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Diabetic kidney disease (DKD) is characterized by complex pathogenesis and poor
prognosis; therefore, an exploration of novel etiological factors may be beneficial.
Despite glycemic control, the persistence of transient hyperglycemia still induces
vascular complications due tometabolicmemory. However, its contribution toDKD
remains unclear. Using single-cell RNA sequencing data from the Gene Expression
Omnibus (GEO) database, we clustered 12 cell types and employed enrichment
analysis and a cell‒cell communication network. Fibrosis, a characteristic of DKD,
was found to be associated with metabolic memory. To further identify genes
related tometabolic memory and fibrosis in DKD, we combined the above datasets
from humans with a rat renal fibrosis model and mouse models of metabolic
memory. After overlapping, NDRG1, NR4A1, KCNC4 and ZFP36 were selected.
Pharmacology analysis and molecular docking revealed that pioglitazone and
resveratrol were possible agents affecting these hub genes. Based on the ex vivo
results, NDRG1was selected for further study. Knockdown of NDRG1 reduced TGF-
β expression in human kidney-2 cells (HK-2 cells). Compared to that in patients who
had diabetes for more than 10 years but not DKD, NDRG1 expression in blood
samples was upregulated in DKD patients. In summary, NDRG1 is a key gene
involved in regulating fibrosis in DKD from a metabolic memory perspective.
Bioinformatics analysis combined with experimental validation provided reliable
evidence for identifying metabolic memory in DKD patients.
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1 Introduction

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD) in
the general population and accounts for approximately 50% of ESKD cases in the industrialized
world (Collins et al., 2012; Novak et al., 2016). Although the sodium glucose co-transporter
2 inhibitor (SGLT2i) class has been shown to reduce the risk of kidney events in at-risk patients
with type 2 diabetes mellitus (T2DM), efficient therapies arresting or even reversing DKD
progression are lacking (Reidy et al., 2014; Wanner et al., 2016; Perkovic et al., 2019; Heerspink
et al., 2020). Coincidentally, in 2003, the Diabetes Control and Complications Trial (DCCT)
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with further follow-up in the Epidemiology of Diabetes Interventions
and Complications (EDIC) study (DCCT/EDIC) first proposed the
concept of “metabolic memory.” These findings demonstrated that
despite comparable HbA1c levels in both the intensive treatment group
and the conventional treatment group, initial hyperglycemia remained a
significant factor in elevating the risk of developing long-term diabetic
complications, including DKD (Nathan et al., 2013). More recently, Al-
Dabet et al. (2022) identified p21 as the hub gene in hyperglycemic
memory and demonstrated that the expression of p21 was sustained at
high levels regardless of glucose levels in vitro and in vivo, while
inhibited p21 expression could ameliorate high glucose-induced
tubulointerstitial fibrosis in DKD.

Single-cell RNA sequencing (scRNA-seq) technology can amplify
and sequence the transcriptome or genome at the single-cell level to
detect the biological information of single cells in the fields of genomics,
transcriptomics and proteomics, thus avoiding many limitations of
traditional transcriptome sequencing (Jovic et al., 2022). Considering
the diversity of cell types in DKD, an increasing number of studies have
applied scRNA-seq to uncover the key genes involved in the onset and
progression of DKD. Hirohama et al. (2023) recognized MMP7 as a
diagnostic marker of kidney fibrosis through proteomics and scRNA-
seq. Song et al. (2023) used scRNA-seq to screen RAC1 and
demonstrated that RAC1 was involved in macrophage efferocytosis
inDKD.However, at present, no study has screened key genes related to
metabolic memory through scRNA-seq or explored the underlying
mechanisms involved.

In this study, we used single-cell RNA sequencing (scRNA-seq)
data derived from kidney samples of DKD patients, normal tissues

adjacent to tumors, rat renal fibrosis models, and hyperglycemic
memory mouse models to screen for crucial genes. Subsequently, we
conducted cell cluster identification, enrichment analysis, and cell‒cell
communication analyses on these selected datasets. By intersecting the
datasets, we utilized immune infiltrate analysis, network pharmacology,
molecular docking, and the Nephroseq database to elucidate the
functional roles and clinical implications of the hub genes.
Additionally, we employed quantitative real-time PCR (qRT‒PCR)
and Western blotting to validate the expression levels of these genes in
human kidney 2 (HK-2) cells. Furthermore, we assessed their levels in
the blood of patients with diabetes for over 10 years but without DKD,
as well as in DKD patients, using enzyme-linked immunosorbent assay
(ELISA). Drawing from these findings, our objective was to scrutinize
genes associated with metabolic memory and fibrosis in DKD, aiming
to uncover potential molecular candidates that could illuminate novel
avenues for the prevention of DKD.

2 Materials and methods

2.1 Data acquisition

The flowchart of this study is shown in Figure 1. The GEO database
(https://www.ncbi.nlm.nih.gov/geo/) was used to obtain three gene
expression datasets. The GSE131882 dataset comprises three samples
of kidney tissue from DKD patients and three samples from normal
tissue adjacent to tumors for scRNA-seq using the GPL24676 platform.
The GSE216376 dataset is based on the GPL25947 platform and
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consists of three control models, three sham surgery models, three
adenine-induced rat models and three UUO-induced rat models. The
GSE199929 dataset (based on the GPL24247 platform) included data
from three control models, two diabetic models and two diabetic mice
treated with SGLT2i to reduce glucose levels.

2.2 scRNA-seq analysis

In this analysis, the exon, inex and intron sequences of each sample
were taken as a single sample to obtain an expression matrix of
373,942 cells * 15,398 features. All cells that displayed nFeatures
greater than 200 but less than 4,000 and a percentage of
mitochondrial RNA less than 5% were included in the analysis, and
a single-cell expression matrix with 2073 features was obtained for the
13,617 cells. The data were standardized by the NormalizeData
function. After scale normalization, 2,000 highly variable genes
(HVGs) were identified with the FindVariableFeatures function.
ScaleData and RunPCA were used in turn to standardize the data,
and PCAwas performed (npcs = 50). Subsequently, the best PC value of
this analysis was selected according to the elbow plot results. The best
PC valuewas 15, and the cluster and tSNE valueswere obtained through
FindNeighbors, FindClusters and RunTSNE. Clusters were then
identified using FindClusters (resolution = 0.35). Cell type
annotation was performed based on the top 10 HVGs in each

cluster via manual checking and the CellMarkers dataset (http://
xteam.xbio.top/CellMarker/).

2.3 Enrichment analysis

We used the R package “clusterProfiler” to perform Gene Ontology
(GO) andKyoto Encyclopedia of Genes andGenomes (KEGG) analyses.
The packages “enrichGO” and “enrichKEGG” were also used. The
“GSVA” Bioconductor package was subsequently used to implement
gene set variation analysis (GSVA). An enrichment score was generated
for each sample and pathway because of the use of a nonparametric
unsupervised method that converted a traditional gene matrix (gene-by-
sample) into a gene set by the sample matrix. The “heatmap” package
was subsequently used to cluster the GSVAmatrix, which was displayed
as a heatmap. A p-value of < 0.05 was considered to indicate significant
enrichment. In addition, we used the KOBAS 3.0 database (http://kobas.
cbi.pku.edu.cn/) to determine the enrichment of KEGG pathways
associated with NDRG1, NR4A1, KCNC4 and ZFP36.

2.4 Cell‒cell communication analysis

CellChat is a tool that uses network analysis, pattern recognition,
and various learning techniques to quantitatively infer and analyze

FIGURE 1
Flowchart of the research design and analysis process of the study.
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intercellular communication networks. The primary signaling
inputs and outputs of cells, as well as how these cells and signals
coordinate for functions, were predicted using a typical workflow.
We then calculated the average ligand and receptor expression in a
particular cell type by the mean value, which was determined by the
proportion of cells between the DKD patients and the control group.

2.5 Immune cell infiltration analysis

RNA sequencing data from GSE199929 were analyzed using
CIBERSORT, which was used to estimate the total immune
infiltration in each sample and immune cell subset. The boxplots
were visualized by the ggplot2 package, and the ggcorplot package
was used for heatmap visualization.

2.6 Drug prediction and molecular docking
of key target genes

The chemical interactions of the screened genes and disease
information were acquired from the Comparative Toxicogenomics
Database (CTD, http://ctdbase.org/). First, we created a Venn
diagram using the R program VennDiagram to depict the
intersection of the obtained drug targets of the 4 target genes and
DKD. To investigate the interaction and binding activities of the
compounds with the selected genes, molecular docking analysis was
subsequently carried out. Protein 3D structures (https://www.rcsb.org/),
including ZFP36 (PDB ID: 6NZL), KCNC4 (PDB ID: 1B4G), NR4A1
(PDB ID: 2QW4), and NDRG1 (PDB ID: 6ZMM), were collected from
the Protein Data Bank database (PDB database). The molecular
structures of pioglitazone and resveratrol were retrieved from the
PubChem Compound Database (https://pubchem.ncbi.nlm.nih.gov/).
After the legendswere energyminimized and the hydrogen atoms of the
receptors were removed, the molecular operating environment (MOE)
was used for molecular modeling and ligand binding interactions.

2.7 Clinical correlation validation

Spearman rank correlation coefficient analysis was used to
validate the association between the hub genes and clinical
manifestations of DKD using the Nephroseq v5 online database
(http://v5.nephroseq.org/), an integrated data-mining platform for
gene expression datasets of kidney illnesses. A p-value of 0.
05 indicated statistical significance.

2.8 Cell lines and cell culture

HK-2 cells were obtained from the Chinese Academy of Sciences
(Shanghai, China) and cultured at 37°C in Dulbecco’s modified
Eagle’s medium (HyClone, UT) supplemented with 10% fetal bovine
serum (FBS; Gibco, CA), 2 mM glutamine, 100 U/mL penicillin, and
100 g/mL streptomycin. The cells were cultured in continuous
normal (NG, 5.6 mM) glucose for 48 h, continuous high (HG,
30mM) glucose for 48 h, or high glucose for 24 h followed by normal
glucose for 24 h. The experimental scheme of the in vitro

experiments is shown in Supplementary Figure S1. The in vitro
experiments were repeated at least three independent times.

2.9 Knockdown of NDRG1

HK-2 cells were transfected with short hairpin RNA (shRNA)
specific for NDRG1 (HANBIO, Shanghai, China) or with
nontargeting shRNA (HANBIO, Shanghai, China) as a negative
control. The transfection time was 24 h, and the multiplicity of
infection (MOI) was 70. The sequence of the shRNA used was CCT
GGAGTCCTTCAACAGTTT. The above experiments were carried
out following the instructions supplied by the manufacturer.

2.10 qRT‒PCR

Total RNA was extracted from HK-2 cells using TRIzol reagent
(Invitrogen, United States) according to the manufacturer’s
instructions. A Transcriptor First Strand cDNA Synthesis Kit
(HiScript III All-in-one RT SuperMix Perfect for qRT‒PCR,
Vazyme) was used to synthesize cDNA from mRNA using OligodT
primers. To avoid deterioration, an RNase inhibitor was utilized. Taq
Pro Universal SYBR qRT‒PCR Master Mix (Vazyme) and specific
primer sets (Supplementary Table S1) were used for amplification. The
expression of β-actin was used to normalize mRNA expression levels.

2.11 Western blot

HK-2 cells were lysed in RIPA buffer (Cat# P0013B; Beyotime
Biotechnology, China)with a protein inhibitor cocktail using the following
primary antibodies: anti-NDRG1 (Cell Signaling Technology–#9485),
anti-TGF-β (Abcam, ab215715) and anti-GAPDH (Proteintech 10494-
1-AP). Western blotting was performed after the sections were incubated
with a horseradish peroxidase-conjugated anti-rabbit secondary antibody
(D110011; Sangon Biotech, Shanghai, China).

2.12 Mouse model

C57BL/6J mice were obtained from Beijing Charles River
(Beijing, China). Six-week-old male C57BL/6J mice were kept in
a room at a temperature of 22°C–25°C with a 12-h light/dark cycle.
After 2 weeks, streptozotocin (STZ; 50 mg/kg in 0.05 M citrate
buffer, pH 4.5; Sigma‒Aldrich) was intraperitoneally injected into
fasted mice for 12 h to establish a diabetic mouse model. The control
mice were injected with citrate buffer. Diabetes was successfully
induced by blood glucose levels greater than 16.7 mmol/L according
to three consecutive tests when the fasting blood glucose level was
tested 72 h after STZ injection. For a total of 16 weeks, body weight
and blood glucose levels were monitored every 4 weeks.

2.13 Patients and controls

The participants included 43 patients with T2DM for more than
10 years but without DKD and 51 patients with DKD. Patients were
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recruited from the hospitalized patients of the First Affiliated Hospital
of Zhengzhou University. The study was not a sex-specific human
study. As a result, the sex distribution of the participants was not given
special consideration. The sex of the participants was self-reported.
The inclusion criteria were shown as follows: 1) Patients aged
20–80 years who have been diagnosed definitively diagnosed with
T2DM. 2) DKD group: Patients who received a discharge diagnosis of
DKD from the First Affiliated Hospital of Zhengzhou University,
fulfilling the criteria of urinary albumin/creatinine ratio
(UACR) > 30 mg/g and are accompanied by diabetic retinopathy
(DR). 3) In the T2DM group: Patients with a history of diabetes for
more than 10 years and a UACR < 30 mg/g were included. The
exclusion criteria were shown as follows: 1) Patients who were
diagnosed with chronic kidney disease caused by other diseases or
triggers. 2) Patients who have been diagnosed with other diseases that
lead to increased urinary protein. 3) Patients whowere diagnosed with
severe liver injury or malignancy were excluded. 4) Patients who have
been diagnosed with other diseases that lead to increased urinary
protein. All DKD patients were also diagnosed with diabetic
retinopathy. The variables included age, sex, body mass index
(BMI), systolic blood pressure (SBP), diastolic blood pressure
(DBP), HbA1c (Hemoglobin A1c), fasting plasma glucose (FPG),
serum creatinine (SCr), blood urea nitrogen (BUN), estimated
glomerular filtration rate (eGFR), UACR, 24-h urinary protein
quantity (24hUTP), duration of diabetes, and diagnosis of DR and
hypertension. eGFR was calculated by the Modification of Diet in
Renal Disease (MDRD) formula. The study was approved by the
Ethics Committee of the First Affiliated Hospital of Zhengzhou
University (Approval number: 2019-KY-228). All participants
provided written informed consent in accordance with the
Declaration of Helsinki.

2.14 ELISA

NDRG1 ELISA kits (ABclonal, Boston, United States) were used
to analyze NDRG1 in the supernatant, and the procedure was
performed exactly as directed by the manufacturer.

2.15 Statistical analysis

Comparisons between two and multiple groups were performed
using independent t tests and one-way analysis of variance
(ANOVA), respectively. R software (version 4.2.1) was used for
statistical analysis. A p-value less than 0.05 was considered to
indicate statistical significance.

3 Results

3.1 Preprocessing and cell cluster
identification of scRNA-seq data

As shown in Figure 2A, quality control of the aligned and
counted reads was performed according to the Methods section.
The data quality met the expectations. Next, we used
t-distributed stochastic neighbor embedding (tSNE), principal

component analysis (PCA), and uniform manifold
approximation and projection (UMAP) for dimension
reduction (Supplementary Figure S2; Figure 2B). The results
suggested that UMAP may be a better choice for dimension
reduction, and 12 major cell types were annotated by UMAP
(Figure 2C). Different clusters were distinguished by cell
markers; for example, proximal tubular cells were identified by
CUBN, LRP2, SLC5A12 and TGM4; the loop of Henle was
annotated by COL1A2, SLC12A1 and CLDN16; and distal
convoluted tubule cells were identified by TMEM52B, TRPM6,
and KLHL3 (Figure 2C). Among these cell types, tubular
epithelial cells were obviously differentiated. To further verify
the identified cell clusters, GO analysis was performed for each
cluster. The representative genes and GO terms were shown in
Figure 2D. For example, there were a large number of genes with
high expression in collecting duct principal cells. The AQP2,
SCNN1G, SLC8A1, FXYD4 and PWRN1 were selected as the
representative genes, and the functions of these genes included
sodium ion transport, sodium ion transmembrane transport and
regulation of sodium ion transport, which were all classic
functions of collecting duct principal cells.

3.2 Distribution and enrichment of scRNA-
seq data

As shown in Figure 3A, the percentage of tubular epithelial
cells, including distal convoluted tubule cells, loop of Henle
cells and proximal tubular cells, accounted for the largest
proportion of cells, which was consistent with the findings of
prior studies. In addition, as CREDENCE (Perkovic et al.,
2019), EMPA-REG (Wanner et al., 2016) and DAPA-CKD
(Heerspink et al., 2020) were carried out, and tubular
epithelial cells had gained increased amounts of attention.
Thus, we selected tubular epithelial cells as the research
objects. After differential gene expression analysis,
3,011 DEGs were found to be specifically expressed in
tubular epithelial cells, and 3,656 DEGs were found to be
specifically expressed in DKD samples. Subsequently,
2,278 DEGs were identified (Figure 3B). To determine the
possible biological functions of the overlapping DEGs, GO
analysis, KEGG pathway analysis and GSEA analysis were
carried out. The small molecule catabolic process, nuclear
speck, actin binding and burn wound healing terms were
enriched (Figures 3C, D). In addition, GSVA enrichment was
performed to explore the differences between the DKD cluster
and the control cluster in tubular epithelial cells, where the most
common pathways, such as reactive oxygen species, IL-2,
STAT5 and the UV response, were related to oxidative stress,
inflammation, and DNA damage repair (Figure 3E).

3.3 Cell–cell crosstalk network of the
scRNA-seq data

To clarify the underlying intercellular communications and cell
state transitions in DKD, we analyzed the intercellular
communication networks from the scRNA-seq data using the
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CellChat package. In the DKD sample, the number of interactions and
interaction weights/strengths of all kinds of cells were greater than
those in the control sample, especially for endothelial cells, mast cells

and collecting duct principal cells (Figure 3F). In DKD, tubular
epithelial cells may be stimulated by various factors, such as
hyperglycemia, proteinuria, and oxidative stress; undergo

FIGURE 2
scRNA-seq quality control and analysis. (A) The number of unique RNA features (nFeatures) detected in each cell (left panel) and the total number of
UMIs within a cell across all cells (nCounts) (right panel). (B) Uniform manifold approximation and projection (UMAP) for DKD and control samples. (C)
Heatmap of DEGs in each cluster (left panel). The representative marker genes (middle panel) and the top GO terms (right panel) are shown. (D) Cell type
UMAP representation (left panel) and dotplot of a selected set of cluster-specific genes (right panel).
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FIGURE 3
Distribution, selection, enrichment, and cell‒cell communication in GSE131882. (A) Stacked bar chart of the percentage of the cell types in DKD
patients and control subjects. (B) Venn diagram showing the genes specifically expressed in tubular epithelial cells in DKD patients. (C)GO term and KEGG
pathway enrichment analysis of the overlapping hub genes. (D) GSEA of the overlapping hub genes. (E) Differential pathway enrichment between the
tubular epithelial cells of DKD patients and controls. (F) Interaction weights of tubular epithelial cells from DKD and control samples. (G) The
intracellular ligand‒receptor signaling network in kidney cells from the DKD and control groups. The communication probability indicates the strength of
the ligand‒receptor connection, and the P-value indicates the number of enriched genes. PCT, proximal tubular cell; DCT, distal convoluted tubulin; NK
cells, natural killer cells.
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phenotypic changes; and transform into fibroblasts that over
synthesize the extracellular matrix, resulting in tubular interstitial
fibrosis, which is one of the principal reasons leading to kidney
function decline (Zhang et al., 2021; Zheng et al., 2021). To
explore intercellular communication between tubular epithelial
cells and other cells, we selected TGF-β, FN 1 and collagen as
representative signaling pathways to identify receptor–ligand pairs
(Figure 3G). In both the DKD and control groups, the expression of
TGF-β signaling factors, such as TGFB3-TGFF3R1, increased from
mesangial cells to proximal tubular epithelial cells. Collagen signaling
molecules, such as COL4A3 − (ITGAV + ITGB8), were increased in
DKD samples from podocytes to proximal tubular epithelial cells.
However, these findings still needed to be experimentally confirmed.

3.4 Functional analysis of DEGs in mouse
models of metabolic memory and rat
models of renal fibrosis

Al-Dabet et al. (2022) explored metabolic memory in tubular
epithelial cells in DKD, but existing studies were still lacking. Thus, we
used the GSE199929 dataset (Al-Dabet et al., 2022). They designed a
nondiabetic mouse model (control), a diabetic mouse model without
intervention to reduce blood glucose levels (DM-22) and amousemodel
of hyperglycemia reversal by sodium-glucose cotransporter 2 inhibitors
(SGLT2i, dapagliflozin) (DM-22+SGLT2i) to identify hub genes related
to metabolic memory. As shown in Figures 4A, B, even though
hyperglycemia was reversed, “phagocytosis,” “complement activation”
and terms related to the immune response were still enriched, indicating
that metabolic memory was present and might be associated with these
phenotypes. Their research also indicated that metabolic memory was
related to fibrosis, which is characteristic of progressive chronic kidney
diseases of any etiology, including DKD, and eventually led to kidney
failure (Hung et al., 2021). Therefore, we selected GSE216376, which
consisted of two classic renal fibrosis rat models (adenine and UUO), to
identify fibrosis-relatedDEGs. As shown in Figures 4C, D, the GO terms
“autophagy,” “mRNA processing” and “ubiquitin-like protein ligase
binding” were quite similar, suggesting that these two fibrosis models
were in good agreement.

3.5 Identification and verification of hub
genes related to fibrosis and metabolic
memory in DKD

After overlapping the different species datasets from multiple
angles, NR4A1, NDRG1, KCNC4 and ZFP36 were screened
(Figure 5A). To identify the functions of these key genes, we
enriched four genes using KOBAS software (Figure 5B). Among
these genes, NR4A1 was related to the MAPK and AKT signaling
pathways, NDRG1 was associated with TP53-mediated
transcription regulation, KCNC4 was annotated with
potassium channels, and ZFP36 may regulate mRNA stability.
The expression levels of NR4A1, NDRG1, KCNC4 and
ZFP36 were again verified in tubular epithelial cells via the use
of scRNA-seq data (Figure 5C). These findings provided clues for
further study.

3.6 Analysis of the correlation between the
hub genes and immune cell infiltration

As indicated by the results of the functional analysis of the
metabolic memory models (Figures 4C, D), hyperglycemic
memory might be associated with the immune response.
Hence, we further explored the interactions between hub
genes (NDRG1, NR4A1, KCNC4, and ZFP36) and immune
cells (Figure 5D). M1 macrophages and monocytes were much
more abundant in diabetic mice than in control mice, which
indicated more pronounced inflammatory injury. After SGLT2i-
mediated effects on glucose levels, the percentages of
macrophages, monocytes, Th2 cells and Tregs changed,
indicating immunosuppression, while the proportions of naive
lymphocytes, including naive B cells and T cells, did not improve
significantly. According to the heatmap, the expression of these
hub genes could not be completely reversed after SGLT2i therapy;
for example, the correlation between ZFP36 and naive B cells in
the diabetic and control groups was 0.83, while that between the
SGLT2i treatment group and the control group was 0.8. Thus,
hyperglycemic memory might be correlated with the immune
microenvironment in DKD.

3.7 Potential drug prediction and molecular
docking of the hub genes

To identify potential drugs against these hub genes, we
screened components from the CTD platform (Figures 6A, B).
Among the 15 identified compounds, pioglitazone and
resveratrol had well-defined kidney protection effects and were
selected for molecular docking analysis (Ho et al., 2022; Gu et al.,
2022). The binding free energy represented the intermolecular
binding ability. The 2D molecular model included detailed
information about the ligand–receptor interactions, such as
hydrogen bonding, hydrophobic bonding and
carbon–hydrogen bonding. A binding free energy <0 kcal/mol
indicated that the protein–ligand complex can dock in a natural
state, an affinity energy < −1.2 kcal/mol indicated good docking,
and a binding energy ≤ −5 kcal/mol indicated strong docking.
The affinities of pioglitazone for all four proteins were less
than −5 kcal/mol (Figure 6C). Although the binding force of
resveratrol was much greater than that of pioglitazone, the
affinity of resveratrol was quite close to −5 kcal/mol
(Figure 6D). Therefore, pioglitazone and resveratrol might be
effective against these key genes and metabolic memory.

3.8 Validation of the clinical significance of
the hub genes

To explore the clinical significance of the identified hub genes,
correlation analysis between the expression of these genes and the
eGFR was conducted with the Nephroseq v5 online tool (Figure 7).
All these genes were positively correlated with the GFR, while the P
values of NDRG1, NR4A1 and ZFP36 were less than 0.05, and the
associations were 0.49, 0.37 and 0.52, respectively.
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3.9 NDRG1 is a metabolic memory- and
fibrosis-related hub gene

To examine the expression of these hub genes, we cultured HK-2
cells in vitro in the presence of continuous normal glucose (NG) or
high glucose (HG) for 24 h followed by HG (HG+NG) or continuous
HG. The results indicated that themRNA and protein levels of NDRG
in HK-2 cells remained elevated, even after a further 24-h reduction in
glucose concentration (Figures 8A, C). While ZFP36 expression
increased under HG conditions, it sharply declined upon
transitioning to NG conditions, failing to adhere to metabolic
memory criteria. Conversely, NR4A1 expression, though in line
with metabolic memory standards, was comparatively low. We also
validated NDRG1 expression in diabetic mice with albuminuria,
which indicated that NDRG1 was a causative gene in DKD
(Figure 8B). Thus, we selected NDRG1 for further validation.
Among the fibrosis-related pathways, the TGF-β signaling pathway

is one of the most common pathways. In addition, Menezes et al.
(2019) illustrated that NDRG1 could inhibit TGF-β signaling to
enhance membrane E-cadherin expression in pancreatic cancer.
Thus, we knocked down NDRG1 in HK-2 cells, and the results
showed that NDRG1 reduced TGF-β expression in HK-2 cells
cultured with HG (Figure 8D).

3.10 Diagnostic performance of NDRG1

To further clarify the potential diagnostic value of NDRG1, we
collected and conducted a univariate analysis on the general
information, main laboratory test results, comorbidities, and
NDRG1 expression levels in blood samples from patients with
T2DM for more than 10 years but without DKD (T2DM Group)
and patients with DKD and DR (DKD Group) (Table 1). The results
indicated that the NDRG1 expression level, diabetes duration, age,

FIGURE 4
Enrichment analysis of GSE199929 and GSE216376. (A) Dotplot of the GO analysis of DEGs in nondiabetic mice (control) and diabetic mice (DM-
22 model). (B) Dotplot of the GO analysis of DEGs in nondiabetic mice (control) and diabetic mice treated with SGLT2i to reduce glucose levels (DM +
SGLT2i). (C) Dotplot of the GO analysis results for the adenine model. (D) Dotplot of the GO analysis results for the UUO model.
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BMI, SBP, HbA1c, SCr, BUN, UACR, total 24-h urine protein, and
the presence of DR in the DKD Group were significantly different
from those in the T2DM Group (P < 0.05). Since diabetes duration,
DR, UACR, and total 24-h urine protein are inclusion criteria for the
T2DM Group and DKD Group, these four indicators were not

included in subsequent statistical analyses. Among the DKD
patients, there were 24 individuals whose eGFR exceeded 100,
yet all of them fulfilled the diagnostic criteria for DKD. DKD
patients (n = 51) exhibited significantly greater
NDRG1 expression than DM patients (Figure 8E). Although the
area under the receiver operating characteristic (ROC) curve (AUC)
for NDRG1 expression did not reach 0.7, NDRG1 expression
combined with demographic and anthropometric indicators (age,
BMI and SBP) was 0.768 (95% CI 0.672–0.865) (Figures 8F, G).

FIGURE 5
Screening hub genes. (A) The Venn diagram shows the
overlapping genes obtained from five databases. (B) Enrichment
analysis of ZFP36, KCNC4, NR4A1 and NDRG1. (C) Box plots of ZFP36,
KCNC4, NR4A1 and NDRG1 expression levels in tubular epithelial
cells from DKD and control samples. (D) Immune cell proportions and
correlations between hub genes and infiltrating immune cells in
control mice, diabetic mice (DM-22) and diabetic mice treated with
SGLT2i to reduce glucose levels (DM + SGLT2i). *p < 0.05 and **p <
0.01 vs. the control group. ns, no significance.

FIGURE 6
Network pharmacology and molecular docking. (A) Venn
diagram of the gene-related compounds and DKD-related
compounds. (B) The results of the Venn diagram. (C) Molecular
docking of pioglitazone and the hub proteins. (D) Molecular
docking of Resveratrol and the hub proteins.
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When further combined with biochemical indicators (SCr, BUN and
eGFR), the area under the ROC curve reached 0.914 (95% CI
0.858–0.971) (Figure 8H). The accuracy, sensitivity and specificity
were 0.862, 0.882 and 0.837, respectively. Thus, an increase in the
blood NDRG1 concentration might be a potential biomarker for
DKD diagnosis.

4 Discussion

The pathogenesis of DKD is complex and involves classic
mechanisms, such as inflammation (Rayego-Mateos et al., 2023)

and oxidative stress (Park et al., 2023), as well as several emerging
mechanisms, such as pyroptosis (Qu et al., 2022) and ferroptosis (Li
et al., 2021). However, even though multiple hypoglycemic agents
are currently available for improving the above mechanisms and
reducing blood glucose levels, the initiation of high blood glucose-
induced damage in the kidney is still ongoing (Zheng et al., 2021).
This latent effect across conditions and time is associated with the
occurrence and development of chronic diabetic complications
termed “metabolic memory.” Recent studies have shown that
metabolic memory plays an important role in the pathogenesis of
DKD (Li et al., 2022; Al-Dabet et al., 2022). However, the specific
mechanism of metabolic memory in DKD remains unclear. Hence,

FIGURE 7
Clinical analysis. Correlation analysis of the hub genes with the glomerular filtration rate (GFR).
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FIGURE 8
Experimental verification of hub genes related to fibrosis and metabolic memory in DKD patients. (A) The expression of NR4A1, NDRG1, KCNC4 and
ZFP36was analyzed via RT‒PCR inHK-2 cells (n= 3per sample). (B)The expressionofNDRG1 in kidney tissue fromdiabeticmice (DM) and nondiabeticmice (NC)
was analyzed via RT‒PCR (n=4per group). (C)Western blottingwas used to verify the expressionofNDRG1 inHK-2cells (n=4 for each). (D)Western blottingwas
used to verify the knockdownefficiency ofNDRG1 and to detect the protein expression level after TGF-βwas knockeddownbyNDRG1 (n=4per group). (E)
The expression of NDRG1 in the blood of DKD patients (n = 51) compared with that in the blood of DM patients without DKD for more than 10 years (n = 43). (F)
ROC curve analysis of NDRG1 expression in the blood of DKD patients and DM patients without DKD for more than 10 years. (G) ROC curve analysis of
NDRG1 expression combined with age, BMI and SBP. (H) ROC curve analysis of NDRG1 expression combined with age, BMI and SBP, Scr, BUN and eGFR. HK-2
cells: human kidney-2 cells; NG: control with continuous normal glucose (5.6mMglucose) for 48 h; HG: control with continuous high glucose (30mM glucose)
for 48 h; HG + NG: high glucose (30 mM glucose) for 24 h followed by normal glucose (5.6 mM glucose) for 24 h *P < 0.05 or **P < 0.01 or ***P < 0.001.
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we combined scRNA-seq data from humans and high-throughput
sequencing data from mice and rats to investigate the possible
mechanisms of metabolic memory in tubular epithelial cell
fibrosis in DKD. We also used network pharmacology and
molecular docking to identify the potential regulatory effects of
these metabolic memory-related genes. Our experimental validation
revealed that NDRG1 was a metabolic memory-related gene that
regulated TGF-β expression and was a potential biomarker for
DKD diagnosis.

The concept of metabolic memory was first proposed in 2003; in
recent years, numerous studies have started to explore the
mechanisms behind this phenomenon. Li et al. (2022) reported
that Sirt7 cooperated with ELK1 to induce inflammation in
endothelial cells despite the restoration of normoglycemia. Lizotte
et al. (2016) also demonstrated that despite reduced blood glucose
levels resulting from insulin treatment for the last 2 months, the
expression of SHP-1 remained elevated in the podocytes of diabetic
mice. The authors focused on the relationship between metabolic

memory and glomerular injury in DKD patients. Although
glomerular injury is essential for the progression of DKD, tubular
epithelial cells have gained increasing attention in the clinical
application of SGLT2is. Several studies have confirmed that
tubular epithelial cell injury is the prime and important factor
that impacts the progression of DKD (Wang et al., 2023; Shen
et al., 2022). Growing evidence has demonstrated that tubular
epithelial cells change and become fibrogenic in response to
hyperglycemia-induced injury. This results in tubulointerstitial
fibrosis, which is one of the most prevalent pathological features
of DKD (Cui et al., 2022; Ji et al., 2023). Recent research has shown
that methylation of the senescence-related gene p21 regulates
metabolic memory and fibrosis in tubular epithelial cells in DKD
(Al-Dabet et al., 2022). Regrettably, studies on the role of metabolic
memory in DKD, especially those focused on tubular epithelial cells,
are relatively rare.

In our research, we evaluated the potential of pioglitazone and
resveratrol as therapeutic agents against metabolic memory in

TABLE 1 Characteristics of participants with T2DM and DKD.

Variables Total (n = 94) T2DM group (n = 43) DKD group (n = 51) P-value

NDRG1 (ng/mL) 1.37 (0.84, 2.03) 1.13 (0.65, 1.87) 1.56 (0.92, 2.4) 0.04

Duration of DM, (years) 12 (10, 18) 13 (10, 18) 10 (5, 17.5) 0.01

Gender, n (%) 0.96

Female 38 (40) 18 (42) 20 (39)

Male 56 (60) 25 (58) 31 (61)

Age (years) 59 (51.25, 66) 60 (55, 68) 58 (48, 65.5) 0.05

BMI, (kg/m2) 22.94 (21.93, 25.81) 23.68 (22.62, 26.81) 22.76 (20.5, 24.32) 0.03

SBP (mmHg) 130.98 ± 19.73 125.56 ± 18.06 135.55 ± 20.08 0.01

DBP (mmHg) 77.65 ± 14.2 74.74 ± 11.89 80.1 ± 15.59 0.06

Haemoglobin (g/L) 127.63 ± 21.96 131.58 ± 16.69 124.29 ± 25.27 0.10

HbA1c (%) 8.6 (7.3, 10.1) 7.7 (7.15, 9.4) 9.2 (7.95, 11.55) 0.01

FPG (mmol/L) 7.98 (5.54, 10.52) 7.54 (5.72, 9.05) 8.59 (5.28, 12.3) 0.27

SCr (umol/L) 70.5 (57.25, 84.75) 64 (55.5, 74.5) 75 (61.5, 103.5) < 0.01

BUN (mmol/L) 6.94 (5.55, 8.28) 5.62 (4.95, 7.5) 7.05 (6.39, 9.51) < 0.01

eGFR (ml/min/1.73m2) 108.75 (86.93, 133.4) 120.17 (99.72, 139.08) 97.32 (67.8, 126.5) < 0.01

UACR (mg/g) 61.38 (5.23, 466.09) 4.9 (2.4, 7.25) 428.06 (134.93, 1,154.05) < 0.01

24hUTP (g) 0.31 (0.21, 0.64) 0.21 (0.17, 0.26) 0.61 (0.4, 1.31) < 0.01

DR, n (%) < 0.01

No 24 (26) 24 (56) 0 (0)

Yes 70 (74) 19 (44) 51 (100)

Hypertension, n (%) 1

No 51 (54) 23 (53) 28 (55)

Yes 43 (46) 20 (47) 23 (45)

Continuous variables with a normal distribution are expressed as the mean ± SD, and nonnormal data are expressed as the median (interquartile range, IQR).

Abbreviations: DM, diabetes mellitus; DKD, diabetic kidney disease; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, hemoglobin A1c; FPG, fasting

plasma glucose; SCr, serum creatinine; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; UACR, urinary albumin/creatinine ratio; 24hUTP, 24-h urinary protein quantity;

DR, diabetic retinopathy.
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patients with DKD. While pioglitazone is not conventionally
prescribed for DKD treatment, it has demonstrated the ability to
hinder renal fibrosis in diabetic mice (Gan et al., 2023). However, the
precise therapeutic function of these compounds in addressing
metabolic memory remains elusive and demands further
exploration. Resveratrol, an antioxidant and kidney-beneficial
natural nonflavonoid polyphenolic compound (Blahova et al.,
2021; Sattarinezhad et al., 2019), is particularly noteworthy as
oxidative stress is a pivotal mechanism underlying metabolic
memory, particularly in DR (Lee et al., 2022; Wang et al., 2018;
Voronova et al., 2017). Chen et al. (2023) utilized network
pharmacology and molecular docking to identify potential target
genes of resveratrol in DKD, yet our key genes were not
encompassed in their study. Additionally, Xian et al. (2020)
hypothesized that resveratrol mitigates oxidative stress induced
by metabolic memory in mice, aligning with our findings.
Regrettably, cytological experiments were not performed to
determine the underlying molecular mechanisms involved.

N-myc downstream-regulated gene 1 (NDRG1) is a member of
the NDRG family and is a highly conserved and widely expressed
gene located on chromosome 8 at the 8q24.2 locus (Fang et al.,
2014). The most studied functions of NDRG1 include tumor
metastasis and hypoxia (Park et al., 2020; Joshi et al., 2022).
Although NDRG1 has been identified in the mitochondrial inner
membrane of proximal tubule cells in the kidney, where it is
regulated by HIF, the current literature lacks studies exploring its
expression and function in DKD (Lachat et al., 2002; Zhang et al.,
2020). Previous studies have confirmed that mitochondrial
dysfunction was closely related to fibrosis in DKD and metabolic
memory in DR (Forbes and Thorburn, 2018; Wang et al., 2018). For
instance, Keshava et al. (2023) demonstrated that reduced
NDRG1 expression attenuated pleural fibrosis. In pancreatic
cancer, NDRG1 suppressed TGF-β and NF-κB signaling, thereby
enhancing membrane E-cadherin expression. Our research revealed
that the mRNA level of NDRG1 in kidney tissue was positively
related to the eGFR. To validate NDRG1 expression, we employed
RT‒qPCR and Western blotting in HK-2 cells and diabetic mouse
models. Our findings indicate that NDRG1 expression is
upregulated by high glucose both in vitro and in vivo, with a
particularly robust increase observed in HK-2 cells after 24 h of
exposure to a high glucose culture solution. Moreover, knocking
down NDRG1 in HK-2 cells suppressed TGF-β expression,
consistent with previous studies. Furthermore, blood samples
from DKD patients, but not DKD patients, displayed higher
NDRG1 expression than did those from patients with T2DM for
over 10 years. Considering demographic, anthropometric, and
biochemical parameters, NDRG1 has emerged as a potential
biomarker that could aid in distinguishing DKD patients,
potentially without interfering with urine test results.

Our study has several strengths. First, we combined scRNA-seq
data from humans with high-throughput sequencing data from a
mouse model of hyperglycemia and two renal fibrosis models from
rats to ensure the stability of NDRG1 in different species. Second, we
focused on tubular epithelial cells and performed experimental
validation. Third, we selected patients who had diabetes for more
than 10 years but without DKD as the control group to ensure the
accuracy of the test. Given that our research still needs mechanistic
exploration, several potential limitations should be considered. First,

although the expression level of NDRG1 was validated at the cellular
level in this study, the expression level and underlying mechanisms
of NDRG1 in DKD patients and animal models of metabolic
memory remain to be further elucidated. Second, despite
previous research indicating that resveratrol and pioglitazone can
alleviate renal tubular epithelial fibrosis, the specific mechanisms by
which they improve metabolic memory in DKD and renal tubular
epithelial fibrosis still await experimental verification.

5 Conclusion

In summary, this study analyzed scRNA-seq and high-
throughput sequencing data from multiple species and
performed potential drug prediction and molecular docking
analyses. After experimental validation, we identified NDRG1 as
a potential hub gene of metabolic memory in DKD patients.
Additionally, NDRG1 may reduce fibrosis in tubular epithelial
cells through the TGF-β pathway and may also be a potential
biomarker for DKD patients, shedding light on basic and drug
research on DKD.
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