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The incidence of ischemic stroke has been increasing annually with an
unfavorable prognosis. Cerebral ischemia reperfusion injury can exacerbate
nerve damage. Effective mitochondrial quality control including mitochondrial
fission, fusion and autophagy, is crucial for maintaining cellular homeostasis.
Several studies have revealed the critical role of mitophagy in Cerebral ischemia
reperfusion injury. Cerebral ischemia and hypoxia induce mitophagy, and
mitophagy exhibits positive and negative effects in cerebral ischemia
reperfusion injury. Studies have shown that Chinese herbal medicine can
alleviate Cerebral ischemia reperfusion injury and serve as a neuroprotective
agent by inhibiting or promoting mitophagy-mediated pathways. This review
focuses on themitochondrial dynamics andmitophagy-related pathways, as well
as the role of mitophagy in ischemia reperfusion injury. Additionally, it discusses
the therapeutic potential and benefits of Chinese herbal monomers and
decoctions in the treatment of ischemic stroke.
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1 Introduction

Stroke is the most common serious manifestation of cerebrovascular disease (Feske,
2021). Ischemic stroke accounts for the largest proportion of all types of stroke and has high
mortality and severe disability rates worldwide (Kim et al., 2020; Thayabaranathan et al.,
2022; Tsao et al., 2023). The main lesion of ischemic stroke is cerebral infarction, which
causes clinical classic symptoms such as facial droop, weakness or numbness in arm,
difficulty speaking, confusion, loss of vision and poor balance (Walter, 2022). The brain is
the most sensitive of all human organs to ischemia. Insufficient blood supply to cerebral
tissue, combined with hypoxia and glucose deprivation, results in irreversible impairment of
neuronal function and tissue integrity (Feske, 2021). The ultimate goal of therapeutic
intervention for ischemic stroke is to restore sufficient blood flow to the damaged tissue. The
common modern treatments include surgery, thrombolysis and thrombectomy (Herpich
and Rincon, 2020).
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The process of restoring blood flow after cerebral ischemia and
inducing tissue reperfusion injury is commonly known as cerebral
ischemia/reperfusion (I/R) injury (Kalogeris et al., 2016). The
pathological mechanisms of cerebral I/R injury are complex,
including oxidative stress, ion balance disturbance, inflammation
responses, mitochondrial energy metabolism disturbance, mitophagy,
apoptosis, blood-brain barrier destruction and aggravation of capillary
no-reflow (Kalogeris et al., 2016; Jiang et al., 2018; Wang et al., 2018;
Wu et al., 2018; Malone et al., 2019). Mitochondrial autophagy, also
referred to as mitophagy, is a type of autophagy that continually
monitors the quality of mitochondria and eliminates damaged
mitochondria through lysosomal targeting via various pathways
(Ashrafi and Schwarz, 2013). The role of mitophagy in cerebral I/R
remains controversial. Inadequate removal of damaged mitochondria
or excessive degradation of essential mitochondria both lead to cell
death (De et al., 2021). The prevailing opinion is that the activation of
autophagy mitigates cerebral I/R injury through multiple pathways,
such as reducing damage to neurons, glia, and endothelial cells
(Papadakis et al., 2013). Additionally, mitophagy provides
neuroprotection by inhibiting inflammasome activation (Zhou et al.,
2011; Zhong et al., 2016a).

Chinese herbal medicine (CHM) has been used for centuries to
treat ischemic stroke, with proven clinical efficacy (Li et al., 2022).
Animal and cellular experiments have further demonstrated that
CHM monomers and decoctions can improve ischemic stroke
symptoms and provide neuroprotection by attenuating cerebral
I/R injury (Ding et al., 2019; Jiao-Yan et al., 2021; Tang et al.,
2021; Ni et al., 2022; Liao et al., 2023). These studies have found that
many Chinese medicines, including monomers and decoctions, can
attenuate cerebral I/R injury by modulating mitophagy (Zhang et al.,
2020a; Han et al., 2022a; Ji et al., 2022a; Huang et al., 2023a).
Interestingly, some of these medicines work by inhibiting
mitophagy, while others work by activating it. The ameliorative
effects of these herbs on ischemic stroke are consistent, regardless of
whether they inhibit or activate mitophagy. Furthermore, some of
these herbs are clinically used together in one herbal formula to treat
ischemic stroke (Ji et al., 2022a). There is limited literature on this
interesting phenomenon, and the exact reasons for it are unclear.
However, it demonstrates the potential and advantages of herbal
medicine in treating ischemic stroke by mediating mitophagy.

The current study briefly introduced the physiological functions
of mitochondria and the molecular mechanism of mitophagy,
further explaining the complex pathological mechanism of
mitophagy involved in cerebral I/R. We summarised the existing
evidence on Chinese herbal medicine targeting mitochondrial
autophagy to improve cerebral ischemic reperfusion. We also
discussed the potential therapeutic value of Chinese herbal
medicine for cerebral ischemic stroke. This may provide new
directions for future research.

2 Mitochondria and mitophagy

2.1 Mitochondrial dynamics and
mitochondrial quality control

Mitochondria are crucial organelles for energy metabolism in
the human body. They play a vital role in ATP production,

phospholipid biosynthesis and transport, calcium signaling and
iron homeostasis (Friedman and Nunnari, 2014). Mitochondrial
dysfunction can disrupt cell homeostasis, which is the pathological
basis of many diseases, including cardiovascular diseases,
neurodegenerative diseases and cancers. Mitochondria maintain
their quality control and dynamic balance through continuous
fission, fusion, motility and autophagy, which are regulated by
multiple mechanisms.

Mitochondrial fission is primarily mediated by dynamin-related
protein 1 (Drp1). Drp1 is a large GTPase, and also belongs to the
mitochondrial dynamin family. Drp1 is located in the cytoplasm and
can be recruited to the outer mitochondrial membrane to interact
with the four fission proteins involved in this mechanism
(Westermann, 2010): mitochondrial fission factor (Mff) (Otera
et al., 2010), mitochondrial dynamics protein of 49 kDa (Mid49)
(Palmer et al., 2011), Mid51 (Palmer et al., 2011) and fission1 (Fis1)
(Zhang and Hu, 2008). The combination of Drp1 and fission
proteins constricts mitochondria, resulting in the division of
mitochondria into separate entities (Figure 1A). An increasing
number of studies suggest that post-translational modifications
(PTMs) of Drp1 and fission proteins, such as phosphorylation,
dephosphorylation, ubiquitination, and polymerization, are
crucial in regulating mitochondrial fission (Yamada et al., 2018;
Yu et al., 2020; Kleele et al., 2021; Yu et al., 2021). Mitochondria that
have undergone mitochondrial fission become smaller and more
susceptible to mitophagy.

Mitochondrial fusion is also primarily regulated by dynamin-
related proteins, as shown in Figure 1C. Mitochondria are organelles
with double membranes, consisting of outer and inner membranes.
Mitofusin1 (Mfn1) and mitofusin2 (Mfn2) are proteins located in
the outer mitochondrial membrane (OMM) that mediate OMM
fusion, while Optic atrophy 1 (OPA1) is a protein located in the
inner mitochondrial membrane (IMM) that mediates IMM fusion.
Downregulation of mitochondrial fusion improves mitophagy
(Archer, 2013).

Mitochondrial motility is linked to mitochondrial dynamics.
Mitochondria are in constant motion along cytoskeletal tracks that
contain motility proteins, dynein and kinesin. The OMM protein
Miro combined motility proteins through milton. Research has
shown that the phosphorylation and degradation of Miro can
arrest mitochondrial motility (Wang et al., 2011).

Both mitochondrial fission and fusion are important quality
control mechanisms that regulate mitophagy and ensure
mitochondrial function. Fission separates depolarized
mitochondria from the network, and a coordinated
downregulation of fusion mediators prevents the re-integration of
these mitochondria, which then triggers mitophagy. Additionally,
the motility of mitochondria is also involved in mitophagy.

Mitophagy is a type of autophagy that selectively eliminates
mitochondria. Cellular autophagy, also known as type II
programmed cell death, refers to the self-digestive process in
which cells use lysosomes to degrade their own damaged,
denatured, or aged macromolecules and organelles under the
influence of external environmental factors (Dikic, 2017).
Autophagy is initiated in response to stimuli such as hypoxia,
starvation, and calcium overload. This process involves the
formation of a double-membrane cup-like dividing membrane
around the material to be degraded, which then forms a pre-
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autophagosome. The divided membrane gradually extends until the
degraded material is completely enclosed, forming the
autophagosome. Autophagosomes merge with lysosomes to form
autophagic lysosomes, which are eventually fully degraded and
absorbed (Palikaras et al., 2018) (Figure 1B).

2.2 Signaling pathways

2.2.1 Receptor-independent mitophagy
2.2.1.1 PINK1/parkin

Since the ubiquitin-proteasome system plays an important role
in mitophagy by degrading mitochondrial outer membrane
proteins, the synergistic interaction between the Ser/Thr kinase
PINK1 and the E3 ubiquitin ligase Parkin is one of the most
important signaling pathways for mitophagy and has been the
most studied (Wen et al., 2021). In normal cells, PINK1 remains
inactive in the cytosol due to the coordination between the
mitochondrial processing peptidase (MPP) and the rhomboid-like
serine protease PARL (Deas et al., 2011; Greene et al., 2012).
Mitochondria dysfunctions, such as the dissipation of
mitochondrial membrane potential (MMP), inhibit the MPP/
PARL-mediated process and promote the homodimerization and
autophosphorylation of PINK1. This, in turn, activate PINK1 and

facilitates the translocation of Parkin to mitochondria (Okatsu et al.,
2012; Aerts et al., 2015). PINK1 phosphorylates Parkin S65 in the
UBL domain and also phosphorylates mitochondrial ubiquitin
chains to promote Parkin activation for mitophagy both directly
and indirectly (Koyano et al., 2014). The ubiquitination and
phosphorylation of multiple OMM proteins lead to a feed-
forward signaling for mitophagy adapter proteins which link the
polyubiquitin signal with LC-3, resulting in the formation of
autophagosomes for mitochondria.

Recent studies have shown that deubiquitinases, such as USP8,
USP15 and USP30, play a crucial role in PINK1/Parkin-mediated
mitophagy. While USP8 promotes mitophagy (Durcan et al., 2014),
USP15 and USP30 remove the ubiquitin chains from mitochondrial
proteins, thereby inhibiting mitophagy (Bingol et al., 2014;
Cornelissen et al., 2014).

2.2.1.2 Mul1/Mfn2
Mitochondrial ubiquitin ligase 1 (Mul1) is a protein located in

mitochondrial membrane that triggers trigger mitophagy by
promoting the ubiquitination and degradation of the
mitochondrial fusion protein mitifusion1 (Mfn2). In skeletal
muscles and myoblast cultures, upregulation of Mul1 promoted
mitophagy by inhibiting Mfn2 (Lokireddy et al., 2012).
Mul1 deficiency increased Mfn2 activity and suppressed neuronal

FIGURE 1
Mitochondrial quality control includes fission, fusion and autophagy. (A) Mitochondrial fission depends on the recruitment of Drp1 from cytosol to
mitochondria to react with Drp1 receptor proteins Mff, Mid49, Fis1 and Mid51. (B) Mitochondrial autphagy requires various pathways, including PINK1/
Parkin, Mul1/Mfn2 pathways and receptor dependent pathways. The proteins on outer mitochondrial membranes and inner mitochondrial membranes
play vital role in the formation of autophagysomes. (C) mitochondrial fusion is regulated by dynamin-related proteins including Mfn1,
Mfn2 and OPA1.
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mitophagy (Puri et al., 2020). The Mul/Mfn2 pathway that regulates
mitophagy is thought to be Parkin-independent.

2.2.2 Receptor-dependent mitophagy
Several mitophagy receptor proteins, such as FUNDC1, BNIP3,

NIX and CL, are located on the mitochondrial membrane. These
proteins, including inner and outer membrane receptor proteins can
directly interact with LC-3B and promote mitochondrial autophagy
by recruiting autophagosomes to damaged mitochondria (Lampert
et al., 2019).

2.2.2.1 Outer membrane protein receptors
BCL2 and adenovirus E1B 19-kDa-interacting protein3 (BNIP3)

and BNIP3-like (BNIP3L), also known as NIX, are integral outer
mitochondrial membrane proteins. During hypoxia, BNIP3 is
upregulated, homodimerizes and binds to LC3 to induce
mitophagy. BNIP3L shares 53%–56% amino acid sequence
homology with BNIP3 (Zhang and Ney, 2009). Under hypoxic
conditions, BNIP3 and NIX are activated at the mRNA level in
anHIF-1α-dependent manner. BNIP3 binds and inhibits the activity
of Rheb, a mammalian Sirolimus target protein activator critical for
mTORC1 activation, which negatively regulates bulk autophagy and
mitophagy. Therefore, BNIP3 can activate mitophagy (Novak et al.,
2010). FUNDC1 is also an integral OMM protein that functions as a
receptor for mitophagy through its dephosphorylation (Liu et al.,
2012). Dephosphorylated FUNDC1 has greater binding affinity for
LC3 than NIX. Bcl-2-like protein 13 (BCL2L13) is a single-pass
membrane protein anchored to the outer mitochondrial membrane.
Its function is to regulate mitochondrial morphology and interacts
with ULK1 to localize the mitophagy initiation complex to
mitochondria (Murakawa et al., 2015; Murakawa et al., 2019).

2.2.2.2 Inner membrane protein receptors
Cardiolipin (CL) is a phospholipid dimer synthesized in the

inner mitochondrial membrane (IMM). It externalises to the
mitochondrial outer surface to interact with mitophagy proteins
and initiate mitophagy in response to mitochondrial injury and
depolarisation (Chu et al., 2013).

PHB2 is an IMM mitophagy receptor. Proteasomal-dependent
OMM rupture is necessary for PHB2 before it binds to LC3 II. The
LIR Domain of PHB2 is required for Parkin-mediated mitophagy
(Wei et al., 2017b). The mechanisms of mitophagy is shown
in Figure 1B.

3 The role of mitophagy in the
pathological mechanism of
cerebral I/R injury

3.1 Ischemia and hypoxia lead to
mitochondrial dysfunction and
induce mitophagy

The brain requires a significant amount of ATP to maintain its
function in the human body. Mitochondria are the primary source
of ATP production, resulting in higher mitochondrial content in
brain tissue than in other tissues (Tang et al., 2016). However, since
the energy storage in brain tissue is lower compared to other organs

in the body, even a transient ischemia-hypoxia state can cause severe
and potentially irreversible damage to brain tissue cells
(Tierradentro-García et al., 2023). When brain tissue cells
transition from normoxia to ischemia-hypoxia due to arterial
blood flow obstruction, cellular anaerobic metabolism is induced.
This impairs mitochondrial ATP synthesis, causes dysfunction in
the mitochondrial electron transport chain, and significantly
dissipates the mitochondrial membrane potential. These changes
affect the operation of cellular ion exchange channels. As a result,
Ca2+, sodium and hydrogen ions accumulate in the cell, leading to
hyperosmolarity and causing the cell to swell to a certain degree.
Additionally, cytoplasmic enzyme activity is impaired (Hofmeijer
and van Putten, 2012; Dharmasaroja, 2016). The mitochondria must
take up a large amount of Ca2+, which causes them to swell and
become impaired. To maintain cellular homeostasis, the cell must
engulf the damaged mitochondria (Lampert et al., 2019).
Furthermore, during ischemic hypoxia, intracellular antioxidant
levels decrease, leading to an overproduction of reactive oxygen
species (ROS) and promoting oxidative stress (Yingze et al., 2022).
mitophagy is induced as a means to reduce ROS levels (Shadel and
Horvath, 2015). In summary, ischemia and hypoxia result in
mitochondrial dysfunction and induce mitophagy through
various mechanisms.

3.2 Mitophagy has dual roles in cerebral
I/R injury

Mitophagy plays a dual role in cerebral ischemia reperfusion
injury, and the mechanism remains complex and controversial.

During the ischemic phase, pathological factors induce
mitochondrial dysfunction. The mitochondrial damage is a
significant contributor to the production of oxidative stress and
can lead to cell death (Granger and Kvietys, 2015). Restoring the
blood flow during the reperfusion stage brings fresh oxygen but also
leads to a high production of ROS. Mitophagy is a form of selective
autophagy that eliminates damaged mitochondria, attenuating
cerebral I/R injury (Baek et al., 2014a). Appropriate mitophagy
promotes the restoration of intracellular homeostasis to a certain
extent, thus providing neuroprotection. Promoting mitophagy
during the rapid phase of reperfusion favours neuronal survival
(Zhang, 2013; Liu et al., 2014; Yuan et al., 2017). It has been found
that activation of PINK1/Parkin-dependent mitophagy ameliorates
neuronal damage in the cortex and hippocampal CA1 region after
cerebral ischemia and removes damaged mitochondria (Wang and
Zhou, 2020; Wu et al., 2021). The neuroprotective effect of tPA on
CIRI can be achieved by promoting FUNDC1-dependent
mitophagy, which improves mitochondrial function and inhibits
apoptosis (Cai et al., 2021). It has been found that promotion of
mitochondrial autophagy through PINK/PARKIN-mediated
ubiquitination of PA2G4/EBP1 contributes to neuroprotection
after CIRI (Hwang et al., 2024).

However, if the stress caused by reperfusion is too high and
autophagy fails to relieve it, then cellular damage will still occur (Qin
et al., 2016). Excessive mitophagy can also induce cell death and
aggravate brain injury. The reperfusion of ischemic cerebral tissues
changes dynamically. Recent studies have shown that mitophagy
may have varying effects on neurons in response to ischemia and
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during different pathological stages of reperfusion. In the early stage
of CIRI, mitophagy can engulf a large number of functionally
impaired mitochondria, recycle the useful substances in them and
synthesize new mitochondria. The activation of mitophagy
facilitates the restoration of the balance of energy metabolism in
the brain. In the middle and late stages of CIRI, excessive mitophagy
will lead to a shortage of mitochondria, which is not conducive to the
recovery of brain injury (Baek et al., 2014b; Zhong et al., 2016b;
Sulkshane et al., 2021). However, the reasons for this change have
not been clearly investigated.

4 Regulation for management of
cerebral I/R injury

CHM are one of the common therapies used clinically for the
treatment of ischemic stroke in China. Natural compounds have also
gained the attention of many researchers in recent years. By
summarising some current in vitro and in vivo studies of CHM, we
explored the mechanism by which these herbs act on mitophagy and
thus alleviate CIRI. Moreover, CHM could regulate some important
pathological aspects of CIRI, such as calcium overload, inflammation,
apoptosis and oxidative stress through mitophagy. These interesting
phenomena may bring some inspiration for subsequent studies.

4.1 Monomers/decoctions promoting
mitophagy for cerebral I/R injury

Ligustilide (LIG) is a natural monomer isolated from
Ligusticum chuanxiong hort and Angelica sinensis (Oliv.) diels.
Both of them have the effect of activating blood circulation and
removing blood stasis in Chinese medicine. Recent studies have
shown that LIG protects hippocampal neurons from CIRI both in
vivo and in vitro (Gan et al., 2020; Sun et al., 2021). The research
found that LIG reduced hippocampal neuron injury in both middle
cerebral artery occlusion and reperfusion (MCAO/R) Sprague-
Dawley (SD) rat models and oxygen-glucose deprivation and
reoxygenation (OGD/R) HT-22 cell models. This was achieved
by significantly elevating the protein expressions of PINK and
Parkin (Mao et al., 2022), which enhance mitophagy. The
neuroprotective effects of LIG were counteracted by midivi-1, a
mitochondrial-autophagy inhibitor. Furthermore, the silencing of
PINK1 partially impeded the effect of LIG on mitophagy. Therefore,
it is possible that LIG can mitigate the ischemia/reperfusion injury
by activating mitophagy through the PINK1/Parkin pathway.

Panax notoginseng Saponins (PNS) is the main active
ingredient extracted from the rhizome of P. notoginseng (Burkill),
a traditional Chinese medicine. P. notoginseng is widely used
clinically to treat cardiovascular and cerebrovascular diseases
(Tong et al., 2019). Mitophagy inhibits the activation of the
NLRP3 inflammasome in cerebral ischemia (Shao et al., 2018;
Mai et al., 2019; Ren et al., 2019; Xu et al., 2019). The
inflammasome is central to the inflammatory response and
mediates many neurodegenerative diseases (Prabhakaran et al.,
2015; Mangan et al., 2018). PNS restrained
NLRP3 inflammasome activation and activated mitochondrial
autophagy via the PINK1/Parkin pathway in cerebral I/R injury

rat brains (Xiao et al., 2022). Xuesaitong (XST), a Chinese medicinal
preparation containing PNS, is widely used in the treatment of
ischemic stroke. A study showed that it combined with
dexmedetomidine I attenuated I/R injury by activating Keap1/
Nrf2 signaling and mitophagy (Han et al., 2022b).

Jionoside A1 is a native compound derived from Rehmannia
glutinosa (Di-huang), a Chinese medicine that is commonly used to
treat brain diseases, including stroke. Rehmannia glutinosa has been
found to be neuroprotective against acute cerebral ischemia and to
improve cognitive dysfunction (Fu et al., 2022; Wang et al., 2022).
Although the study did not show significant alterations in Parkin
and FUNDC1 expression, it did reveal that Jionoside
A1 significantly enhanced mitochondrial content and promoted
mitophagy in OGD/R and MCAO/R models by upregulating the
expression of NIX protein in ischemic stroke I/R injury (Fu et al.,
2022). Furthermore, Jionoside A1 was found to increase the cellular
ATP levels and decrease the release of LDH, which is an indicator of
neuronal cytotoxicity in the OGD/R model. Additionally, the
knockdown of NIX inhibited the aforementioned effects of
Jionoside A1 (Yu et al., 2023).

Baicalein 7-O-β-D-glucuronide (Baicalin), a natural flavonoid
isolated from Scutellaria baicalensis Georgi (Huang-qin or Chinese
skullcap), has been shown to provide neuron protection from
cerebral ischemia by inhibiting inflammation, reducing apoptosis
and regulating mitochondrial functions (Zhang et al., 2017; Hao
et al., 2023). In the MCAO/R model, Baicalin decreased infarction
volume and attenuated neurobehaviors (Li et al., 2017). Baicalin
treatment inhibited the expression of Drp1 and promoted the
synthesis of Mfn2, regulating mitochondrial fission and fusion.
Additionally, it suppressed the production of ROS and elevated
MMP in OGD/R PC12 cells through the activation of protein
kinase by adenosine monophosphate (AMPK), resulting in
suppressing cell apoptosis and enhancement of mitophagy (Li
et al., 2017).

Resveratrol (Res) is a natural extract from Rhizoma Polygoni
Cuspidati (Hu-zhang), a traditional Chinese medicine. It has an
overall neuroprotective role in ischemic stroke (Hou et al., 2018;
Ashafaq et al., 2021). Res activates autophagy by increasing the level
of phosphorylated AMPK in cerebral ischemia rats and attenuates
the mitochondrial failure in neuronal cultures (Pineda-Ramírez
et al., 2020). According to a study, Res controlled the PINK1/
Parkin-mediated mitophagy in OGD/R-injured neuron cells,
increasing cell viability and suppressing apoptosis (Ye et al.,
2021). The neuroprotective benefits of Res treatment were
diminished due to the inhibition of mitophagy caused by the
downregulation of PINK1 or Parkin.

Taohong Siwu Decoction (THSWD) is a compounded Chinese
medicinal preparation used to treat blood stasis diseases, including
stroke. The formula comprises six herbs: Tao-Ren [(Prunus persica
(L.) Batsch], Dang-Gui [A. sinensis (Oliv.) Diels], Shu-Di-Huang [R.
glutinosa (Gaertn.) DC.], Hong-Hua [Carthamus tinctorius L.],
Chuan-Xiong [Conioselinum anthriscoides] and Bai-Shao
[Paeonia lactiflora Pall]. THSWD has been found to alleviate
cerebral I/R injury by suppressing cell pyroptosis (Wang et al.,
2020), necrosis and neuroinflammation (Wang et al., 2021). It
increased the expression of autophagy-related proteins (LC3 and
Beclin1) and mitophagy marker proteins (PINK1 and Parkin), and
reduced reactive oxygen species (ROS), the NLRP3 inflammasome
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and pro-inflammatory cytokines in OGD/R-induced P12 cells (Ji
et al., 2022b; Shi et al., 2023). Furthermore, the formula also
significantly reduced neurological deficit scores and cerebral infarct
volume in MCAO/R rats (Shi et al., 2023). The effects of THSWD
above were blocked with the use of Mdivi-1 both in vivo and in vitro.

Dengzhan Xixin Injection (DX) is a widely prescribed Chinese
medicine injection derived mainly from Erigeron breviscapus
(Vaniot) Hand.-Mazz. (National Pharmacopoeia Commission,
2020). It has been widely prescribed for years to treat cerebral
ischemic stroke (Hu et al., 2020). The six components of DX,
including scutellarin, 3,5-OdiCQA, 4,5-O-diCQA, 3,4-O-diCQA,
caffeic acid and 5-O-CQA were determined using high
performance liquid chromatography (HPLC). Scutellarin was the
major representative compound with the highest concentration.
DX administration attenuated cerebral infarction volumes and

neuronal loss in rats and alleviated cerebral I/R injury by
activating mitophagy. This was achieved via stimulation the
protein expression level of LC3, PINK1 and Parkin (Yang et al.,
2022). DX reduced ROS and MDA levels and increased SOD levels.
DX intervention reversed the imbalance of ATP and MMP and
maintained mitochondrial ultra structure by increasing the number
of autophagic lysosomes. Interestingly, DX also decreased the
expressions pf apoptosis-related proteins including Bax, Cyto-c and
cleaved Caspase-3 and increased Bcl-2 level (Yang et al., 2022).

The table below summarises the studies on the promotion of
mitophagy in cerebral I/R injury by traditional Chinese
medicine (Table 1).

Figure 2 generally demonstrates the improvement of CHM for
cerebral ischemia reperfusion injury by inhibiting or promoting
mitophagy through different signaling pathways.

TABLE 1 Monomers/decoctions promoting mitophagy for cerebral IR injury.

Monomers/
Decoctions

Source In vitro model In vivo
model

Target Other
pathways

Chemical
structure

References

Ligustilide (LIG) Ligusticum chuanxiong
hort/Angelica sinensis

(Oliv.) diels

OGD/R-induced
HT-22 cells

MCAO/
R-induced

PINK1/
Parkin

—— Mao et al. (2022)

SD rats

Panax notoginseng
saponins (PNS)

Panax notoginseng (Burkill) —— MCAO/
R-induced

PINK1/
Parkin

NLRP3 Xiao et al. (2022)

SD rats

Jionoside A1 Rehmannia glutinosa OGD/R-induced
cortex primary
neuron cells

MCAO/
R-induced

NIX —— Yu et al. (2023)

SD rats

Baicalin Scutellaria baicalensis
Georgi

OGD/R-induced
PC12 cells

MCAO/
R-induced

Drp1/
Mfn2

AMPK Li et al. (2017)

SD rats

Resveratrol (Res) Rhizoma Polygoni
Cuspidati

OGD/R-induced rat
cortical neuron cells

—— PINK1/
Parkin

—— Ye et al. (2020)

Taohong Siwu
Decoction (THSWD)

Tao-Ren [(Prunus persica
(L.) Batsch]

OGD/R-induced
PC12 cells

MCAO/
R-induced
SD rats

PINK1/
Parkin

NLRP3 —— Ji et al. (2022)
Shi et al. (2023)

Dang-Gui [Angelica sinensis
(Oliv.) Diels]

Shu-Di-Huang [Rehmannia
glutinosa (Gaertn.) DC.],

Hong-Hua [Carthamus
tinctorius L.]

Chuan-Xiong
[Conioselinum
anthriscoides]

Bai-Shao [Paeonia lactiflora
Pall]

Dengzhan Xixin
injection

Erigeron breviscapus
(Vaniot) Hand.-Mazz

—— MCAO/
R-induced

PINK1/
Parkin

—— —— Yang et al.
(2022)

SD rats
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4.2 Monomers/decoctions inhibiting
mitophagy for cerebral I/R injury

Panax ginseng is a Chinese herbal medicine that has been used as
a tonic medicine for centuries in China. Ginsenoside compound
K(CK), an important saponin-like component of ginseng,
augmented mitochondrial fusion and attenuated mitophagy in
cerebral IR injury through the Mul1/Mfn2 pathway (Huang
et al., 2023b). The study found that Ginsenoside CK inhibited
mitochondrial dynamics imbalance and damage by reducing the
binding affinity of Mul1 and Mfn2, which in turn inhibited the
ubiquitination of Mfn2 by Mul1. Additionally, in OGD/R-induced
PC12 cells, Ginsenoside CK was found to rescue mitochondrial
dysfunction by promoting mitochondrial oxygen consumption. In
the cerebral I/R injury rat model, the infarct volume of the
pretreatment group was significantly smaller than that of control
group. Ginsenoside CK reduced mitochondrial fission and
mitophagy, counteracting I/R-induced neurological impairment
and mitochondrial dysfunction. The mitigation effect of
ginsenoside CK on mitophagy was markedly abrogated by
Mfn2 knockdown (Huang et al., 2023b).

Radix Rehmanniae, a medicinal plant, is commonly used in
Chinese medicine formulas for cerebral diseases (Zhou et al., 2016;
Fei et al., 2018). Rehmapicroside (Reh), a natural compound found
in Radix Rehmanniae, has neuroprotective effects against cerebral IR
injury by inhibiting peroxynitrite (ONOO−)-mediated mitophagy

activation (Zhang et al., 2020b). During cerebral ischemia
reperfusion injury, a large amount of NO and superoxide anion
(O2−) contemporaneously form ONOO−. ONOO− is a cytotoxic
factor that exacerbate neuronal damage by causing both oxidative
and nitrosative stress, leading to cerebral impairments in I/R
(Chen X. M. et al., 2013; Lourenco et al., 2017). It promotes
DRP1 nitration and the recruitment of DRP one to impaired
mitochondria, causing over-activation of mitophagy (Feng et al.,
2017; Feng et al., 2018a; Li et al., 2019). The study found that Reh
reacted with ONOO−, resulting in a decrease of ONOO−.
Additionally, Reh downregulated PINK1, Parkin, p62 and the
ratio of LC3-II to LC3-I in the OGD/RO-treated PC12 cells.
Reh attenuated infarct size and improved neurological deficit
scores in the MCAO rats by preventing the translocations of
PINK1, Parkin and Drp1 into mitochondria for mitophagy.
Furthermore, NADPH oxidases and iNOS expression were also
suppressed by Reh (Zhang et al., 2020b).

Naringin (4′,5,7-trihydroxy-flavonone-7-rhamnoglucoside) is a
bioflavonoid extracted from grapefruit and related citrus species,
and has also been found in many herbal medicines for various
diseases (Chen Y. et al., 2013; Li et al., 2014; Sharma et al., 2015).
Recently, Naringin has shown potential in protecting cerebral
neurons in different animal models including traumatic brain
injury (Cui et al., 2014), subarachnoid hemorrhage (Han et al.,
2016) and cerebral I/R injury (Gaur et al., 2009). Naringin reduced
excessive mitophagy activation in the ischemic brains during

FIGURE 2
the mechanism of CIRI is complicated, including oxidative stress, ion balance disturbance, inflammation responses, blood-brain barrier destruction
and mitophagy. CHM promoting mitophagy for cerebral IR injury include Ligustilide (LIG), Panax notoginseng saponins (PNS), Jionoside A1, Baicalin,
Resveratrol (Res), Taohong Siwu Decoction (THSWD) and Dengzhan Xixin injection. CHM inhibiting mitophagy for cerebral IR injury include Ginsenoside
compound K (CK), Rehmapicroside (Reh), Naringin, Artemisinin (ART), Chrysophanol (Chry), Xiao-Xu-Ming Decoction (XXMD). CHM regulates
mitophagy to alleviate cerebral I/R inury through various pathways. For example, Ligustilide promotes mitophagy through the PINK1/Parkin pathway.
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cerebral I/R injury by scavenging ONOO− (Feng et al., 2018b). It
also inhibited the production of superoxide and nitric oxide in SH-
SY5Y cells under OGD/RO condition. Additionally, Naringin
inhibited the expression of NADPH oxidase subunits and iNOS
in rat brains with cerebral I/R injury. Naringin decreased the
formation of 3-nitrotyrosine formation, inhibited the
translocation of Parkin to the mitochondria and reduced the
ratio of LC3-II to LC3-I in the mitochondrial fraction (Feng
et al., 2018b).

Artemisinin (ART) is a bioactive compound derived from the
plant Artemisia annua, known for its effectiveness in treating
malaria (Tu, 2016). Studies showed that ART inhibited
autophagy to alleviate apoptosis and oxidative stress in MPP(+)-
induced SH-SY5Y cells (Yan et al., 2021), and it possessed the ability
to reverse the oxidative stress damage aggravated by OGD/R
treatment in the human neuroblastoma SH-SY5Y cells (Jiang
et al., 2022). The antioxidative stress effect of ART is related to
PHB2-mediated autophagy prohibitin 2 (PHB2). Unlike other
autophagy receptors that target outer mitochondrial membrane

(Lazarou et al., 2015), PHB2 is a mitophagy receptor on
mitochondrial inner membrane that binds to LC3 and leads to
mitopagy (Wei et al., 2017a). ART impaired mitophagy by inhibiting
PHB2, which decreased the conversions of LC3I to LC3II. Silencing
PHB2 eliminated the protective effect of ART against OGD/
R-induced oxidative stress damage (Jiang et al., 2022). Other
studies showed that ART also reduced the inflammation by
activating Nrf2 and ROS-dependent p38 MAPK against cerebral
ischemia reperfusion injury (Lu et al., 2018).

Chrysophanol (Chry) is the main active ingredient isolated from
the rhizome of Da-Huang (rhubarb), a traditional Chinese medicine.
Chry alleviated cerebral I/R injury in mice though inhibiting
neuroinflammation and nitrosative/oxidative stress (Liu et al.,
2022a; Liu et al., 2022b). A study found that Chry reduced
mitophagy of hippocampus through inhibiting the expression of
LC3B and NIX in bilateral common carotid arteries occlusion and
reperfusion (CCAO/R)-induced Kunming (KM) mice (Cui et al.,
2022). The alleviation of cerebral I/R injury after Chry treatment
may function in inhibiting NIX-mediated mitophagy.

TABLE 2 Monomers/decoctions inhibiting mitophagy for cerebral IR injury.

Monomers/
Decoctions

Source In vitro
model

In vivo
model

Target Chemical
structure

References

Ginsenoside compound
K (CK)

Ren-Shen (Panax ginseng) OGD/R-induced
PC12 cells

MCAO/
R-induced

Mul1/Mfn2 Huang et al.
(2022)

SD rats

Rehmapicroside (Reh) Di-Huang (Radix Rehmanniae) OGD/R-induced
PC12 cells

MCAO/
R-induced

ONOO/
Drp1/Parkin

Zhang et al.
(2020)

SD rats

Naringin grapefruit OGD/R-induced
SH-SY5Y cells

MCAO/
R-induced

ONOO/
Drp1/Parkin

Feng et al. (2018)

SD rats

Artemisinin (ART) Qing-Hao (Artemisia annua) OGD/R-induced
SH-SY5Y cells

—— PHB2 Jiang et al. (2022)

Chrysophanol (Chry) Da-Huang (rhubarb) —— CCAO/
R-induced

NIX Cui et al. (2020)

KM mice

Xiao-Xu-Ming Decoction
(XXMD)

Huang Qin (Scutellaria baicalensis Georgi),
Shao Yao (Paeonia lactiflora Pall.)

—— MCAO/
R-induced
SD rats

—— —— Lan et al. (2018)

Gan Cao (Glycyrrhiza uralensis Fisch. ex
DC.), Fang Ji (Stephania tetrandra S.Moore)

Ren Shen (Panax ginseng C.A.Mey.)

Gui Zhi (Cinnamomum cassia (L.) J.Presl)

Xin Ren (Prunus armeniaca L.)

Ma Huang (Ephedra sinica Stapf), Chuan
Xiong (Conioselinum anthriscoides)

Fu Zi (Aconitum carmichaeli Debeaux)

Fang Feng (Saposhnikovia divaricata
(Turcz. ex Ledeb.) Schischk.)

Sheng Jiang (Zingiber officinale Roscoe)
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Xiao-Xu-Ming Decoction (XXMD) is a classical chinese herbal
medicine containing twelve herbs, including Huang-Qin (S. baicalensis
Georgi), Fang-Feng (Saposhnikovia divaricata (Turcz. ex Ledeb.)
Schischk.), Fang-Ji (Stephania tetrandra S. Moore), Ren-Shen (P.
ginseng C.A.Mey.), Gui-Zhi (Cinnamomum cassia (L.) J. Presl), Xing-
Ren (Prunus armeniaca L.), Ma- Huang (Ephedra sinica Stapf), Chuan-
Xiong (C. anthriscoides “Chuanxiong”), Fu-Zi (Aconitum carmichaeli
Debeaux), Shao-Yao (P. lactiflora Pall.), Gan-Cao (Glycyrrhiza uralensis
Fisch. ex DC.) and Sheng-Jiang (Zingiber officinale Roscoe). XXMD has
been widely used to treat stroke for thousand years in china. Studies
showed its improvement of cerebral injury after ischemia and
protection for neuron cells (Wu et al., 2022). Ferulic acid, zingerone,
and vanillic acid in XXMD were tested to be protective for OGD/
R-induced cells (Chen et al., 2022). XXMD preserved mitochondrial
integrity and function via inhibiting mitophagy and reduced apoptosis
via the mitochondrial p53 pathway in cerebral I/R injured rats (Lan
et al., 2014; Lan et al., 2018).

The table below summarises the studies on the inhibition of
mitophagy involved in cerebral I/R injury by traditional Chinese
medicine (Table 2).

5 Discussion

Due to the limited therapeutic options available for treating
ischemic stroke, researchers have increasingly focused on mitophagy
as a potential target. The studies mentioned above have shown that
regulating mitophagy can significally alleviate cerebral ischemia/
reperfusion injury, providing in vitro and in vivo evidence for
mitophagy as a new treatment option for ischemic stroke.
mitochondrial autophagy, as well as mitochondrial fission, fusion
and other processes are involved in adjusting the quantity and
quality of cellular mitochondria. This further regulates the processes
of cellular oxidative stress, inflammation, apoptosis, and pyroptosis,
achieving a therapeutic effect and significantly alleviating
neurological damage.

Currently, there are few drugs that modulate mitophagy for the
treatment of cerebral ischemia/reperfusion injury. However, traditional
Chinese medicine (TCM) has shown promising results as a
complementary treatment for ischemic stroke in China. Furthermore,
there is a substantial body of in vivo and in vitro evidence indicating that
TCM can mitigate cerebral ischemia/reperfusion injury. In recent years,
there has been a gradual increase in studies examining the regulation of
TCM monomers and combinations.

This paper summarises in vivo and in vitro studies of Chinese
herbal medicines that modulate mitophagy for the treatment of I/R
mechanism. It was found that different Chinese herbal medicines can
regulate mitophagy positively or negatively. When the organism has an
excess of damaged mitochondria in situations such as ischemia and
hypoxia, herbal medicines like LIG and PNS can activate mitophagy to
maintain cellular homeostasis. On the other hand, when excessive
mitophagy leads to a shortage of mitochondria in the organism, herbal
medicines such as Reh and ART can inhibit excessive mitophagy and
delay cell death. Therefore, both types of herbal medicines play a
significant role in ameliorating I/R. In a clinical herbal combination for
the treatment of ischemic stroke, different herbs have opposite effects
on mitophagy. However, the overall therapeutic effect is clear and
consistent, and may even be superior to that of the herbs alone.

Chinese medicine has a long history in China, and despite being
around for thousands of years, it is still widely used due to its good
clinical efficacy. Numerous in vivo and in vitro studies have provided
evidence of the mechanisms through which CHM monomers work to
treat diseases, but the complexity of TCM formulas has limited research
to date. We think that TCM formulas have more research potential
because the mechanisms of action between their various components
are thought to be more complex than those of TCM monomers.

In addition, we discovered that traditional Chinese medicine
regulates mitophagy to alleviate cerebral I/R inury through various
pathways. The promotion of mitophagy is dominated by the PINK1/
Parkin pathway, while the inhibition of mitophagy is achieved
through mitochondrial fission and fusion proteins, ubiquitin-
independent receptor proteins, and other pathways. After filtering,
the number of studies included in this paper is limited. While the
conclusion is not entirely rigorous, but it does offer some ideas for
subsequent experimental validation based on the previous hypotheses.

This paper provides a brief description of the mechanisms of
mitochondria and mitophagy and their roles in cerebral I/R injury. It
summarises in vivo and in vitro evidence that different TCMs
modulate mitophagy through different pathways, both positively
and negatively, thereby alleviating I/R. The next step is to
investigate how various active ingredients in the classic TCM
formula for ischemic stroke work together to improve cerebral
ischemia/reperfusion by maintaining mitochondrial homeostasis.
This will provide new insights for the clinical development of drugs.
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