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Maintaining the structural integrity of genomic chromosomal DNA is an essential
role of cellular life and requires two important biological mechanisms: the DNA
damage response (DDR) mechanism and telomere protection mechanism at
chromosome ends. Because abnormalities in telomeres and cellular DDR
regulation are strongly associated with human aging and cancer, there is a
reciprocal regulation of telomeres and cellular DDR. Moreover, several drug
treatments for DDR are currently available. This paper reviews the progress in
research on the interaction between telomeres and cellular DNA damage repair
pathways. The research on the crosstalk between telomere damage and DDR is
important for improving the efficacy of tumor treatment. However, further
studies are required to confirm this hypothesis.
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1 Introduction

The maintenance of genomic integrity is a fundamental feature of cellular physiology
(Maréchal and Zou, 2013). However, DNA damage occurs continuously in cells exposed to
numerous extrinsic sources, including ionizing radiation, ultraviolet irradiation, and
chemical exposure, as well as intrinsic sources, including metabolic responses, oxidative
stress, and replication errors, that eventually result in single- or double-stranded DNA
breaks (DSBs) (Basu et al., 2012; De Falco and De, 2021; Cheng et al., 2022). In normal cells,
several DNA damage response (DDR) mechanism participate in maintaining cell viability
and genomic stability. The primary types of DDR include homologous recombination (HR),
base excision repair (BER), non-homologous end-joining (NHEJ), break-induced
replication (BIR), mismatch repair (MMR), nucleotide excision repair (NER), direct
repair (DR), and single-stranded annealing (SSA), which can facilitate pinpoint DNA
restoration, identify DNA lesions, prevent cell division-related processes, and enhance
aberrant apoptosis (Beard et al., 2019). Missing information in the DDR pathway can lead
to mutations that result in genomic destabilization, thereby contributing to
carcinoma formation.

DDR functions in two ways: by preventing cells from entering mitosis until repair is
completed via activating DNA damage checkpoints and by coordinating and activating
various repair pathways and inducing metabolic reprogramming. DNA-dependent protein
kinase (DNA-PK) and capillary dilated ataxia mutated (ATM) and ATM and Rad3-related
(ATR) kinases, which belong to the PI3K-related kinase (PIKK) family, play essential roles
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in this process. Among them, DNA-PK and ATM are primarily
responsible for DSB repair, whereas ATR repairs the damage
induced by DNA replication (Roos et al., 2016; Blackford and
Jackson, 2017). Telomeres are nuclear protein complexes
comprising TTAGGG repeats located at the ends of linear
chromosomes. Under normal conditions, the telomere is covered
with the shelterin protein complex, which comprises six proteins,
including TRF1, TRF2, POT1, RAP1, TPP1, and TIN2 (de Lange,
2005). Their essential function is to protect chromosomal ends from
recognition by free ends generated by DSB, which incorrectly
activate DDR mechanisms that result in DNA degradation, end-
to-end fusion, and genomic instability (Li et al., 2022). Therefore,
telomeres are strongly associated with DDR.

Shelterin protein complexes are involved in distinguishing
telomere ends from damaged DNA and can induce DDR. The
TRF2 and POT1 proteins suppress ATM- and ATR-mediated
DDR pathways, respectively, thereby avoiding the onset of the
response. As cells divide, telomeres become progressively shorter,
and when they reach a certain level of shortening, the ATM- and
ATR-mediated DDR pathways are activated, which results in cell
death or senescence. However, several studies have shown that
proteins that are associated with DDR appear at telomeres and
are directly or indirectly involved in telomere maintenance.
Moreover, defects in DSB repair proteins, such as ATM, Ku,
DNA-PKcs, RAD51, and MRN complexes, lead to the
mismetabolism of telomeres. Gabriel Arantes Dos Santos et al.
showed that upregulation of shelterin and CST (Cdc13/Ctc1,
Stn1, Ten1) led to telomere lengthening and promoted invasion
of prostate cancer cells (Dos Santos et al., 2024). Importantly,
shelterin links to tumor immunity and predicts response to PD-1
blockade immune therapy (Luo et al., 2021). Therefore, functional
telomeres interact with DDR proteins (Slijepcevic, 2006).

The activation of telomere maintenance mechanisms, including
telomerase and the alternative lengthening of telomeres (ALTs), is
essential for tumor cell growth, although its regulatory mechanisms
are not completely understood (Kaul et al., 2021). ALT is a BIR-
based mechanism that elongates telomeres in a subset of human
cancer cells (Silva et al., 2021). Telomeres in ALT + cells are
inherently unstable and prone to replicative stress and
spontaneous DSB formation, which causes the repeated activation
of DDR (Feretzaki et al., 2020). In ALT + cancer cells, telomeric
repeats that contain long noncoding RNA (TERRA) interact with
DNA repair proteins involved in several DNA repair pathways,
including NER, DSB, and BER, indicating a strong link between
DDR and telomere function (Guh et al., 2022). Therefore, telomeres
in normal cells need to avoid DDR employment. In contrast,
telomere replication and protection require the involvement of
DDR-related proteins (Verdun and Karlseder, 2007). Thus, this
review illuminates the relationship between telomeres and cellular
DDR and provides clues on how to target telomere-associated DDR
for cancer treatment.

2 Multiple DDRs and telomere-related
DNA repairing

DNA damage, in the form of DNA base abnormalities or DSBs,
may produce mutations in cells, promote malignant proliferation,

and induce cancer. However, such mutations can be avoided if a
precise DNA repair system can recognize and repair the damage
before replication. In particular, DDR disruption occurs during
cancer progression and can be used as a target for cancer
treatment. Functional abnormalities in various proteins
responsible for repair pathways can also contribute to the build-
up of damage and, consequently, to the induction of cancer.
Therefore, DNA repair is a key protective mechanism against
malignant cell proliferation and cancer development (Nagel et al.,
2017; Zimmermann et al., 2022).

Four primary types of DDR are present in eukaryotes: NER,
BER, MMR, and double-strand break repair (DSBR). NER excises
large segments of damaged DNA, BER repairs damage to individual
bases, MMR is used to repair base mismatches, and DSBR includes
two mechanisms (i.e., HR and NHEJ). NHEJ directly attaches to the
fractured ends without a template, whereas HR requires complete
sister chromatids as a repair pattern. DR is another DDR system that
can repair certain forms of base damage without removing the bases
(Maréchal and Zou, 2013; Caldecott, 2020; Bayley et al., 2022). BIR
relies on homologous sequence templates for DNA synthesis and
repair, particularly for repairing one-ended DSBs. SSA is a repair
process that occurs when homologous sequences are present in the
same direction at both ends of a DSB.

2.1 HR

HR is a multistep process that prevents genomic instability and
maintains cellular homeostasis. After DSBs occur, BRCA1 promotes
HR pathways. First, the MRN complex (mre11-rad50-nbs1)
activates this pathway by coupling to DSB (Belan et al., 2022).
The MRN complex acts synergistically with BRCA1 and CtIP
endonucleases to mediate DNA end resection (Kishkevich et al.,
2022). Furthermore, the MRN complex triggers ATM, which in turn
initiates PALB2, BRCA1, and BRCA2 expressions (Murciano-
Goroff et al., 2022; Peng et al., 2023). Subsequently, RAD51 loads
onto the DNA damage site to form a nucleoprotein, which further
invades sister chromosomes to search for orthologous DNA
sequences that can be used as templates for novel DNA synthesis
(Cleary et al., 2020; Murciano-Goroff et al., 2022).

By losing ATM in cancer cells, HR is undermined; therefore,
when DNA is damaged, these cancer cells depend on the rest of the
DDR pathway for repair (Kaminski et al., 2022). Cancers with
specific HR defects can be treated with targeted agents that
inhibit HR proteins.

In cancer cells, a mechanism of telomere lengthening via
homologous targeted repair (i.e., ALT) is similar to HR and
triggers DNA repair to maintain telomere length (Kaminski
et al., 2022). TERRA is a transcription factor involved in
telomere elongation. Chia et al. reported that several HR-related
proteins, including RAD50, BRCA1, WRN, ATR, and WRNIP1, are
potential TERRA-interacting proteins (Guh et al., 2022). TERRA
initiates RAD51-dependent strand invasion (Feretzaki et al., 2020),
whereas BRCA1 binds to and represses TERRA transcription
(Vohhodina et al., 2021). A strong correlation exists between
telomere function and the DNA damage response, particularly
HR, which might be a potential therapeutic target for ALT
cancer treatment.
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2.2 NHEJ

NHEJ is a DDR pathway for the repair of DSBs and is activated
by 53BP1, RIF1, and the shieldin complex. NHEJ includes classical
non-homologous end-joining (cNHEJ), alternative non-
homologous end-joining (alt-EJ), and MMEJ (Gómez-Cabello
et al., 2022). cNHEJ utilizes nonspecific ligation to correct DNA
breaks, resulting in error-prone repair that can occur at any time in
the cell cycle (van de Kooij et al., 2022). cNHEJ is initiated via
binding of the Ku70–Ku80 (also known as XRCC6–XRCC5)
heterodimer to DSB ends (Luedeman et al., 2022). This event
activates DNA-PK, which, in turn, activates a multi-protein
complex of XRCC4, Artemis, and DNA ligase. Although the
NHEJ mechanism is simpler than the HR mechanism, it can
sometimes result in rearrangements, whereas the HR mechanism
does not produce errors (Findlay et al., 2018). Alt-EJ primarily
utilizes microhomologous fragments (2–25 bp) of the damaged
region to generate an annealing reaction and remove
nonhomologous ssDNA (Oanh et al., 2022). Alt-EJ is poly ADP-
ribose polymerase 1 (PARP1)-dependent, and polymerase θ (Polθ)
mediates break repair after MRN complex and PARP1-binding
double-strand breaks. When HR is defective in tumors, it causes
an enhanced reliance on alt-EJ. The correlation between the effect of
alt-EJ on Polθ indicates that Polθ inhibitors are likely to be potent in
HR-deficient tumors (Findlay et al., 2018; Scully et al., 2019; Shibata
and Jeggo, 2020; Murciano-Goroff et al., 2022).

Ribes-Zamora et al. have determined the role of shelterin in
suppressing the NHEJ function of Ku in human telomeres (Ribes-
Zamora et al., 2013). Telomere fusion occurs when NHEJ acts on
uncapped telomeres (Ueno, 2023). As the center of telomere
maintenance and structure, the complex between TRF2 and
Rap1 blocks NHEJ, and together with DNA-PK, inhibits telomere
end-joining (Arat and Griffith, 2012). NHP2 is a component of the
telomerase–holoenzyme complex. In telomere RNA subunit (hTR)-
expressing ALT + cells, NHP2 is downregulated, and 53BP1 foci at
telomeres are increased. The depletion of NHP2 in hTR-expressing
cells rarely reduces the total 53BP1 level, but does decrease TIF
reduction compared to NHP2 depletion in non-hTR-expressing
cells (Raghunandan et al., 2021). Therefore, NHEJ factors are
attractive targets for cancer therapies because of the reliance of
tumor cell division on DNA repair mechanisms.

2.3 BIR

BIR primarily repairs single-ended DSBs similar to those
resulting from telomere encroachment or replication fork crashes
(Kockler et al., 2021). BIR was first reported in bacteriophage T4 and
occurs in both mammalian cells and humans (Kreuzer, 2000). One
study found that the overexpression of oncogenes activates BIR in
human cells, resulting in chromosomal rearrangements (Elango
et al., 2019). In ALT + cells, BIR is active during the G2 stage of
the cell cycle and RAD52 is recruited to the replication stress site, a
process that requires the two regulatory subunits of DNA
polymerase δ, namely, POLD3 and POLD4 (Silva et al., 2019).
ALT is a BIR that functions through both RAD52-and non-
dependent processes. (Verma et al., 2019). In ALT cells,
RAD52 is primarily responsible for D-loop formation and

mediates the RAD52-dependent BIR process, whereas
RAD51AP1 is primarily responsible for TERRA-mediated R-loop
formation in telomeres, which promotes G4 formation.
Subsequently, G4 promotes R-loop-to-D-loop conversion, which
promotes ALT (Kaminski et al., 2022; Yadav et al., 2022). Moreover,
BIR can trigger the SUMOylation of PIAS4-mediated TRF2, and the
deprivation of PIAS4 renders APB devoid of repair proteins, which
in turn compromises the synthesis of ALT telomeres (Zhang et al.,
2021). Therefore, understanding the role of BIR in the treatment of
ALT cancer cells is vital (Elango et al., 2017).

2.4 SSA

SSA is a double-stranded oligonucleotide with a 3′ overhang of
three random nucleotides that can be efficiently ligated to the 3’ end
of single-stranded DNA using T4 DNA ligase (Wu et al., 2018).
Similar to the alt-EJ mechanism, SSA requires homologous DNA
sites to catalyze DSB repair. However, SSA can occur over long
stretches of DNA and result in large deletions that can cause
intrachromosomal translocations. Mechanistically, SSA is
inhibited by RAD51. Unlike alt-EJ, which requires PARP and
Polθ, SSA requires RAD52 to influence the annealing of the
homologous stretches of ssDNA (Scully et al., 2019; Vancevska
et al., 2020; Subecz et al., 2021).

The mammalian ERCC1/XPF endonuclease plays an important
role in DSB repair via SSA (Kim et al., 2020). TERRA triggers XPF
localization to telomeres and results in FANCM deficiency,
eventually leading to DSBs (Guh et al., 2022). SLX4, a
coordinator of multiple DNA structure-specific endonucleases,
plays important roles in several DNA repair pathways. The Slx4-
Rad1 complex is required for the SSA pathway, in which the Mec1/
Tel1-dependent phosphorylation of Slx4 is essential (Saito et al.,
2009). SLX4 cooperates with XPF for interstrand DNA crosslink
repair and is required for XPF-mediated DDR at ALT telomeres
(Guh et al., 2022). Therefore, therapies targeting the SSA repair
pathway may be useful for treating ALT cancer cells (Pfitzer
et al., 2019).

2.5 BER and NER

BER is initiated by an impaired base and is substituted by de
novo-synthesized DNA. Then, APE (depurine/depyrimidine
nuclease) cleaves it to form a 3′OH end at the site of damage
(Szymanski et al., 2022; Tang et al., 2022). Finally, DNA ligase and
polymerase are used to bridge these gaps (Farag et al., 2022). The
NER mechanism involves the removal of damaged DNA by the
excision repair cross-complementary protein 1 (ERCCI), which is
substituted with normal DNA replication (Elango et al., 2017; Scully
et al., 2019). Defects in BER are correlated with premature aging, and
BER genes are overexpressed in various cancers, such as POLβ,
XRCC1, and APE1, thus indicating that BER is essential for genome
maintenance (Somuncu et al., 2020).

XPF is an NER factor with nucleic acid endonuclease activity
and is the most enriched TERRA-binding protein according to mass
spectrum results (Guh et al., 2022). XPF can generate DSBs while
promoting DDR in ALT telomeres (Guh et al., 2022). Yang et al.
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discovered that the principal mechanism of telomere replication
may be linked to TFIIH, because as an NER element, TFIIH is an
important factor in TRF1 and its absence results in several telomere
replication phenotypes (Yang et al., 2022).

2.6 MMR

MMR restores the nucleotide sequence in DNA molecules with
mismatched bases. When microsatellite instability (MSI) occurs in
an organism, MMR proteins repair the errors. Normal functioning
of the MMR protein repairs the MSI and maintains microsatellite
stability; however, when the MMR protein is absent, MSI is not
repaired, and it will gradually accumulate, thus resulting in high
MSI. MSI is typically found in colorectal cancer but can also occur in
gastric and endometrial cancers (Scully et al., 2019; Shibata and
Jeggo, 2020; Ngo et al., 2021).

Recent literature suggests that the loss of MMR function may
play a significant role in ALT activity in human cancer cell lines;
however, this correlation has not been confirmed in human
primary tumors. Furthermore, the loss of MMR function is
associated with ALT, improved organism survival, and health
in yeast and mice, thus supporting the role of the loss of the MMR
pathway in promoting the development of ALT (Stundon et al.,
2022). MMR is initiated by one of two heterodimers: MSH2/
MSH6 (MutSα) and MSH2/MSH3 (MutSβ). MutSα binds to
base–base mismatches or the insertion and deletion loops of
1–3 nt, whereas MutSβ binds to insertion and deletion loops
containing up to 16 nt (Kunkel and Erie, 2015). A recent study
revealed that MutSα restricts telomere extension via ALT-
associated homology-directed repair in human cancer cells
(Barroso-González et al., 2021). MutSβ precludes the
aggregation of R-loops and telomeric G-quadruplex (G4)
structures (Sakellariou et al., 2022). Additionally, SLX4 is
associated with the proteins MSH2-MSH1 and TRF2 (Ouyang
et al., 2015). These associations suggest a link between telomeres
and MMR, thus offering potential therapeutic alternatives for
cancer treatment.

3 Protective role of the shelterin
complex in DDR

The shelterin complex at the telomere ends forms a protective
T-loop, which alters the end of the chromosome similar to that of the
recombinant D-loop, thus concealing the 3′one-stranded DNA
overhanging ends and preventing the false activation of DDR.
Most somatic cells have progressively shorter telomeres, but
carcinomas can sustain telomere length by upregulating
telomerase activity or using the ALT mechanism (Barnes et al.,
2023). How does DDR at telomere ends in tumors protect cells from
overproliferation and promote tumorigenesis? Shelterin inhibits
multiple DDR pathways, and different shelterin subunits are
involved in diverse reparative pathways and signaling. For
instance, the absence of TRF2 triggers ATM signaling, which
leads to telomere fusion. In contrast, in the absence of POT1,
ATR signaling is activated at telomeres, but the ATM signaling
pathway remains inhibited. HR inhibition results in telomeric sister

chromatid exchange, which involves the presence of concurrent
RAP1 and POT1 proteins in the telomere. TRF2 and another
shelterin protein also inhibit the ALT–NHEJ pathway (Doksani
and de Lange, 2014; Doksani and de Lange, 2016). The CST complex
in mammals has been reported to boost telomere replication but has
no direct role in inhibiting telomere DDR (Gu and Chang, 2013).
Disruption of the DDR can promote cancer development and
progression; thus, the destruction of DDR pathways in cancer
cells could be used to treat cancer.

4 Damaged DNA-targeted therapies
in cancer

4.1 Relevant treatments of telomere and
drugs available

4.1.1 PARP inhibitors
The development of PARP inhibitors has resulted in synthetic

lethality. The binding of PARP1 to single-stranded DNA breaks
produced during BER forms the basis of a synthetic lethal
interaction with HR defects (de Vos et al., 2012). Preclinical and
clinical studies on PARP inhibitors have revealed additional
mechanisms of their activity (Xue et al., 2022). PARP inhibitors
trap the PARP enzyme at damaged DNA sites, thereby influencing
the prevention of essential cellular processes, including DNA repair
and transcription. However, in HR-deficient cells, the trapped
PARP–DNA complex is lethal (Illuzzi et al., 2022). In HR-
deficient cell lines, PARP inhibitors are currently available,
including niraparib (Chi et al., 2023), talazoparib (Agarwal et al.,
2023), rucaparib (Fizazi et al., 2023), olaparib (Robson et al., 2017),
veliparib (Coleman et al., 2019), AZD5305 (78) and IMP4297(79).
Clinical trials of these inhibitors have been approved and used for
several cancers, including ovarian, breast, and pancreatic cancers.
However, the acquired resistance to PARP inhibitors in clinical
settings remains to be resolved (Vancevska et al., 2020; Vernì,
2022) (Table 1).

PARP inhibitors have been reported to cause TRF2 to decapitate
telomeres, resulting in the stimulation of incorrect NHEJ repair in
ALT-positive cancer cells. Loss-of-function ATRX and/or DAXX
mutations have been found in ALT-positive cancer cells. Currently,
no drugs related to ATRX are being investigated in clinical trials
(Cavalcante et al., 2021; Qin et al., 2022).

4.1.2 Targeting ATM and ATR
As an apical DDR kinase, ATM regulates DSB repair in various

cell types. Mechanistically, single-ended DSBs caused by PARP and
topoisomerase one inhibitors require HR for accurate repair. The
deletion of ATM signaling causes delayed end resection and repairs
single-ended DSBs via NHEJ, resulting in irregular chromosome
fusion and tumor cell death. ATM is considered a tumor suppressor
and may lead to de novo tumor formation in various tissues when
exposed to ATM inhibitors for prolonged periods (Pobiega et al.,
2021). ATM defects or mutations are commonly found in solid
tumors and B-cell lymphomas. Therefore, ensuring that the
therapeutic benefits of ATM inhibition outweigh the therapeutic
risks are important (Mukherjee et al., 2018; Scully et al., 2019; Subecz
et al., 2021). A Phase I trial has already evaluated the ATM inhibitor
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AZD0156 as both a monotherapy and in combination with the
PARP inhibitors irinotecan and olaparib, which is another cytotoxic
agent (Davis et al., 2022; Qin et al., 2022; Wong et al., 2022).

During the S phase, ATR ensures accurate DNA replication by
regulating the initiation of ignition and fork progression. ATR
inhibitors can also increase replication fork arrest, induce
chromosomal breakage, and cause cytotoxicity (Ouyang et al.,

2015). The sensitivity of cancer cells to ATR inhibitors, which is
caused by the overexpression of the oncogenic protein E1, is higher
than that of other cell lines. Therefore, ATR inhibitors are often used
to treat PARP inhibitor-resistant tumors (Kim et al., 2022). Cancer
cells with BRCA1 mutations can overcome the toxicity of PARP
inhibitors by loading DSB with BRCA1-independent RAD51,
thereby overcoming drug resistance. ATR inhibitors block

TABLE 1 List of DDR inhibitors in clinical trials study.

Inhibitor Drugs Phase Target References

PARP inhibitors Niraparib Ⅱ, Ⅲ OC, BC, prostate cancer Agarwal et al. (2023)

Olaparib Ⅲ BC, OC, mCRPC, pancreatic cancer, TNBC Robson et al. (2017)

Talazoparib Ⅱ, Ⅲ BC, mCRPC Agarwal et al. (2023)

Rucaparib Ⅱ, Ⅲ OC, mCRPC Agarwal et al. (2023)

Veloparib Ⅲ NSCLC Coleman et al. (2019)

AZD5305 Ⅰ, Ⅱ solid tumors Zheng et al. (2022)

IMP4297 Ⅰ SCLC Hu et al. (2023)

ATR inhibitors Ceralasertib (AZD6738) Ⅰ HNSCC Vendetti et al. (2018)

Ⅱ OC, solid tumors, SCLC Biegała et al. (2023)

Ⅲ NSCLC Vendetti et al. (2018)

Berzosertib (VX970, M6620) Ⅰ OC, solid tumors Telli et al. (2022)

Ⅱ SCLC Takahashi et al. (2023)

Elimusertib (BAY1895344) Ⅰ solid tumors Harold et al. (2023)

Tuvusertib (M1774) Ⅰ solid tumors Yap et al. (2024)

Camonsertib (RP-3500) Ⅰ, Ⅱ solid tumors Yap et al. (2023)

APE1 inhibitors Methoxyamine (TRC-102) Ⅰ, Ⅱ solid tumors Eads et al. (2021)

E3330 (APX3330) Ⅰ solid tumors Fishel et al. (2019)

Lucanthone Ⅱ glioblastoma Radin et al. (2024)

DNA-PK inhibitors AZD7648 Ⅰ, Ⅱ solid tumors Radin et al. (2024)

LY3023414 (samotolisib) Ⅱ solid tumors, NSCLC, TNBC, prostate cance, PDAC Sweeney et al. (2022)

Nedisertib (peposertib) Ⅰ, Ⅱ SCLC, rectal cancer Samuels et al. (2024)

Voxtalisib (XL765, SAR245409) Ⅰ NSCLC, glioblastoma Wen et al. (2015)

Ⅰ, Ⅱ BC Blackwell et al. (2015)

Ⅱ OC, lymphoma Brown et al. (2018)

CHK1/CHK2 inhibitors LY2603618 (rabusertib) Ⅰ HNSCC van Harten et al. (2019)

LY2880070 Ⅰ PDAC Huffman et al. (2023)

Prexasertib (LY2606368) Ⅱ OC, SCLC Konstantinopoulos et al. (2022)

PHI-101 Ⅰ OC Park et al. (2022)

GDC-0425 Ⅰ solid tumors Infante et al. (2017)

WEE1 inhibitors AZD1775 (adavosertib) Ⅱ OC, SCLC, NSCLC, pancreatic cancer, TNBC Fu et al. (2023)

ZN-c3 Ⅰ, Ⅱ pancreatic cancer, OC Schutte et al. (2023)

Ⅱ AML Huang et al. (2021)

Abbreviations: PARP, poly (ADP-ribose) polymerase; OC, ovarian cancer; BC, breast cancer; mCRPC, metastatic castrationresistant prostate cancer; NSCLC, non-small cell lung cancer; SCLC,

small cell lung cancer; ATR, ataxia telangiectasia and Rad3 related protein; HNSCC, head and neck squamous cell carcinoma; AML, acutemyeloid leukemia; TNBC, triple negative breast cancer;

DNA-PK, DNA-dependent protein kinase; PDAC, pancreatic ductal adenocarcinoma.
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BRCA1-independent function and re-sensitize tumor cells to PARP
inhibition in vitro. Preclinical data showed that berzosertib (also
known as M6620 and VX-970) was the first ATR inhibitor to reveal
that lung cancer cells were primarily sensitive to chemotherapeutic
agents. The drug can result in the collapse of replication forks, such
as cisplatin and gemcitabine (in vitro), and improve antitumor
activity when combined with cisplatin (in vivo) (Perkhofer et al.,
2021; Scheper et al., 2022; Telli et al., 2022; Viol et al., 2022;
Takahashi et al., 2023). Other ATR inhibitors currently in clinical
trials are as follows, for example, ceralasertib (AZD6738) (Vendetti
et al., 2018; Biegała et al., 2023), elimusertib (BAY1895344) (Harold
et al., 2023), tuvusertib (M1774) (Yap et al., 2024) and camonsertib
(RP-3500) (Yap et al., 2023).

Replication stress occurs when damaged DNA impedes the
progression of replication forks, leading to stagnation. If
unrepaired, the stalled fork may deteriorate into a DSB,
eventually facilitating the recruitment of DNA repair factors and
engagement of HR mechanisms to lengthen telomeres. Therefore,
ATM and ATR inhibitors are also used in cancer therapy to treat
patients with ALT-positive cancers. The ATM inhibitor
AZD0156 has shown selective toxicity in melanoma cells,
neuroblastoma, and preclinical models of colorectal cancer (Davis
et al., 2022; Qin et al., 2022; Wong et al., 2022; Yilmaz et al., 2023).

In contrast, other studies showed that ATM activation balances
senescence, apoptosis, and autophagy. The G-quadruplex ligand
20A elicits global DNA damage and activates the ATM pathway in
both cancer cells (HeLa) and xenograft mouse models (Beauvarlet
et al., 2019). Other DDR-related inhibitors currently in clinical trials
such as APE1 inhibitors (Fishel et al., 2019; Eads et al., 2021; Radin
et al., 2024), DNA-PK inhibitors (Blackwell et al., 2015; Wen et al.,
2015; Brown et al., 2018; Sweeney et al., 2022; Selvaraj et al., 2023;
Samuels et al., 2024), CHK1/CHK2 inhibitors (Infante et al., 2017;
van Harten et al., 2019; Konstantinopoulos et al., 2022; Park et al.,
2022; Huffman et al., 2023), and WEE1 inhibitors (Huang et al.,
2021; Fu et al., 2023; Schutte et al., 2023) are summarized in Table 1.

4.1.3 Immune related telomere targeted therapy
strategies

Ilgen Mender et al. elucidated for the first time the mechanism
and potential clinical translational value of 6-thio-dG, a nucleoside
analogue targeting telomere damage, in activating host DNA-cyclic
GMP- AMP synthase (cGAS)–stimulator of interferon genes
(STING) pathway -dependent immune cells to inhibit tumor
growth (Mender et al., 2020). 6-thio-2′-deoxyguanosine (6-thio-
dG) is a telomerase substrate precursor nucleoside analog that has
been validated as a telomere-targeting strategy. Mechanistically, 6-
thio-dG induces persistent telomere dysfunction and sequentially
activates the ATR pathway, followed by ATM activation in
telomerase-positive cells (Sengupta et al., 2018). Notably, ATR
activation decreases after activation with 6-thio-dG, indicating
the dual effect of DDR on telomere-related cell death. Previous
studies have shown that treatment with low-dose THIO followed by
anti-PD-1/PD-L1 immunotherapy eliminated advanced tumors in a
clinical precursor cell model and generated cancer cell-specific
immune memory, thus enabling the immune system to retain its
activity against cancer cells after treatment cessation (Kodym et al.,
2009). 6-thio-dG induces a high antitumor activity in
chemotherapy-resistant tumor cells and mouse models (Mender

et al., 2018). This co-treatment strategy is expected to provide
clinical benefits to patients with small cell lung and colorectal
cancers, as well as hepatocellular carcinoma, who have had
unsuccessful first-line therapies (George et al., 2020; Yu et al.,
2021). Due to structural similarities, many analogues previously
used to inhibit human immunodeficiency virus (HIV) reverse
transcriptase have also been found to inhibit the hTERT catalytic
site. Drugs currently being investigated in telomerase-positive
cancers include azidothymidine (AZT) and 5-methylcarboxy-
indolyl-2′-deoxyribonucleoside 5′- triphosphate (5- MeCITP)
(Gomez et al., 2012; Hernandez-Sanchez et al., 2019). GV1001 is
a peptide derived from the reverse transcriptase subunit of
telomerase (hTERT) that has been developed as a vaccine against
a variety of cancers. GV1001 interacts with heat shock proteins
(HSPs) and penetrates cell membranes to localize in the cytoplasm
(Kim et al., 2016). It has been shown in the literature that
chemotherapeutic agents combined with the GV1001 vaccine
enhance the immune response but do not improve the overall
survival of pancreatic cancer patients (Middleton et al., 2014).
The UV1 vaccine consists of three synthetic long peptides and is
a peptide vaccine against telomerase (Gerada et al., 2020). The
UV1 vaccine has been tested in prostate cancer (Lilleby et al.,
2017)、lung cancer (Brunsvig et al., 2020)and malignant
melanoma (Aamdal et al., 2021), either alone or in combination
with checkpoint inhibitors. A phase II trial of the UV1 telomerase
vaccine in combination with ibritumomab and nifedumab together
in pleural mesothelioma is currently underway, and the results have
shown that the addition of the vaccine is more effective (Haakensen
et al., 2024). Vx-001 is the first antitumor vaccine based on
optimized cryptic peptides, targeting tumor antigen TERT, and
its functional peptide is hidden inside the protein (Vassilis et al.,
2013). Phase I/II trials of Vx-001 in patients with non-small cell lung
cancer, melanoma, breast cancer, and many other cancers have been
completed (Athanasios et al., 2014). In clinical trials, this vaccine
demonstrated high hTERT-specific immune responses, good anti-
tumor efficacy, good tolerability and few side effects (Menez-Jamet
et al., 2016). INVAC-1 is a DNA plasmid encoding a modified
hTERT protein for patients with relapsed or refractory solid tumors
(Calvet et al., 2014). Phase I clinical trials of INVAC1 found that the
vaccine was well tolerated, triggered hTERT-specific CD4+ and
CD8+ T-cell responses, and blocked cancer progression in the
majority of patients with relapsed or refractory solid tumors
(Teixeira et al., 2020).

4.2 Other applications of telomere-related
treatment in cancer

Owing to the prevalence of telomerase-positive cancer in all
cancer patients, targeted telomerase therapy is considered a potential
approach for cancer treatment. Several promising candidates are
currently being investigated in clinical trials and pre-clinical
studies (Table 2).

Small-molecule telomerase reverse transcriptase (TERT) has
been well studied and has achieved good practical prospects.
BIBR1532 is a representative drug of this type that binds to
TERT at the non-catalytic site and inhibits telomerase activity in
a non-competitive manner (Liu B. et al., 2022). Its cytotoxicity is
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TABLE 2 Major telomere-targeting agents in preclinical and clinical development.

Drug
targets

Drug Study
stage

Cancer types Advantages Disadvantages References

Telomerase
related telomere
maintenance

GRN163L
(imetelstat)

Phase Ⅰ, Ⅱ
clinical
trails

solid tumor, NSCLC, BC,
pancreatic cancer,

myelofibrosis, pediatric
brain tumor, prostate

cancer

Clinical efficacy in
myelofibrosis and low-risk

myelodysplastic
syndromes

The effect on progression of
other types of cancer is unclear
and has serious side effects

(Fischer-Mertens et al.,
2022; Djojosubroto et al.,

2005)

BIBR1532 Phase Ⅲ
clinical
trails

OC, NSCLC, BC, ATC,
leukaemia, fibrosarcomas,

endometrial cancer

Effectively inhibit tumors Limited efficiency of sustained
action

(Qin and Guo, 2022;
Al-Karmalawy et al.,

2023)

6- thio- dG
(THIO)

Phase Ⅱ
clinical
trails

SCLC, NSCLC, gliomas Cross the blood–brain
barrier

Elicit more rapid cytotoxicity George et al. (2020), Yu
et al. (2021)

AZT FDA
approved

leukaemia, Kaposi sarcoma,
lymphoma

FDA approved for the
treatment of HIV

IC50 is high in non- virally
induced cancer types

Gomez et al. (2012)

5- MeCITP Preclinical lung cancer, colon cancer,
pancreatic cancer,
osteosarcoma

Fewer off- target effects,
less toxic than AZT

Limited efficiency of sustained
action

Hernandez-Sanchez et al.
(2019)

MST-312 Preclinical BC, lung cancer, colon
cancer, multiple myeloma

Exert anti- oncogenic
effects in vivo

Low potency and slow onset of
cytotoxic effects

Wu et al. (2020)

NU-1 Preclinical BC Enhance the effects of
radiation

Low potency and slow onset of
cytotoxicity

Wu et al. (2020)

GV1001 Phase Ⅲ
clinical
trails

PDAC, NSCLC, melanoma Significantly prolonged
survival in patients with
CD8+ T-cell responses

Poor vaccine response rates Middleton et al. (2014)

UV1 Phase Ⅱ
clinical
trails

melanoma, NSCLC,
prostate cancer

Improving the cancer
killing effectiveness

(Lilleby et al., 2017;
Brunsvig et al., 2020;
Aamdal et al., 2021)

Vx-001 Phase Ⅱ
clinical
trails

NSCLC Long- lasting immune
responses

Low response rates Athanasios et al. (2014)

INVAC1 Phase Ⅱ
clinical
trails

solid tumor Safe, well tolerated Teixeira et al. (2020)

Telomestatin Phase Ⅰ, Ⅱ
clinical
trails

multiple myeloma,
neuroblastoma

Low toxicity Poor solubility and chemical
stability

Teng et al. (2021)

TMPyP4 Preclinical NSCLC Effectively inhibits tumor
growth

Affects the entire genome,
including promoter regions of

oncogenes

Iida et al. (2022)

RHPS4 Preclinical BC, glioblastoma Effectively inhibit tumors Promotes recombination and
boosts ALT activity

Alessandrini et al. (2022)

pyridostatin Phase Ⅰ, Ⅱ
clinical
trails

BC, thyroid cancer,
prostate cancer

Enhancing the anticancer
activity of drugs that target
DNA or inhibit its repair

Replication stress promotes
recombination and drives ALT

activity

Liu et al. (2022b)

Alternative
lengthening of
telomere

ATM
inhibitors

Phase Ⅰ
clinical
trails

neuroblastomas Selective toxicity Limited effects which need to
be combined with other drugs

Koneru et al. (2021)

PARP
inhibitors

Phase Ⅱ, Ⅲ
clinical
trails

BC, OC, pancreatic and
metastatic prostate cancer

Effectively inhibits tumor
growth

Highly toxic Xue et al. (2022)

ATR
inhibitors

Phase Ⅰ, Ⅱ
clinical
trails

soild tumor, BC, OC, lung
cancer

Effectively inhibits tumor
growth

Highly toxic Ouyang et al. (2015)

(Continued on following page)
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primarily caused by direct damage to the telomere structure,
resulting in the loss of TRF2 binding, which induces telomere
dysfunction, acts as a telomere end-to-end fusion, and increases
p53 activation. The preclinical studies have shown that BIBR1532 is
effective against several cancer cell lines, including breast cancer,
fibrosarcoma, endometrial cancer, and leukemia (Qin and Guo,
2022; Al-Karmalawy et al., 2023). Due to the relative instability of
epigallocatechin gallate (EGCG), improved TERT inhibitors
synthesized from EGCG-related fractions have been developed
(Wu et al., 2020). Among these, MST-312 has been confirmed to
be involved in various types of cancers. In breast, lung, and colon
cancers, MST-312 treatment significantly downregulates TERT
expression, reduces telomerase activity, and results in telomere
shortening. It can also lead to cell cycle arrest and apoptosis in
cancer cells (Wu et al., 2020). However, MST-312 works only on
cancer cells with short telomeres, according to the time required for
telomere shortening to a critical length (90 d) (Fernandes et al.,
2022). Nu-1 and erythromycin antibiotics are other TERT inhibitors
that can directly bind to the TERT catalytic domain and block TERT
transcription. However, these drugs have not been well studied and
have only been investigated in early clinical research because of their
low potency and slow onset of cytotoxicity (Ameri et al., 2019; Wu
et al., 2020). G4 ligands inhibit telomerase binding to telomeric
DNA, eventually inhibiting telomerase activity (Tiek et al., 2022).
G4-stabilizing ligands include telomeric repressors, TMPyP4,
RHPS4, pyridostatin and telomestatin (Teng et al., 2021;
Alessandrini et al., 2022; Liu LY. et al., 2022; Iida et al., 2022).
Owing to the high levels of G-rich DNA throughout the genome,
particularly in the promoter regions of oncogenes, G4 ligands pose
numerous risks when used as telomerase inhibitors andmight have a
significant off-target effect (Yan et al., 2021; Shankar et al., 2022; Tsai
et al., 2022). Oligonucleotides can form stable double-stranded
bodies with complementary DNA, thereby disrupting hTR
function. Binding to the hTR sequence template effectively
inhibits the catalytic action of telomeric repeat addition, thereby
inhibiting telomerase activity. The representative drug in this
category is imetelstat (GRN163L), which has been tested in
different tumor models and is currently the only anti-telomerase
oligonucleotide in clinical use (Djojosubroto et al., 2005; Fischer-
Mertens et al., 2022).

Regarding ALT-positive cancer cells, the development of cancer
drugs targeting ALT can be traced back to its upstream and
downstream pathways, particularly the DDR. In ALT-positive
cancer cells, PARP inhibitors can cause TRF2 to dissociate from
telomeres, thereby stimulating the inappropriate repair of non-
homologous end connections. ATM and ATR inhibitors can also
be used for the treatment of ALT-positive cancers. AZD0156, an

ATM inhibitor, has been used to treat ALT neuroblastomas and
overcomes chemotherapy resistance (Koneru et al., 2021). As an
inhibitor of the FANCM-BTR interaction (Wu et al., 2023), PIP-199
may be selectively toxic to ALT cancer cells (Lu et al., 2019),
rendering it a potential therapeutic target. Tetra-Pt (bpy), a
cisplatin derivative that targets telomeric G-quadruplexes,
severely inhibits the growth of ALT cell xenograft tumors,
indicating that it may be a novel oncotherapeutic agent for
targeting ALT cancer cells (Zheng et al., 2017). In addition, bpy
disrupts telomere maintenance in telomerase cancer cells, further
elucidating the function of G-quadruplexes in the human genome
(Shen et al., 2022). The potential of bpy as a chemotherapeutic target
has been demonstrated in both ALT-positive and telomerase
cancer cells.

The shelterin protein complex prevents chromosome ends from
being recognised as DSB and activates the DDR (Tesmer et al.,
2023). As cells divide repeatedly and telomeres continue to shorten,
shelterin binding and telomere-loop (t-loop) formation are
impaired, and this weakened protection leads to telomere
dysfunction, cellular senescence or apoptosis (Shi et al., 2023).
TRF2 overexpression has been reported to be present in a variety
of malignant cancers, and its downregulation leads to cell death.
Yin-da Qiu et al. showed that FKB04, a flavokawain B derivative,
effectively inhibited TRF2 expression in hepatocellular carcinoma
cells and also induced telomere shortening, increased the number of
telomere-free ends, and led to the disruption of the T-loop structure
(Qiu et al., 2024). These results suggest that TRF2 is a potential
therapeutic target for hepatocellular carcinoma and indicate that
FKB04may be a selective small-molecule inhibitor of TRF2, which is
expected to be used in the treatment of hepatocellular carcinoma.
Mutations in TRF2 lead to changes in telomeric DNA topology,
which initiates ATM-dependent DDR (Benarroch-Popivker et al.,
2016). TRF1 and TRF2 form a homodimer that binds to double-
stranded telomere DNA. TRF1 inhibits ATR signalling during S
phase and otherwise induces a fragile telomere phenotype.
TRF1 small molecule inhibitors (ETP-47228 and ETP-47037)
inhibit TRF1 binding to DNA, induce DNA damage and inhibit
lung cancer and glioblastoma progression, suggesting that TRF1 is a
potential therapeutic target and that ETP-47228 and ETP-47037
small molecule inhibitors may be useful in treating lung cancer and
glioblastoma (García-Beccaria et al., 2015; Bejarano et al., 2017).
TRF2 also binds to RAP1 and inhibits the localisation of SLX4 and
PARP1 to telomeres, thereby inhibiting NHEJ (Rai et al., 2016). It
has been reported in the literature that Triazole-stapled peptides can
block protein interactions between RAP1 and TRF2, thereby
inhibiting HR (Ran et al., 2016). POT1 has been reported to co-
localize with the ubiquitin-specific processing protease 7 (USP7)

TABLE 2 (Continued) Major telomere-targeting agents in preclinical and clinical development.

Drug
targets

Drug Study
stage

Cancer types Advantages Disadvantages References

PIP-199 Preclinical osteosarcoma The only reported small-
molecule inhibitor of the

FANCM–BTR

Selective toxicity Lu et al. (2019)

Tetra-Pt (bpy) Preclinical neuroblastoma Effectively inhibit tumors Zheng et al. (2017)

Abbreviations: 5-MeCITP, 5- methylcarboxyl-indolyl-2′- deoxyriboside 5′- triphosphate; AZT, azidothymidine; ATC, anaplastic thyroid cancer; OC, ovarian cancer; BC, breast cancer; NSCLC,

non-small cell lung cancer; IC50, the inhibitory concentration 50; PDAC, pancreatic ductal adenocarcinoma.
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deubiquitinating enzyme within APB, which is capable of
deubiquitinating and stabilising the POT1-targeted ubiquitin
ligase, whereas testis-specific Y-coding-like protein 5 (TSPYL5)
has recently been identified as a PML component and functions
as a USP7 inhibitor (Episkopou et al., 2019). This suggests that
TSPYL5 may be a therapeutic target for ALT-positive cancer types.
The above suggests that targeting a reduction in DDR-related
proteins on telomeres would reduce cancer progression. Although
no reliable inhibitors are available for the above, their importance for
the types of cancers in which ALT is used suggests that they should
be considered in the development of future ALT-targeted therapies.

5 Conclusion and perspectives

Replicative immortality, a hallmark of cancer, is achieved by
activating the telomere maintenance machinery (TMM), where the
TMM consists of telomerase (85%–90% of tumors) and the telomere
lengthening (ALT) pathway (10%–15% of tumors) (Hanahan,
2022). While telomerase inhibitors are considered promising
anticancer agents, the reality is challenging; ALT cancer types are

aggressive and have a poor prognosis, but no therapeutic options are
currently available. Targeting telomere maintenance therefore
represents an opportunity to treat the vast majority of cancer
types. In this review, we identify the link between telomeres and
DDR and the promising use of drugs targeting DDR therapy for the
treatment of ALT cancers, and summarize recent advances in drugs
targeting DDR, telomerase and ALT therapy.

Owing to the critical function of the DDR in cancer cells,
balanced DNA damage and repair, particularly in the telomere
region, is vital for cancer treatment. For example, the traditional
antitumor drug, cisplatin, kills cancer cells via DNA crosstalk and
induces DNA damage, which activates the ATM signaling pathway
(Bian et al., 2023). Therefore, ATMi may be a potential combined
drug to improve the efficacy of chemotherapy drugs. However, when
considering the function of telomeres in cancer cells, the
G-quadruplex ligands 20A and 6-thio-dG, which can activate
ATM and/or ATR, were also confirmed to have effective
antitumor activity. Therefore, the opposite effects of the same
molecule should be considered in cancer treatment, which might
be the key to resolving the low response rate to antitumor
drugs (Figure 1).

FIGURE 1
Schematic representation of DNA repair mechanisms and telomeric shelterin protein complexes. In repairing exogenous and endogenous DNA
damage, cells use a range of DNA repair mechanisms, including single-strand break (SSB) and double-strand break (DSB) DNA repair pathways. SSB DNA
repair mechanisms include direct repair (DR), nucleotide excision repair (NER), mismatch repair (MMR), break-induced replication (BIR), single-stranded
annealing (SSA), and base excision repair (BER). The DSB response signaling is orchestrated by two kinases, ATR and ATM, which phosphorylate the
substrate mainly in the G2 or G1 phases, respectively, and send signals to the cell cycle through CHK1 and CHK2. CHK2 signals cell cycle arrest and
triggers both homologous recombination (HR) and non-homologous end-joining (NHEJ) DSB repair mechanisms. Each DNA repair pathway consists of a
complex of signaling sources, transcription factors and effectors of the DNA repair restoration mechanism, some of the key players of which are
highlighted in the figure. The telomeric shelterin protein complex inhibits the NHEJ and HR repair mechanisms, and the RNA it transcriptionally generates
(TERRA) as well as the secondary structures it forms are also associated with some of the key molecules in the SSB repair mechanism. Inhibitors of these
pathway components (denoted by a “T" bar) are currently in preclinical and clinical use as drugs targeting the DNA damage response.
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Research on the development of drugs targeting telomeres or
telomerases is ongoing. BIBR1532, MST-312, TMPyP4, RHPS4, and
pyridostatin are currently undergoing preclinical research. The
oligonucleotide, imetelstat, has been approved by the Food and
Drug Administration for the treatment of recurrent or refractory
myelofibrosis. Instead of telomerase, ALT activation in
approximately 10%–15% of cancer should also be considered as a
potential treatment target, particularly for DDR-related molecules.

The cGAS-STING signalling pathway is part of the innate immune
system that senses both host and foreign cytosolic double-stranded
DNA to initiate a type I inter feron response (Barber, 2015). Studies
have shown an association between TMM and the cGAS-STING
pathway, which contributes to cancer development (Ebata et al.,
2022). Spontaneous immortalisation of non-malignant cells induced
by TERT expression has been reported to trigger the cGAS-STING
pathway, thereby altering their microenvironment to become tumour-
friendly (Yang et al., 2017). ALT cancer cells have a unique feature of
extrachromosomal telomere repeats (ECTR) in the cytoplasm. ECTR in
normal cells activate the cGAS-STING pathway and promote immune
responses leading to proliferative disorders, whereas ALT cells have a
defective cGAS-STING pathway that escapes antiproliferative effects (Li
et al., 2022). This suggests two major weaknesses of ALT cells. Firstly,
ALT cells are able to evade ECTR-induced antiproliferative effects, but it
may also lead to cells being susceptible to viral infection. Second, if the
cGAS-STING pathway is active, it is potent in killing ALT cells. This
suggests that testing the end product of this pathway, such as FDA-
approved interferon beta (IFNβ), may be a therapeutic approach to
inhibit the growth of ALT-positive cancer cells (Moglan et al., 2023).
Therefore, research on the crosstalk between telomere damage and
DDR is important for improving the efficacy of tumor treatment.
However, further studies are required to confirm this hypothesis.
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