolysis) and the activation of
glycolytic processes, promoting the growth of cancer (Alam et al.,
2020). Another study found that overexpression of NSD2, a histone
methyltransferase, resulted in H3K36me2 spreading to the
intergenic region of the low H3K27me3 region to exert pro-
transcriptional effects (García-Carpizo et al., 2016). That is an
example of long-range epigenetic remodeling. It is generally
accepted that hypermethylation of CpG islands in the promoter
region usually represses gene expression, whereas hypermethylation
of gene bodies usually shows the opposite effects (Yang et al., 2014).
Interestingly, a study found that highly expressed genes covered by
SEs had lower levels of gene body methylation, which resulted in a
significant negative correlation between gene body methylation and
expression, contrary to popular belief (Pongor et al., 2022). These
findings imply an intrinsic link between DNA modification, histone
modification, and SEs that jointly influence gene expression.

2.5 SEs formation (or translocation) caused
by genetic variation in lung cancer

Several studies have elucidated that the formation (or
translocation) of SEs is dependent on genetic variants such as
single nucleotide variants (SNVs), insertion deletions (indels),
and chromosomal structural variants (SVs) (Mansour et al., 2014;
Xing et al., 2019; Wang J. et al., 2023). However, the current research
discovered only gene fusion or rearrangement was responsible for
SEs’ formation in different tissue subtypes of lung cancer. A study
found that focal amplified SEs in LUAD acted on theMYC promoter
to spark off transcriptional overactivation (Zhang et al., 2016). And
it subsequently demonstrated that the mutations arose from a
tandem duplication of a non-coding sequence. In LUAD patients,
ALK or ROS1 rearrangements triggered SEs hijacking upstream of
EML4 and SLC34A2, driving expression of the new oncogenic
fusion genes ALK-EML4 and ROS1-SLC34A2, respectively (Yuan
et al., 2021). NUT Carcinoma of the Lung is a rare lung cancer
subtype of squamous origin that is extremely aggressive and highly
associated with NUT gene fusions (Travis et al., 2015). The fusion
gene BRD4/3-NUT co-localized with p300, and the corresponding
hyperacetylated region showed a similar SE hijacking function to
increase the pro-transcriptional effects of BRD4 (Eagen and French,
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2021). Adenoid cystic carcinoma (ACC) originates from the
secretory glands and is usually molecularly labeled by the MYB-
NFIB fusion oncogene (Persson et al., 2009). MYB rearrangements
are widely observed in primary pulmonary adenoid cystic carcinoma
(PACC) (Roden et al., 2015). A self-regulatory feedback loop was
generated when gene rearrangements (e.g., MYB -NFIB, MYB-
TGFBR3, MYB-RAD51B gene fusion) occurring in ACC caused
SE translocations and overexpression of MYB proteins (Drier
et al., 2016).

2.6 Carcinogenic roles and regulatory
mechanisms of SEs in lung cancers

Previous studies on SE-associated activation of oncogenes and
signaling pathways have mainly focused on LUAD, as shown in
Figure 2. A study showed that focal amplification of the SEs 3′to
MYC caused increased expression of MYC and other MYC-target
genes (Zhang et al., 2016). The master transcription factor
ASCL1 regulates the expression of multiple SE-associated
oncogenes, such as RET and MYCL (Miyashita et al., 2018).
Nuclear transcription factor estrogen-related receptor alpha
(ERRα) coordinates with BRD4 to drive the expression of SE-

associated glycolytic gene HK2, leading to enhanced glycolysis
progress and growth of malignant cells (Song et al., 2022).
Specific SE-driven PADI gene families associated with tumor
proliferation, invasion, and colony formation were identified as
highly expressed in Osimertinib-resistant LUAD cells (Li H.
et al., 2022). SE-associated CENPO was highly expressed in
LUAD and positively correlated with the tumor stage, which
could promote carcinogenesis and progression by regulating the
cell cycle and tumor immune microenvironment (Shi et al., 2023).

As we all know, long noncoding RNAs (LncRNAs) are a class of
RNAs longer than 200 nt without encoding proteins. Super-
enhancer lncRNAs (SE-lncRNAs) are transcribed from super-
enhancer genomic regions, which activate the neighboring genes
or trans-activate the distant genes through several mechanisms such
as transcription factor trapping, promotion of chromatin looping,
histone modification, recruitment of phosphorylating RNA
polymerase II (Pol II), and isolation of the transcriptional
repressor (Schaukowitch et al., 2014; Alvarez-Dominguez et al.,
2017; Soibam, 2017; Lee et al., 2020). FOXA1, a driver of
multiple cancers (Martínez-Jiménez et al., 2020), can maintain
malignant cell survival and promote progression by sensitizing
the TGF-β pathway (Wei et al., 2023), activating glycolysis (Xie
et al., 2022), and inhibiting autophagy (Li J. et al., 2022). FOXA1 was

FIGURE 2
Oncogenic mechanisms of SEs in LUAD. Different regulatory factors can directly (binding to SE motifs) or indirectly (recruiting more activators) lead
to the overexpression of SE-related genes and the progression (proliferation, invasion, migration) of LUAD. This processmay involve the activation of self-
regulatory circuits. LUAD, Lung adenocarcinoma.
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reported to stimulate LncRNA DSCAM-AS1 at its SEs region
(Zhang Y. et al., 2020). DSCAM-AS1, in turn, positively activates
FOXA1 expression by interacting with Y box binding protein 1
(YBX1, a DNA/RNA binding protein). Silencing of DSCAM-AS1
inhibits FOXA1 expression and cell growth. Epithelial-
mesenchymal transition (EMT), a process by which epithelial
cells acquire a mesenchymal cell phenotype and the ability to
migrate and invade, is regulated by a series of TFs
(Akhmetkaliyev et al., 2023). As a mediator between CDK1 and
PRDX1, SE-associated lncRNA LINC00880, activated by TFs
FOXP3, leads to phosphorylation of PRDX1 and dysregulation of
the PTEN/AKT pathway and metastasis of LUAD (Feng Y. et al.,
2023). However, as the LUAD stage progressed, the expression of
LINC00880 tended to decrease, and over-expression of
LINC00880 had a significant negative prognostic value only in
patients with pathological stage I. SEs and related TFs such as
ETS2, HNF4A, and JUNB control the high expression of some key
EMT genes and define the intermediate state of the EMT process in
LUAD cells (Chang et al., 2016). Besides, EMT can be mediated by
classical TGF-β/SMAD pathway (Zhang et al., 2014). As one of the
receptor-regulated SMAD family members, SMAD3 readily
occupies the SE site of LINC01977 and drives its expression in a
high TGF-β background (Zhang et al., 2022). In response,
LINC01977 boosts the interaction between SMAD3 and CBP/
P300 to form a SMAD3/CBP/P300 complex targeting and
activating the ZEB1 gene, which induces EMT and causes
migration, proliferation, and invasion of LUAD, especially in the
early stage of LUAD due to high infiltration of TAM2 (inducing a
rich TGF-β environment) and elevated expression of SE-related
LINC01977 in this stage. Notably, in p53-deficient lung cancers, the
presence of the USP7 (a deubiquitinase) maintains the adherence of
the SMAD3 to its own SE elements (EN4, EN9, and EN10), thereby
maintaining a positive autoregulatory loop (Huang et al., 2021).
However, due to the absence of the p53/MDM2 pathway, USP7 acts
as a cancer suppressor. A study showed that TP63-mediated SE-
driven LINC01503 was overexpressed and oncogenic in esophageal
squamous carcinoma (Xie et al., 2018). Overexpression of
LINC01503 was also observed in NSCLC cells and associated
with proliferation, migration, and invasion, although it is unclear
whether this process is SE-dependent (Shen et al., 2020). Another
analysis found that SE-associated lncRNA AC074117.1 was
significantly expressed and served as an independent prognostic
marker in LUAD (Li et al., 2021).

2.7 Differential landscapes of SEs between
LUAD and normal tissues

Several studies comparing LUAD cell lines (or cancerous tissues
from patients) with normal tissues have revealed marked differences
in SEs landscapes. Enrichment analysis of the respective SE-target
genes may help to explain normal physiological processes and tumor
carcinogenesis and progression to some extent. LUAD-specific SE-
regulated genes are involved in the “lung cancer” disease class and
series of oncogenic pathways and are strongly associated with
transcriptional disorder. In contrast, normal tissue-specific SE-
regulated genes are prominent in fundamental cellular structures
and activities (Zhang T. et al., 2020; Zhou et al., 2020; Yuan et al.,

2021). Interestingly, from one study, only GO terms (like cell-cell
adhesion) with significantly lower SEs counts were observed in
cancer cells, which suggested that downregulation of “normal”
genes that negatively regulated carcinogenesis could also lead to
cancers even when cancer-specific SEs “did not work” (Li X. et al.,
2019). A bioinformatics study revealed that cancer-specific
H3K27Ac peak had a higher percentage of overlap with
accessible chromatin regions to favor transcription than
H3K27Ac peak of normal-specific (Jiang et al., 2022).

In conclusion, cancer-specific SEs are more susceptible to other
regulators and play a crucial role in determining cancer progression.

2.8 Tumor heterogeneity in SEs helping in
typing of lung cancer

Dentro’s whole genome sequence analysis of 2,658 cancer
samples from 38 cancer types from the PCAWG project found
that genomic instability allowed tumors to evolve into distinct
subclonal populations with different biological behaviors among
them (Dentro et al., 2021). Epigenomic diversity and instability are
widely observed in heterogeneous subclonal populations of multiple
types of cancer, involving differences in chromatin accessibility,
methylation levels of gene structure (such as gene bodies, promoters,
and enhancers of non-coding sequences), and histone profiles (Ding
et al., 2019; Pastore et al., 2019; Cejas et al., 2021; El et al., 2023). The
analysis of the H3K27Ac peak can directly clarify the distribution
characteristics of SEs and assist in identifying associated tumor
heterogeneity with them. Figure 3 illustrates the major regulators of
SEs and enrichment pathways of SE-related genes in different
subgroups of lung cancer.

2.9 High inter-tumor epigenetic
heterogeneity presenting in NSCLC

Based on histone modification profiles, a study divided LUAD
tissues into two groups that differed significantly in clinical features
(e.g., histopathologic subtypes, lymph node invasion), gene
mutation patterns, and prognosis (Yuan et al., 2021). Each had
its own set of specific core regulatory factors and networks. Specific
SE target genes in the poor prognosis group were enriched in
invasion- and metastasis-related pathways (e.g., FOXM1, E2F
pathway) and dedifferentiated state. In addition, core regulatory
networks might shift at early stages, leading to the transition to a
terminal stage. Super-enhancer RNA (SeRNA) is known to reflect SE
properties and cell specificity (Chen and Liang, 2020; Tu et al., 2021).
The distinct groups based on SeRNA profiles showed significant
differences in immune infiltration, glycolysis levels, and prognosis
(Song et al., 2022). Specifically, tissues in the worst prognostic group
had the most chromosomally unstable regions, highest glucose
uptake progression, hypoxia-immunotherapy response scores, the
most high-risk solid subtype component, and lymph node
metastases tendency. A bioinformatics analysis distinguished two
subgroups of LUAD with significantly different somatic mutations,
survival outcomes, and sensitivities to chemotherapeutic agents by
SEs clustering analysis (Jiang et al., 2022). The transcription factor
SOX2 usually cooperates with p63 to determine classical subtypes of
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squamous lung cancer (Watanabe et al., 2014). However, a highly
expressed lineage-specific transcription factor Brn2 (an oncogenic
factor associated with neuroendocrine carcinomas) was found to
replace p63 in lung squamous cell carcinoma (LUSC) cells and to
synergize with SOX2 in defining a new “neural” subtype with higher
aggressiveness related to poorer prognosis (Sato et al., 2019).

2.10 Fine staging of SCLC using SEs as a hot
research topic presently

Investigators have found that differential expression of the TFs
ASCL1, NEUROD1, POU2F3, and YAP1 defined four molecular
subtypes of SCLC, respectively, and that these TFs co-localized with
SEs in the corresponding SCLC subtypes (Borromeo et al., 2016;
Huang YH. et al., 2018; Rudin et al., 2019). Multiple lineage-specific
TFs are also present in different subtypes of SCLC, and subtype
switching occurs even in the same tumor (Ireland et al., 2020; Gay
et al., 2021). Focusing on the SCLC-A subtype, Karine Pozo found
that the TFs ASCL1, NKX2-1, and PROX1 were associated with SEs
and that their interactions formed a regulatory network to control
Notch signaling (Pozo et al., 2021). On this basis, Ranran Kong
subdivided SCLC-A isoforms and discovered that collaborative
NKX2-1/SOX1 regulation defined a new, unique SCLC-Aα
subtype (Kong et al., 2022). A recent study found that the
complex network of ASCL1-regulated SE-associated miRNAs

influenced the identification of SCLC molecular subtypes
(Miyakawa et al., 2022). SCLC subtypes identified by TFs differ
in EMT status, immune gene expression, immunotherapy (or
chemotherapy) benefit, and drug resistance (Gay et al., 2021; Qu
et al., 2022). Therefore, subdividing the subtypes of SCLC step by
step is an important research direction, which helps us better
understand its pathogenesis and develop therapeutic approaches.

2.11 Potential therapeutic targets and
clinical/preclinical trials associated with SEs
in lung cancer

In recent years, large-scale, individualized molecular profiling of
tumors has led to the discovery of an increasing number of targets
and therapeutic options to improve the clinical prognosis of patients
(Corces et al., 2018; Wu et al., 2022). Due to an inadequate
understanding of etiology and pathogenesis and a lack of
identified therapeutic targets, more biomarker-driven trials are
required to advance therapeutic technologies (William and
Glisson, 2011). Transcription of SE-driven genes is highly
sensitive to BRD4 inhibitors since studies reveal BETi
preferentially repress transcription of SE-related genes relative to
TE-related genes (Lovén et al., 2013). The TFIIH complex subunit
cyclin-dependent kinase 7 (CDK7), which controls the cell cycle and
initiates transcription by Pol II, has emerged as a brand-new target

FIGURE 3
Subdividing lung cancer subtypes by SE-associated regulatory factors. Differences in SE-associated regulatory mechanisms give rise to differential
enrichment of SE-regulated gene sets, which explains the differences in biological behaviors of respective subpopulations to some extent. C/S, Core/
Specific; RFs, Regulatory factors; TFs, Transcription factors; EPs, Enrichment pathways; NSCLC, Non-small cell lung cancer; SCLC, Small cell lung cancer;
LUAD, Lung adenocarcinoma. LUSC, Lung squamous cell carcinoma.
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for treating cancer (Larochelle et al., 2012; Suski et al., 2021). Plus,
the catalytic member of the P-TEFb complex, cyclin-dependent
kinase 9 (CDK9), promotes the transcriptional elongation of Pol II
(Zhou et al., 2012). CDK7 can also phosphorylate to activate CDK9
(Larochelle et al., 2012). Therefore, BET, CDK7, and CDK9 may

represent viable therapeutic targets for focusing on SE-dependent
transcription. Table 1 demonstrates the clinical trials currently
underway or have concluded. Besides, a series of preclinical
studies of different drug combinations have laid the groundwork
for more novel combination therapeutic regimens to enter clinical

TABLE 1 SE-related potential drugs in clinical trials for lung cancer.

Target Compound Phase Status Cancer type NCT number

BET/BRD4 Birabresib 1 Terminated NSCLC, NMC NCT02698176

1 Completed (Lewin et al., 2018) NSCLC, NMC NCT02259114

PLX-2853 1 Completed SCLC NCT03297424

Mivebresib 1 Completed NSCLC, SCLC NCT02391480

Molibresib 2 Withdrawn SCLC NCT03266159

1 Completed (Cousin et al., 2022) SCLC, NMC NCT01587703

ZEN-3694 2 Recruiting LUSC NCT05607108

INCB-057643 1/2 Terminated NSCLC NCT02959437

CDK7 Seliciclib 2 Terminated NSCLC NCT00372073

SY-5609 1 Active, not recruiting SCLC NCT04247126

Roniciclib 2 Terminated (Reck et al., 2019) SCLC NCT02161419

1/2 Withdrawn NSCLC NCT02522910

1/2 Terminated (Cho et al., 2018) SCLC NCT01573338

CDK9 Dinaciclib 2 Completed (Stephenson et al., 2014) NSCLC NCT00732810

Hydrochloride 1 Terminated NSCLC, SCLC NCT00094978

PRT-2527 1 Active, not recruiting NSCLC NCT05159518

BET, Bromodomain and extra-terminal domain; BRD4, Bromodomain-containing protein 4; CDK, Cyclin-dependent kinase; NSCLC, Non-small cell lung cancer; SCLC, small cell lung cancer;

LUSC, lung squamous cell carcinoma; NMC, Nuclear protein in testis (NUT) midline carcinoma.

TABLE 2 Combination therapeutic regimens related to SEs in pre-clinical trials for lung cancer.

Agents Combination Mechanisms Cancer
type

Malignant features in
vivo and in vitro
experiences

References

QCA570 Osimertinib reduction of Mcl-1 NSCLC decreased survival, apoptosis,
inhibition of formation and colonies
growth

Liu et al. (2022b)

ABBV-075 Venetoclax disruption of Bim-Bcl2 complexes, release of Bim SCLC apoptosis, tumor regression Lam et al. (2017)

JQ1 ABT-263 disruption of Bim-Bcl2 complexes, release of Bim SCLC apoptosis Wang et al. (2017)

GSK525762
(I-BET762)

Talazoparib inhibition of DNA damage response, HR-DSBR
process

SCLC reduced survival and growth Fiorentino et al.
(2020)

JQ1 Paclitaxel downregulation of BET protein levels NSCLC apoptosis, inhibition of protective
autophagy

Zhou et al. (2021)

JQ1, AZD5153,
NHWD870

Rapamycin,
Everolimus

block of TSC2-mTOR-p70S6K1-BAD pathway SCLC intrinsic apoptosis Kumari et al.
(2023)

JQ1 ACY-1215 upregulation of MHC II on tumor cells relies on
NK cells

SCLC apoptosis Liu et al. (2018)

JQ1, AZD5153 AZD1775 inhibition of NHEJ activity, enhancement of DNA
damage, promotion of mitotic entry and mitotic
catastrophe

NSCLC synergistic cytotoxicity, apoptosis,
suppression of proliferation

Takashima et al.
(2020)

NSCLC, Non-small cell lung cancer; SCLC, small cell lung cancer.
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trials, as shown in Table 2. We provide a brief overview of the
results reported.

2.11.1 BETi
The BET protein family member BRD4 is currently the focus of

much research. We previously discussed the significance of the first-
generation BRD4 inhibitor-JQ1 in the discovery and targeted
therapy of SEs. In addition to JQ1, more and more small-
molecule drugs targeting BET have been prepared and widely
employed in clinical trials (Filippakopoulos et al., 2010).

Birabresib (OTX015, MK-8628), a small molecule complex, was
first used in hematologic malignancies. In LUAD cells, the master
transcriptional regulators ELF3, EHF, and TGIF1 are downregulated
in response to JQ1 and OTX015, causing disruption of CRC
structure and inhibition of cancer cells’ malignant progression
(Zhang T. et al., 2020).

A Phase I study was designed to evaluate the safety and efficacy
of single-agent Birabresib in a range of advanced solid tumors
(Lewin et al., 2018). Encouragingly, of the nine NSCLC patients
with ALK rearrangement or KRAS mutation, seven developed stable
disease (SD), and two developed progressive disease (PD). Though
thrombocytopenia was one of the serious adverse effects, it was
reversible and self-limiting. Another phase 1/2 study assessed the
effectiveness and safety of incrementally applied single-agent
Molibresib (Cousin et al., 2022). Of the twelve patients with
evaluable SCLC, three developed SD, and nine developed PD.
However, no clinically meaningful response criteria were
observed, as many patients discontinued dose escalation or even
reduced the dose due to drug toxicity. The most common treatment-
related adverse events were thrombocytopenia, nausea, and
decreased appetite.

The novel BRD4-targeting agent CFT-2718 showed potent anti-
tumor activity in xenograft mice. The intensity and duration of
apoptosis induction and tumor proliferation inhibition by CFT-
2718 surpassed that of the CDK kinase inhibitor dinaciclib in SCLC
cells (Sun et al., 2021). OTX015 showed significant anti-cancer
activity in NSCLC cells with or without EML4-ALK translocation
and EGFR, KRAS mutations (Riveiro et al., 2016). Meanwhile, in
vivo assays demonstrated that OTX015 significantly inhibited the
growth of EML4-ALK (+) NSCLC.

2.11.2 CDK7/9 inhibitors
THZ1 inhibits CDK7 activity in an irreversible covalent binding

manner (Kwiatkowski et al., 2014). A study found that both SCLC
cell lines and mouse models exhibited high sensitivity to THZ1, as
evidenced by considerable tumor proliferation inhibition
(Christensen et al., 2014). Genes regulated by master-regulated
TFs E2F, NRF1, and CREB are preferentially repressed by
THZ1 in SCLC cells, suggesting selective effects of THZ1 on SEs
and transcriptional core circuits (Christensen et al., 2014), as in
LUAD (Zhang T. et al., 2020), neuroblastoma (Chipumuro et al.,
2014), and triple-negative breast cancer (Wang et al., 2015). On the
other hand, the low sensitivity and specificity of pan-CDK inhibitors
for SCLC demonstrate the significance of covalent binding
mechanisms in therapeutic efficacy (Christensen et al., 2014).
Since the complex formed by BRD4 binding to CDK9/P-TEFb is
localized in the SEs region and stimulates the transcriptional
activation of MYC, synergistic inhibition of these two targets can

effectively halt the progression of cancer (Lovén et al., 2013; Lu
et al., 2015).

A phase 2 study compared the difference in efficacy between
dinaciclib (a CDK9 inhibitor) and erlotinib in previously treated
NSCLC patients (Stephenson et al., 2014). Unfortunately, no
patients in the dinaciclib group showed objective responses (OR).
The main adverse effects of intravenous denazanil were
myelosuppression and gastrointestinal toxicity.

YPN-005 is a novel and selective CDK7 inhibitor with super
anti-cancer activity compared to conventional THZ1. YPN-005
showed powerful antiproliferative effects in chemotherapy-
resistant SCLC cells, patient-derived organoids, and xenograft
mice (Choi et al., 2021). No significant toxic reactions were
observed in the mice model. 21e is a highly effective and
selective CDK9 inhibitor. After receiving 21e, the proportion of
NSCLC side population cells (which indicate stem cell potential)
drastically decreased (Wang et al., 2019). A reduction of the cancer
stemness marker Oct4, apoptosis of cancer cells, and inhibition of
proliferation were observed in xenograft mice treated with 21e.

2.11.3 Combination therapy
It is evident that existing clinical trials, although affirming the

therapeutic feasibility of BETi and CDK kinase inhibitors, still suffer
from ineffectiveness, inefficacy, toxicity, and resistance. Single-agent
(or even partial combination) treatment in these trials does not meet
the desired standard. Future studies may favor multiple combination
strategies to enhance therapeutic efficacy and reduce toxicity.

Roniclib is a pan-CDK inhibitor (including both CDK7 and
CDK9). A phase I/II study reported the potential feasibility of
Roniclib in combination with cisplatin/carboplatin-etoposide for
extensive SCLC (Cho et al., 2018). Chemotherapeutic agents did not
alter the pharmacokinetics of Roniclib but reduced Roniclib
exposure by more than one-third. Although none of the
46 patients receiving different doses achieved a complete
response (CR), 35 achieved a partial response (PR), five achieved
SD, and two developed PD. The most common adverse reactions
were nausea, vomiting, anemia, and decreased neutrophil count.
This study reflects the favorable efficacy and tolerability of Roniclib
for SCLC in all. However, another phase II study comparing the
efficacy and safety of Roniciclib in combination with platinum-
based chemotherapy versus chemotherapy alone in patients with
extensive SCLC did not give us encouraging results (Reck et al.,
2019). Although one patient in the combination therapy group
achieved CR, overall, the combination therapy group had a lower
objective response rate (ORR) and more treatment-emergent
adverse events than the platinum-based chemotherapy
group. Common adverse reactions were similar to the previous
study (Cho et al., 2018). Nausea was the primary cause of
discontinuation in the combined therapy group.

Besides, BET- and CDK-targeted inhibitors demonstrate
convincing anti-tumor effects in preclinical models and provide
paradigms for clinical trials.

BETi can induce cancer cells toward apoptosis by regulating the
balance between pro- and anti-apoptotic proteins. QCA570 is a
novel BET degrader that caused the degradation of anti-apoptosis-
related proteins Mcl-1 in NSCLC cells (Liu C. et al., 2022). QCA570,
in combination with ositinib, induced apoptosis and inhibited the
proliferation of ositinib-resistant cells in vivo and in vitro
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experiments. Another study found that the antitumoral activity of
the BET inhibitor ABBV-075 in SCLC was partially dependent on
the inhibition of BCL2, an anti-apoptotic protein (Lam et al., 2017).
In vivo and in vitro assays confirmed the synergistic antitumor
effects of ABBV-075 with the BCL2 inhibitor venetoclax (ABT-199),
particularly in tumors with a high level of BCL2 expression.
Furthermore, combination treatment with JQ1 and the
BCL2 inhibitors ABT-263 damaged the balance of Bim and Bcl-
2, resulting in the release of the pro-apoptotic protein BIM in
MYCN-amplified SCLC cell lines and exerted growth-inhibitory
effects in MYCN-positive xenografts (Wang et al., 2017). Another
study similarly found that BET inhibitor I-BET762 combined with
the PARP inhibitor talazoparib showed higher antitumoral activity
in SCLC cells with elevated MYC expression or amplification of
MYCs (Fiorentino et al., 2020). The above research implies that the
combined strategy boosts the inhibitory effects of BETi on theMYC-
related transcriptional pathway.

BET inhibitor treatment alone may result in compensatory
alterations that can lower efficacy or develop drug resistance.
Therefore, inhibiting these compensatory changes can improve
efficacy. For instance, one investigation discovered that JQ1 alone
compensatorily upregulated the BET protein (BRD2,3,4), triggered
autophagy, and prevented apoptosis in NSCLC cells (Zhou et al.,
2021). JQ1 with the chemotherapeutic agent paclitaxel reversed this
upregulation and induced apoptosis. Another study found that BETi
upregulate the mTOR upstream kinase RSK3, leading to resistance
to apoptosis in SCLC cells (Kumari et al., 2023). The combination of
BETi and mTOR inhibitors disrupted mTOR signaling and
displayed superior anti-cancer activity than any single drug
in vitro (JQ1/rapamycin) and in vivo (NHWD870/
everolimus) assays.

A combination of inhibitors targeting epigenetic regulators
histone deacetylase (HDAC) and BET exerted synergistic
antitumoral effects in pancreatic cancer (He et al., 2020),
glioblastoma (Gusyatiner et al., 2021), and medulloblastoma
(Kling et al., 2022). In SCLC xenograft mice, JQ1 and the histone
deacetylase 6 (HDAC6) inhibitor ACY-1215 combined to exert anti-
tumor activity dependent on the presence of NK cells (Liu
et al., 2018).

Furthermore, JQ1 enhanced DNA double-strand breaks induced
by the WEE1 inhibitor AZD1775 and led to mitotic catastrophe,
which synergistically produced cytotoxicity and inhibited NSCLC
growth in vitro and in vivo experiments (Takashima et al., 2020).

In conclusion, in both in vivo and in vitro studies, whether for
SCLC or NSCLC, combination therapies have achieved greater
success than any single agent. Combination therapies are also
effective in reducing drug resistance and side effects. Based on
in-depth studies of more complex carcinogenic pathways, we
suppose that more clinical trials will be undertaken in the future.

2.11.4 Other drug candidates in the pan-
cancer field

Furthermore, epigenetic modifiers CBP/p300 and HDAC
dynamically regulate H3K27 acetylation levels and are potential
drug targets in the pan-cancer field (Wang et al., 2022).

CBP/p300 is a histone acetyltransferase that deposits extensive
H3K27ac marks and highly occupies SEs (Wang et al., 2022). A
study found that the CBP/p300 inhibitor ICG-001 alone upregulated

the expression of SE-related oncogenes in glioblastomas, whereas
this deleterious effect disappeared when combined with JQ1 (Wiese
et al., 2020). Anti-cancer studies with SE-related CBP/
p300 inhibitors have been conducted in hematologic malignant
neoplasms such as multiple myeloma, acute myeloid leukemia,
and non-Hodgkin’s lymphoma (Lasko et al., 2017), as well as in
castration-resistant prostate cancer (Chen et al., 2022). Notably,
Zhang T et al. found that the EP300 inhibitor CBP30 inhibited the
expression of master TFs in LUAD cell lines (Zhang T. et al., 2020).

Studies have confirmed that HDAC inhibitors (HDACi)
effectively inhibit the function of SEs (Nagaraja et al., 2017;
Sanchez et al., 2018; Nguyen et al., 2020). HDACi targeting SEs
exerted great anti-tumor potential in glioblastoma (Nguyen et al.,
2020), rhabdomyosarcoma (Gryder et al., 2019), multiple myeloma
(Alaterre et al., 2022), stem-like breast cancer (Caslini et al., 2019),
ovarian cancer (Shi et al., 2019; Wu et al., 2023), and esophageal
squamous cell carcinoma (Jiang et al., 2020). Numerous preclinical
studies have confirmed that HDACi inhibits the proliferation of lung
cancer cells and is strongly associated with drug resistance (Huang
et al., 2014; Wu et al., 2020; He et al., 2022; Eichner et al., 2023).
However, it is not yet clear whether this effect is dependent on SEs.
Unfortunately, in clinical trials for lung cancer, HDACi are usually
used in synergy with radiotherapy, immunotherapy, or epigenetic
therapy, as only modest single-agent activity has been demonstrated
(Bartling et al., 2005; Traynor et al., 2009; Costa et al., 2014). In any
case, drug trials against more SE targets are warranted and expected
to provide additional treatment options for lung cancer patients.

3 Conclusion

Since their discovery, SEs have received attention in various
fields, and the specific functions they exert in different tumor types
are gradually being revealed. The basic structure and function of SEs
are similar in different malignant tumors, and all are closely related
to cancer progression and aggressiveness. However, it is still to be
demonstrated that there are many differences in the SEs
characteristics of different cancer types: 1. SEs might be
widespread in almost all cancer MYC regions (Zhou and
Parsons, 2023), whereas studies of SE changes in the MYC region
in lung cancer are limited (Zhang et al., 2016). 2. Gene
rearrangements/fusions underlie the formation of cancer-specific
SEs. However, compared to hematologic tumors, where high-
frequency gene fusions are present, rearrangements/fusions that
form SEs are less frequently observed in lung cancer (especially
squamous lung cancer) (Li et al., 2016). 3. SE-lncRNA might be
widespread in pan-cancer (Ropri et al., 2021; Yan et al., 2021;
Chuang et al., 2022; Yang Z. et al., 2023; Hu et al., 2023)。SE-
lncRNA has been intensively studied in lung cancer (Xie et al., 2018;
Shen et al., 2020; Zhang et al., 2022), hepatocellular carcinoma (Peng
et al., 2019; Li et al., 2023; Su et al., 2023; Yuan et al., 2023), and
gliomas (Bian et al., 2021; Yang Z. et al., 2023; Chen et al., 2023) but
has been rarely reported in hematologic tumors (Handa et al., 2020).
However, SEs still cannot be accurately identified due to the low
specificity of the classical ChIP-seq technique and the technical
imperfections of the Rose algorithm. In addition, the molecular
mechanism of how oncogenic signaling alters super enhancer-
promoter interactions is not yet understood. For example, how

Frontiers in Pharmacology frontiersin.org09

Yao et al. 10.3389/fphar.2024.1383580

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1383580


do oncogenic signals promote the aggregation of phase-separated
condensates near SEs and drive transcription? How do these signals
reshape the three-dimensional folding of the genome, altering the
otherwise insulating relationships between regulatory elements and
pinpointing the timing, location, and level of transcription?

Here, we summarize the tissue specificity of SEs, mechanisms of
SEs formation, oncogenic effects, therapeutic targets, and clinical
trials in lung cancer.

Researchers identified subgroups of lung tumors with distinctly
diverse biological traits (such as aggressiveness) and prognoses using
the Rose algorithms and unsupervised clustering, indicating that
these groupings have unique oncogenic signaling networks.
However, to date, SEs formed by point mutations or indels have
not been identified in the lung cancer genome. Moreover, it is
difficult to determine the sequential relationship between the
activation of oncogenic pathways and the formation of SEs.
Unfortunately, only a few studies related to SEs were conducted
for squamous lung cancer. It is challengeable and valuable for
researchers to accurately identify SE-driven oncogenic mutations
of squamous cell carcinoma, given the close connection between
smoking and squamous cell carcinoma and the large number of non-
oncogenic passenger mutations resulting from long-term exposure
to tobacco carcinogens. BETi and CDK kinase inhibitors are the
predominant epigenetic agents targeting SEs. However, existing
clinical trials of these drugs are less encouraging due to lack of
specificity, development of resistance, and the inevitability of
toxicity. Nonetheless, many studies in preclinical models have
confirmed the potential benefits of combination therapies and
suggested that drug combinations with multiple different
mechanisms are an area to explore in the future. It is worth
mentioning that the body’s immunological status and the tumor
microenvironment are unquestionably significant factors
influencing medication action, even though the precise
mechanism is still under investigation. Epigenetic therapies can
remodel the immune microenvironment, and their use in
conjunction with immunosuppressive agents is currently a hot
topic in cancer care (Chou et al., 2020; Luo et al., 2022; Tien
et al., 2023). In addition to drug therapy, gene editing techniques
(e.g., CRISPR/Cas9) can specifically knock down SEs of interest to

prevent activation and cascade amplification of oncogenic
transcripts. For instance, the knockdown of e3, one of the key
components of SEs in the neighboring non-coding region of
MYC, downregulates the expression of MYC and downstream
targets and inhibits the clonal growth of LUAD cells (Zhang
et al., 2016). Therefore, pinpointing functional components
within SEs clusters may provide insight into precision medicine.
In conclusion, further research into the oncogenic mechanism of SEs
will aid in the development of personalized therapeutic strategies
and the long-term survival of lung cancer patients.
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