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Celiac disease, a chronic autoimmune disorder caused by genetic factors and
exposure to gluten, is increasingly being recognized and diagnosed in both
children and adults. Scientists have been searching for a cure for this disease
formany years, but despite the impressive development of knowledge in this field,
a gluten-free diet remains the only recommended therapy for all patients. At the
same time, the increasing diagnosis of celiac disease in adults, which was
considered a childhood disease in the 20th century, has opened a discussion
on the etiopathology of the disease, which is proven to be very complex and
involves genetic, immunological, nutritional, environmental and gut microbiota-
related factors. In this review, we extensively discuss these factors and summarize
the knowledge of the proposed state-of-the-art treatments for celiac disease to
address the question of whether a better understanding of the etiopathogenesis
of celiac disease has opened new directions for therapy.
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1 Introduction

Celiac disease (CD) is a chronic, systemic small intestinal enteropathy that develops in
genetically predisposed individuals. In human leukocyte antigen (HLA)-DQ2 and/or HLA-
DQ8 positive people, exposure to dietary gluten activates immune response characterized
by specific serum autoantibody response in IgA and IgG class—anti-transglutaminase IgA
and anti-endomysial antibodies IgA and deamidated gliadin-related peptide IgA and
IgG—which results in pathological changes in small intestine such as crypt hyperplasia,
lymphocyte infiltration, and villous atrophy (Ludvigsson andMurray, 2019a; Pinto-Sanchez
et al., 2021).

The global prevalence of CD is estimated at 0.7%–1.4% of general population (Makharia
et al., 2022). In Europe, a higher prevalence has been reported in northern (1.6%) compared
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to eastern (0.98%), southern (0.69%), and western (0.60%) countries
(Roberts et al., 2021). These data are not dissimilar from those
reported in the United States, where Fasano et al. described a 0.8%
prevalence in 2003 (Fasano et al., 2003). In India, the estimated
prevalence is 1.04% (Makharia et al., 2011) with a geographical
gradient from North (where a wheat-based diet is frequent) to South
(Ramakrishna et al., 2016). Similar prevalence and gradient have
been reported in China (Yuan et al., 2017). Data from the remaining
geographical regions are based on the serological prevalence of
celiac-specific antibodies rather than biopsy-confirmed CD, but
all suggest a prevalence between 0.5% and 2%, with two notable
exceptions - in Japan, Fukunaga et al. (Fukunaga et al., 2018)
reported a <0.1% prevalence of confirmed CD in a population
study involving more than 2,000 subjects. The low prevalence in
this country can be attributable to a lower frequency of the HLA-
DQ2/DQ8 haplotype (Saito et al., 2000). On the contrary, an African
population originally living in Western Sahara, the Saharawi, has
been reported to have a particularly high prevalence of CD. In a
study involving 989 Saharawi children, the prevalence was 5.6%
(Catassi et al., 1999). Possible reasons include a relatively high level
of consanguinity, higher frequencies of HLA-DQ2 and
-DQ8 genotypes in their general population, and consumption of
elevated quantities of gluten (Catassi et al., 1999).

1.1 Genetic and immunological
determinants of celiac disease

Genetic determinants are the major contributing player to CD
susceptibility. To date, the major histocompatibility complex
(MHC) region is the most well-known hereditary component
that acts as a prerequisite for CD development, and the strongest
effects are attributed to the HLA-DQA1 and HLA-DQB1 genes.
Furthermore, almost all patients with CD possess specific variants of
human leukocyte antigen (HLA) DQ2 or DQ8 heterodimers – 90%–
95% of patients with CD have positive haplotype DQ2
(DQA1*0501/DQB1*0201), while 5%–10% have positive
haplotype DQ8 (HLA-DQB1*0302) (Ludvigsson and Murray,
2019a). Even though common HLA-DQ2/DQ8 haplotypes
increase the risk of the disease sixfold (Volta and Villanacci,
2011), the HLA-DQ2 and HLA-DQ8 haplotypes are not entirely
disease-specific, since a significant percentage of people, most of
whom do not have celiac disease, carry these alleles. Thus, it follows
that haplotypes DQ2 and DQ8 are necessary but not sufficient for
the development of CD (Bevan et al., 1999; Wijmenga and
Gutierrez-Achury, 2014; Lindfors et al., 2019).

Currently, the CD is characterized as a polygenic disease with a
complex, non-MHC pattern of inheritance, involving MHC and
non-MHC genes that together affect the genetic risk of developing
the disease. It is well-established that 6 MHC and 43 non-MHC loci,
including a higher number of independent genetic variants, are
associated with disease risk (Dieli-Crimi et al., 2015).

The MHC region, located on 6p21, carries relevant immune
function genes associated with most immune-mediated diseases.
The MHC region risk factors we mentioned earlier - HLA-DQA1
and HLA-DQB1 - account for about 22% of the heritability of CD
(Gutierrez-Achury et al., 2015). The complex peculiarities in this
region, characterized mainly by having numerous genes, high

polymorphicity, and linkage disequilibrium, made it very difficult
to identify new additional risk variants in this region. A few years
ago, precise mapping of theMHC region identified new independent
risk variants explaining about 2.5%–3% of disease heritability
(Gutierrez-Achury et al., 2015). HLA-DPβ1, HLA-B (classic
HLA-B*08 and HLA-B*39:06 alleles), and two SNPs, rs1611710,
which shows an effect on HLA-F expression, and rs2301226, which
shows an effect on B3GALT4 and HLA-DPB1 expression. Thus, it
follows that MHC risk variants account for 25% of the heritability of
the disease, leaving a significant portion still unexplained.

In the last years, extensive GWAS studies have shed new light on
the risk of CD, identifying independent genetic variants at non-HLA
loci that could clarify the complex genetics of this disorder (Smyth
et al., 2008; Dubois et al., 2010; Trynka et al., 2011; Coleman et al.,
2016). In the case of CD, the first GWAS study resulted in the
conclusive identification of the first non-HLA-related CD risk locus,
the IL2/IL21 region (van Heel et al., 2007). In the following years,
subsequent GWAS studies have shown as many as 14 new regions
associated with the development of CD (Hunt et al., 2008; Garner
et al., 2009). In 2009, Trynka et al. identified additional susceptibility
regions in the REL, OLIG3, and TNFAIP3 (Trynka et al., 2009)
increasing the number of non-HLA-related loci identified a year
later (Dubois et al., 2010). The same research group, using the
Immunochip platform in a study of a large cohort from seven
geographic regions, revealed 13 new loci associated with the disease
(Trynka et al., 2011). In subsequent years, new GWAS analyses have
contributed to adding more risk loci to the "non-HLA risk locus
family”. There were corresponding studies by Scandinavian groups
describing a risk locus involving theDUSP10 gene after stratification
for HLA-DQ risk factors (Östensson et al., 2013) or the Irish group’s
research—increasing the total number of common non-HLA CD
susceptibility loci by two more (ZNF335 and NFIA) (Coleman
et al., 2016).

The group of non-HLA genes has greatly expanded where the
majority have been reported to be related to other autoimmune
diseases, or those related to T and B cell functions such as antigen
presentation and cytokine production (Abadie et al., 2011). These
genes are involved in the peptide recognition and CD4+ T cell
presentation (HLA-B, HLA-DPB11, HLA-F1HLA-DQA1, HLA-
DQB1) (Gutierrez-Achury et al., 2015) differentiation (CCR1,
CCR2, CCR3, STAT4, PTPN2, RUNX3, THEMIS, ETS1, SH2B3,
IL12A, IL18R1, IL18RAP, IL1RL1, IL1RL2, CCR4 (Festen et al.,
2011a; Dieli-Crimi et al., 2015), survival (FASLG, TNFSF18),
migration (RGS1, ELMO RGS1, ITGA4) (Hunt et al., 2008),
activation of T and B cells (ICOSLG, RGS1, BACH2, POU2AF1,
TNFAIP3, ZFP36L1, MAP3K7, IL-21, CCR9, RGS1, CTLA4, ICOS3,
CD28,, RGS1, PRKCQ, KIAA1109, ADAD1, IL2, IL21, KIAA1109,
ADAD1, IL2, IL21, CTLA4, ICOS, CD28, CD80, PTPN 2, IL2,
FASLG, CD247, SH2B3, UBASH3A, PRKCQ, TAGAP,
ARHGAP31, RGS13 CTLA4, ICOSLG, RGS1, BACH2, POU2AF1,
TNFAIP3 and ZFP36L1) (Smyth et al., 2008; Dieli-Crimi et al., 2015)
or in antigen presentation (CD80, TNFSF4, CIITA, ELM01, NFIA)
(Abadie et al., 2011; Meresse et al., 2012). It is currently estimated
that the identified MHC genetic variants as well as the remaining
discovered non-MHC genetic variants explain about 31% of the
heritability of celiac disease. It is noteworthy that non-MHC variants
have been estimated to account for 6.5% of CD heritability, which
means, a much more important role of the classic, known MHC
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variants. Thus, it seems that the remaining variants responsible for
the largest part of heritability - accounting for practically 70%, are
low-effect variants (except for MHC variants) (Dieli-Crimi et al.,
2015). Genetic risk variants associated with celiac disease are
presented in Supplementary Table S1.

1.2 Nutritional determinants of
celiac disease

In the development of CD dietary factors are also crucial. These
primarily include exposure to gluten; a person who has never
consumed gluten will not develop CD (Ludvigsson and Murray,
2019b). However, it is noteworthy that the diagnosis rate of CD has
increased in recent years. This is partly explained by access to better
diagnostic tools but there is also much evidence of the contribution
of environmental and dietary factors (King et al., 2020).

For many years, breastfeeding and the time of introducing
gluten into the diet were considered as factors that could affect the
risk of developing CD. Even in the recommendations of the British
Society of Gastroenterology from 2014, we can read that children
who are breastfed during and after the introduction of gluten to the
diet may have a lower risk of developing CD and that large
amounts of gluten or exposure to gluten in children not
breastfed may increase the risk of developing celiac disease
(Ludvigsson et al., 2014). However, in the latest
2019 guidelines, the European Society for the Study of Celiac
Disease emphasizes that there is no evidence to support the thesis
that the time of breastfeeding or the time of introducing gluten into
the infant’s diet - at 4 months of age or between 6 and 12 months of
age–has an impact on the risk of developing CD (Al-Toma et al.,
2019). The results of two studies, PREVENTCD and CELIPREV,
are particularly highlighted (Lionetti et al., 2014; Vriezinga
et al., 2014).

The first study was a multicenter study conducted by Vriezinga
et al. (Vriezinga et al., 2014) on a group of 944 children from
8 countries with HLA-DQ2 or HLA-DQ8 positivity and at least
1 first-degree relative with CD. Children were divided into two
random groups–the first group, 475 participants received 100 mg of
immunologically active gluten daily between 16 and 24 weeks of age.
In the second group, 469 children received a placebo. At 3 years of
age, every participant underwent a biopsy to confirm or exclude
celiac disease. As compared with a placebo, the introduction of small
quantities of gluten at 16–24 weeks of age did not reduce the risk of
CD in the group of high-risk children. Also, gluten introduction
during breastfeeding did not show any protective effect on CD
development. Furthermore, the study revealed that breastfeeding -
exclusive as well as any breastfeeding - and duration of breastfeeding
did not significantly impact the development of CD (Vriezinga et al.,
2014). The second study conducted by Lionetti et al. compared the
time of gluten introduction in children born in Italy. Gluten was
introduced at 6 months of age in a group of 297 infants or at
12 months of age in a group of 256 infants. All children had a first-
degree relative with CD. In this study, the delayed introduction of
gluten and breastfeeding did not modify the risk of CD among at-
risk infants, although the later introduction of gluten was associated
with a delayed onset of disease but without influencing the overall
risk (Lionetti et al., 2014).

An interesting issue is also the amount of gluten in a child’s diet
in the context of the later development of CD. Three studies
(Andrén et al., 2019; Lund-Blix et al., 2019; Mårild et al., 2019)
were published in the 2019. Two of them were conducted in the at-
risk CD population, and one included children independent of HLA.
It was observed that higher gluten consumption in the first years of
life was associated with a higher risk of being diagnosed with CD or
CD autoimmunity. Ludvigsson comments that taking into account
the outcomes of these studies, 2 g of gluten per day which responds
to one extra slice of bread seems to be linked to a 20%–50% increased
risk of CD (Ludvigsson and Lebwohl, 2020).

In conclusion, there is no evidence that breastfeeding, as well as
breastfeeding while introducing gluten into the diet, reduces the risk
of developing CD. Also, the timing of introducing gluten into a
child’s diet does not seem to affect the development of the
disease–ESPGHAN recommends introducing gluten between
4 and 12 months of age although there is no recommendation
regarding the type and the amount of gluten to be used at
introduction (Szajewska et al., 2015; ESPGHAN, 2016; Silano
et al., 2016). At the same time, ESPGHAN suggests avoiding
large amounts of gluten during the first month after gluten
introduction (ESPGHAN, 2016).

It is also worth noting that our diet and lifestyle have changed
significantly over the last few decades. Several links could be made
between a Western-style diet (WD) and CD development but this
area has yet not been fully investigated. Nevertheless, WD can be
characterized as a high-caloric diet, rich in refined grains and sugar,
salt, saturated fats, and animal protein, and low in fiber, vitamins,
and trace elements (García-Montero et al., 2021). Such a
composition of diet could increase the risk of CD contributing to
gut dysbiosis and changes in intestinal barrier function. This can
increase intestinal permeability, further leading to mucosal
inflammation, leakage of toxic bacterial metabolites into the
circulation, and finally systemic endotoxemia and chronic
inflammation (García-Montero et al., 2021). Since WD is based
on processed foods, and low in fresh fruits and vegetables, its anti-
inflammatory and antioxidant status is low which also can
predispose to low-grade chronic inflammation (Malesza et al., 2021).

Furthermore, Malesza et al. (Malesza et al., 2021) state that
changes in microbiota induced by a high-fat diet that is common for
Western dietary patterns can also disrupt the expression of
inflammation- and metabolism-related genes, reduce short-chain
fatty acids (SCFA) production, increase lipopolysaccharide (LPS)
production and the activity endocannabinoid system. Authors
summarize that a high-fat diet enhances oxidative stress by
increasing reactive oxygen species (ROS) and reactive nitrogen
species (RNS) production, stimulating closely related ER stress,
downregulating gut peptide signaling pathways, and reducing
their secretion by enteroendocrine cells (Malesza et al., 2021). A
summary of dietary factors associated with CD is presented
in Table 1.

1.3 Gut microbiota and celiac disease

In normal conditions, the gut microbiota includes at least six
bacterial phyla: Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia
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(Arumugam et al., 2011). Changes in the composition and
function of gut microbiota have been linked to many
gastrointestinal diseases, including CD. Both cross-sectional
and cohort-prospective studies investigated the role of the
intestinal microbiome in CD.

Cross-sectional studies provided highly heterogeneous results.
Limitations of these studies included highly individual-specific
microbial profiles, small sample sizes, and spurious “healthy
controls” (actually including patients who underwent upper
digestive endoscopy for symptoms) (Valitutti et al., 2019).
Despite these limitations, a decrease in Bifidobacteria and an
increase in Bacteroides (both on feces and mucosal biopsies) were
commonly reported (Valitutti et al., 2019). More reliable

information about the dynamic changes in the gut microbiome
of CD patients came from prospective studies. In the PROFICEL
study, De Palma et al. (Palma et al., 2012) reported modification of
the gut microbiota before the actual development of CD. In detail,
infants with genetic susceptibility to CD had feces characterized by a
higher number of Bacteroides fragilis and Staphylococcus spp. and a
lower number of Bifidobacteria and B. Longum vs. healthy controls
(Palma et al., 2012). The same study group published two additional
studies. In the most extensive longitudinal analysis of gut
microbiota, Sellitto et al. (Sellitto et al., 2012) examined stool
samples at several time points (7 days, 30 days, 6 months,
8 months, 10 months, 12 months, 18 months, and 24 months) in
infants. The results of this study suggested relevant differences

TABLE 1 Diet-related factors associated with celiac disease.

Factor Impact References

Exposure to gluten Exposure to gluten may activate cell-mediated and humoral immune responses leading to
crypt hyperplasia, lymphocyte infiltration, and villous atrophy in the small intestine in
genetically predisposed individuals

Ludvigsson and Murray (2019b)

Time of gluten introduction to
the diet

The timing of introducing gluten into a child’s diet does not seem to affect the development
of the disease

Lionetti et al. (2014), Vriezinga et al. (2014)

Breastfeeding Exclusive/any breastfeeding, and breastfeeding at the time of gluten introduction, does not
reduce the risk of developing CD during childhood

Lionetti et al. (2014), Vriezinga et al. (2014)

Amount of gluten Higher gluten consumption in the first years of life is associated with a higher risk of CD
development

Andrén et al. (2019), Lund-Blix et al. (2019),
Mårild et al. (2019)

Western and high-fat diet Western-style diet possibly could predispose to CD development García-Montero et al. (2021), Malesza et al.
(2021)

1. Western and high-fat diets impact gut microbiota, driving gut dysbiosis

2. Gut dysbiosis results in a reduction of SCFA production, further increasing LPS
production and the activity endocannabinoid system, and decreasing antimicrobial Paneth
cell peptides

3. WD and high-fat diets increase ROS and RNS production, stimulating closely related ER
stress, further downregulating gut peptide signaling pathways, and reducing their secretion
by enteroendocrine cells

4. Reduction in tight junction expression, increased intestinal permeability, leakage of toxic
bacterial metabolites into the circulation, systemic endotoxemia, and chronic
inflammation

5. Dysbiosis and high-fat diet drive activation of TLR4 by LPS and SFA, NF-κB stimulation
and production of IL-6 and TNF-alfa, and activation of neutrophils and macrophages.
Increased secretion of bile acids can impair gut barrier function and have pro-
inflammatory effects

TABLE 2 Gut microbiota changes associated with celiac disease.

Observation Reference

Bifidobacteria and an Bacteroides Valitutti et al. (2019)

number of Bacterioides fragilis and Staphylococcus spp. Palma et al. (2012)

  number of Bifidobacteria and B. Longum

  Firmicutes and Proteobacteria, Sellitto et al. (2012)

Actinobacteria and Bacteroidetes were significantly restricted in children with a genetic predisposition to CD

number of enterotoxigenic E. coli (ETEC) in infants with a high genetic risk versus those of intermediate risk on formula feeding Olivares et al. (2018)

microbial species and strains linked to autoimmune and inflammatory conditions (e.g.,Dialister invisus, Parabacteroides sp., Lachnospiraceae)
and relative lack of species with anti-inflammatory effects (e.g., Streptococcus thermophilus, Faecalibacterium prausnitzii, and Clostridium
clostridioforme) before the diagnosis of CD in infants

Leonard et al. (2021)

Frontiers in Pharmacology frontiersin.org04

Skoracka et al. 10.3389/fphar.2024.1378172

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1378172


between the evolving microbiota of infants with a genetic
predisposition for CD compared to those from infants with a
non-selected genetic background. In detail, children with a
genetic predisposition to CD had increased Firmicutes and
Proteobacteria, while Actinobacteria and Bacteroidetes were

significantly restricted. Additionally, they also found that stool
microbiota in these infants did not stabilize, nor was it similar to
adult microbiota at 1 year of age (Sellitto et al., 2012). In another
study examining stool samples from infants at genetic risk within the
first week of life, and at 4 months and 6 months of age, a higher

TABLE 3 Environment-related factors associated with celiac disease.

Factor Impact References

Viral infections The cumulative effect of gliadin and viruses Stene et al. (2006), Bouziat et al. (2017), Lindfors et al. (2020), Barone and
Auricchio (2021), Oikarinen et al. (2021), Tapia et al. (2021)

Viral infections are involved in immune activation and the breakdown of
tolerance against gluten in genetically predisposed individuals

In infants, viruses could affect the maturation and development of the
mucosal immune system and cause long-term changes in the gut
microbiota

Viral ligands delay vesicular trafficking, and activate innate immunity, and
inflammatory markers, e.g., NFkB and MAPK, activate TLRs

Bacterial infections Mixed results Riddle et al. (2013), Dore et al. (2018), Amlashi et al. (2021)

Possible mechanism

Molecule mimicking; T cell receptor cross-reactivity between gliadin and
bacterial peptides

Smoking Significantly decreased risk of celiac disease compared with non-smokers Wijarnpreecha et al. (2018)

Persistent organic
pollutant

Higher odds of CD associated with specific persistent organic pollutant Gaylord et al. (2020)

Type of delivery Type of delivery is not an independent factor of celiac disease Koletzko et al. (2018)

FIGURE 1
Probiotic therapy in celiac disease (Kõiv and Tenson, 2021).
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TABLE 4 Completed and ongoing clinical trials concerning celiac disease novel treatment. Based on Alhassan E et al. Cell Mol Gastroenterol Hepatol. 2019;
8 (3):335–345. doi:10.1016/j.jcmgh. 2019.04.017 and Varma et al. Drugs. 2022 October; 82 (15):1515–1526. doi: 10.1007/s40265-022-01784–2. Epub
2022 October 17. PMID: 36251239.

Status Drug Therapeutic approach Clinical trial number
(trial phase)

Outcomes summary

Completed 1) IMGX003 (Latiglutenase) 1) Degradation of gluten peptides; peptidase
therapy

1) NCT00859391 (0) 1) Reduction of gluten-induced intestinal
mucosal damage and symptom severity
(NCT03585478)

2) AN-PEP Reduction of immunogenic potential of gluten NCT00959114 (2a) 2) No effect in preventing mucosal damage
after consumption of 7 g of gluten per day
for 2 weeks

3) BL-7010 2) Endopeptidase derived from the fungus
Aspergillus niger

NCT00669825 (I) 3) Not available

4) STAN-1 3) Prevention of gliadin breakdown into
immunogenic peptides

NCT01255696 (IIa) 4) No significant difference in tTG-IgA
concentration between groups: STAN-1 vs.
placebo for 12 weeks + gluten 1 g/day

5) KAN-101 4) Gluten degradation before absorption NCT01917630 (Iib) 5) Not available

6) Necator americanus
inoculation

5) Antigen-specific immune tolerance,
tolerogenic immunotherapy

NCT03585478 (II) 6) Symptom improvement, no changes in
intraepithelial lymphocyte counts and
Marsh scores, reduction in intestinal T cells
expressing IFN-γ after hookworm infection
with an increase in CD4 (+) Foxp3 (+)
regulatory T cells

7) Nexvax2 6) Gluten tolerization 2) NCT00810654 (I/II) 7) Well tolerated, discontinued — not
significant improvement

8) TIMP-GLIA (CNP-101) 7) Gluten vaccine and tolerization NCT02060864 (I) 8) Well-tolerated, prevention of gluten-
induced activation

9) AMG 714 8) Immune gluten tolerization NCT01335503 (I) 9) Not available

10) Larazotide acetate (or
AT-1001

9) Anti-IL-15 monoclonal antibody 3) NCT01990885 (I/II) 10) Symptom improvement, lack on data on
histologic improvement

11) TAK062 10) Tigh junction modulator, prevention of
gliadin-induced permeability, reduction of
small intestinal inflammation

4) NCT00962182 (I/II) 11) Safe and well-tolerated

12) RO5459072 11) Gluten degradation 5) NCT04248855 (I) 12) Not available

13) Hu-Mik-Beta-1 12) Inhibition of cathepsin S 6) NCT00671138 (I/II) 13) Not available

13) Cytokine receptor antibodies NCT00671138 (II)

NCT02754609 (I)

7) NCT02528799 (I)

NCT03644069 (II)

NCT03543540 (I)

NCT00879749 (I)

8) NCT03738475 (Iia),
NCT03486990

9) NCT02637141/
NCT02633020/NCT03439475

10) NCT01396213 (Iib)

NCT00386165 (I)

NCT00492960 (II)

NCT00362856 (II)

NCT00386490 (I)

NCT00889473 (II)

(Continued on following page)
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number of enterotoxigenic E. coli (ETEC) was identified in infants
with a high genetic risk versus those of intermediate risk on formula
feeding (Olivares et al., 2018). The Celiac Disease Genomic,
Environmental, Microbiome, and Metabolomic (CD-GEMM) was
another multicenter prospective study investigating blood and stool
biomarkers in infants at risk for CD (Leonard et al., 2015). The first
paper was published in 2021, reporting longitudinal analyses of gut
microbiota, functional pathways, and metabolites, starting from
18 months before CD onset in 10 infants who developed CD and
10 matched nonaffected infants (Leonard et al., 2021). The authors
found that the evolving microbiome of CD infants was characterized
by an abundance of microbial species and strains that had previously
been linked to autoimmune and inflammatory conditions (e.g.,
Dialister invisus, Parabacteroides sp., Lachnospiraceae). On the
other hand, a relative lack of other species known to have anti-
inflammatory effects (e.g., Streptococcus thermophilus,
Faecalibacterium prausnitzii, and Clostridium clostridioforme)
occurred before the diagnosis of CD (Leonard et al., 2021). Gut
microbiota changes associated with CD are presented in Table 2.

1.4 Environmental determinants of
celiac disease

Environmental factors appear to significantly influence the
development of CD. Common gastroenterological infections have

been shown to increase the risk of developing CD (Kagnoff et al.,
1984; Beyerlein et al., 2017; Kemppainen et al., 2017; Mårild
et al., 2019).

Studies indicate that enteral viruses in particular are associated
with the development of CD. Lindofrs et al. conducted a prospective
metagenomics screening of the stool virome in 83 CD genetically
predisposed children and 83 controls. They observed that frequent
exposure to enterovirus between 1 and 2 years of age was associated
with an increased risk of CD autoimmunity. Moreover, they revealed
that enteroviruses and higher amounts of gluten in the diet have a
cumulative effect on CD development (Lindfors et al., 2020).
Similarly, Khar et al. found that a higher frequency of
enterovirus, but not adenovirus infections, during early childhood
was associated with later CD in a cohort of 220 Norwegian children
(Kahrs et al., 2019). Oikarinen et al. confirmed the association
observed in two previous studies between enterovirus infections
and the later development of CD (Oikarinen et al., 2021). It is also
indicated that early-life parechovirus and rotavirus infections are
associated with subsequent CD in genetically at-risk children and
that also reovirus infection may trigger CD (Stene et al., 2006;
Bouziat et al., 2017; Tapia et al., 2021).

It seems that viral infections are involved in immune activation
and the breakdown of tolerance against gluten in genetically
predisposed individuals. Moreover, viral infections in infants
could affect the maturation and development of the mucosal
immune system and cause long-term changes in the gut

TABLE 4 (Continued) Completed and ongoing clinical trials concerning celiac disease novel treatment. Based on Alhassan E et al. Cell Mol Gastroenterol
Hepatol. 2019; 8 (3):335–345. doi:10.1016/j.jcmgh. 2019.04.017 and Varma et al. Drugs. 2022 October; 82 (15):1515–1526. doi: 10.1007/s40265-022-
01784–2. Epub 2022 October 17. PMID: 36251239.

Status Drug Therapeutic approach Clinical trial number
(trial phase)

Outcomes summary

NCT00620451 (II)

11) NCT03701555 (I)

12) NCT02679014

13) NCT01893775 (I)

Ongoing 1) TAK062 1) Gluten degradation 1)NCT05353985(II)

2) KAN-101 2) Tolerogenic immunotherapy 2) NCT05574010 (1/2)

3) AN-PEP 3) Endopeptidase 2) NCT05574010

4) Latiglutenase 4) Peptidase therapy 3) NCT04788797

5) TAK-101 5) Gluten degradation (IV)

6) Teriflunomide 6) Adaptive T cell activation 4) NCT04839575 (II)/
NCT04243551 (II)/

7) Deamidation and
sequestration

7) Gluten sequestration 5) NCT04530123 (II)

AGY 8) Anti-IL-23 monoclonal 6) NCT04806737

8) Immune targets Antibody 7) NCT03707730 (II)

Guselkumab 9) Anti-IL-15 monoclonal 8) NCT04704843 (Ib)

9) PRV-015 Anti-IL-
15 monoclonal antibody

Antibody 9) NCT04424927

10) PTG-100 10) A4b7 integrin antagonist (IIb)

10) NCT04524221 (Ib)
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microbiota (Kiliccalan, 2021). An interesting study was conducted
by Kemppanien et al. to investigate the relationship between
reported infections, rotavirus vaccination status, time to the first
introduction of gluten, breastfeeding, and risk of celiac disease
autoimmunity in the group of 6327 genetically predisposed
children aged 1–4 years from The Environmental Determinants
for Diabetes in the Young (TEDDY) study. They observed that
gastrointestinal infections increase the risk of CD autoimmunity
within the following 3 months by 33% and that the risk is modified
by HLA genotype, infant gluten consumption, breastfeeding, and
rotavirus vaccination. The risk of developing CD autoimmunity was
additionally higher in winter-born infants to whom gluten was
introduced before the age of 6 months, and 10 times higher in
children without the HLA-DQ2 allele (carrying the HLA-DQ8/8 or
HLA-DQ4/8 genotypes) and breastfed for less than 4 months. In
contrast, the risk was reduced in children vaccinated against
rotavirus who had introduced gluten into their diet before the
age of 6 months (Kemppainen et al., 2017). This study shows the
cumulative effect of risk factors (Barone and Auricchio, 2021).

Interesting results are also given by studies on bacterial
infections pointing to an inverse association between H. pylori
infection and CD development (Amlashi et al., 2021), although
Dore et al. did not find any relationship between H. pylori and CD
risk (Dore et al., 2018). In turn, Riddle et al. observed an increased
risk of CD following Campylobacteriosis (Riddle et al., 2013).

Among environmental factors, the relationship between
smoking and the development of CD, as well as the type of
delivery, was also examined. It was observed that smokers have a
significantly decreased risk of CD compared with non-smokers
(Wijarnpreecha et al., 2018). In turn, the mode of delivery was
not an independent risk factor for the development of CD
autoimmunity or CD in children in TEDDY cohort (Koletzko
et al., 2018).

Gaylord et al. (Gaylord et al., 2020) conducted a study to identify
whether persistent organic pollutants (POPs) which are endocrine
disruptors could be potential risk factors for CD. Authors found
higher odds of CD associated with specific POPs, in particular with
p,p’-DDE (p,p’-dichlorodiphenyldichloroethylene). This study is the
first to highlight the potential role of endocrine disruptors in the
development of CD. However, further research is needed
in this area.

Environment-related factors associated with celiac disease are
presented in Table 3.

2 Celiac disease novel therapies

Currently, the only effective form of treatment for CD is a strict
gluten-free diet. So far no drugs for celiac disease treatment have
been approved by the Food and Drug Administration. However,
given the numerous limitations of a gluten-free diet, including cost,
reduced quality of life, or lack of response to treatment with a gluten-
free diet in up to 7%–30% of patients, new treatment strategies are
being sought (Varma and Krishnareddy, 2022).

Refractory CD (RCD) is diagnosed when relapsing symptoms
persist despite a strict gluten-free diet (GFD) for more than
12 months and in the absence of other diseases, including overt
lymphoma. Treatment of RCD involves a combination of nutritional

support and immunosuppressive therapy - steroid therapy,
thiopurines infliximab, and mesalamine. However, this treatment
is often not effective (Al-Toma et al., 2019). Some patients diagnosed
with RCD may respond to trace amounts of gluten in the diet, even
below - considered safe for the vast majority of CD patients -
20 ppm. Hollon et al. conducted an interesting study on a group of
patients who were non-responsive to GFD treatment. The study
involved 17 patients who remained symptomatic despite adhering to
a strict gluten-free diet, six of whom were diagnosed with RCD
before entering the study. They were then placed on a 3–6 months
special diet consisting of unprocessed, whole gluten-free products
known as the Gluten Contamination Elimination Diet (GCED). Out
of the 17 patients, 14 (82%) responded positively to the GCED. After
undergoing GCED, all five previously diagnosed RCD patients
became asymptomatic and no longer met the criteria for RCD.
Out of the 14 patients who responded to the GCED, 11 (79%) were
able to successfully return to a traditional GFD without experiencing
a recurrence of symptoms (Hollon et al., 2013).

However, new approaches are being sought to treat CD more
effectively and move beyond a strict GFD. One proposed strategy
aims to reduce immunogenic gluten peptides through intraluminal
digestion. This involves the oral administration of exogenous
endopeptidases that digest gluten in the intestinal lumen. This
prevents gluten from reaching the lamina propria and
stimulating the immune system (Varma and Krishnareddy,
2022). Other proposed strategies aim at blocking immune
response to gluten peptides by:

• transglutaminase transglutaminase 2 (TG2) blockers
preventing deamidation of gluten peptides and their
efficient presentation to CD4+ T cells (Paolella et al., 2022);

• inhibiting epithelial damage driven by IL-15 with anti-IL15
antibodies or opposing the outgrowth of malignant IELs in
type II refractory CD;

• immunotherapy to restore gluten tolerance through
stimulation-induced death of small intestinal epithelial cells
and immune activation through the production of regulatory
T cells (Cerf-Bensussan and Schuppan, 2021; Varma and
Krishnareddy, 2022).

A promising new therapeutic approach is the first TG2 inhibitor
in clinical trials, ZED1227, which is an oral selective inhibitor of TG2
(Büchold et al., 2022). In phase 1 clinical studies consumption of
500 mg ZED1227 for up to 8 days turned out to be safe. In phase 2,
authors checked in remised patients with CD who were challenged
with daily gluten intake - 3 mg of gluten - for 6 weeks, if exposure to
ZED1227 prevents symptoms from recurring. The trial was a
randomized, double-blind, placebo-controlled, dose-finding study.
Authors found that the ZED1227 effectively attenuated gluten-
induced intestinal mucosal injury (Schuppan et al., 2021).

TAK-101, a gliadin encapsulation in negatively charged poly
(DL-lactide-glycolic acid) nanoparticles, is another promising
approach. In a phase 2 study, 33 patients with CD underwent a
14-day gluten challenge to assess whether TAK-101 induces
gluten-specific tolerance. The study found that the drug resulted
in an 88% reduction in interferon-γ spot-forming units compared
to the placebo (2.01 vs. 17.58, p = .006). Additionally, TAK-101
reduced changes in circulating α4β7+CD4+ (0.26 vs. 1.05, p = .032),
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αEβ7+CD8+ (0.69 vs. 3.64, p = .003), and γδ (0.15 vs. 1.59, p = .010)
effector memory T cells. TAK-101 was well tolerated and
prevented gluten-induced immune activation, so this
immunotherapy shows potential for CD treatment and requires
further clinical development (Kelly et al., 2021).

In addition, researchers focus on investigating modulators of
tight junctions, known as zonula occludens, regulating intestinal
permeability which is increased in CD patients resulting in the
activation of immune response to indigestible gluten peptides. This
process is mediated by a key tight junction modulator–zonulin.
Production of zonulin is induced–mainly–by bacteria overgrowth
and gluten that binds to receptor CXCR3 in erythrocytes (Fasano,
2020; Machado, 2023). On the other hand, zonuline activates tight
junction relaxation, causing the delivery of gliadin peptides to
lamina propria. The therapeutic approach targeting zonulin
seems to be promising since intestinal permeability is theorized
to be an initial promoting event in the etiologic of CD (Hoilat
et al., 2022).

One of the zonulin inhibitors, that blocks its receptor and acts as
an anti-zonulin receptor inhibitor, is larazotide acetate also known
as AT-1001 - a novel, eight-amino acids peptide (Hoilat et al., 2022).
Larazotide acetate rebuilds the disturbed tight junction complex,
preventing the intestinal permeation of gliadin (Slifer et al., 2021).

Larazotide acetate in phase I and II studies was shown to be safe,
well tolerated and to prevent worsening of gluten-induced symptom
severity and to suppress serological markers. However, a placebo-
controlled phase III study was terminated (Varma and
Krishnareddy, 2022).

A meta-analysis of four trials, including a total of 626 patients,
indicates that larazotide acetate is safe and more effective than
placebo in alleviating gastrointestinal symptoms in patients with
celiac disease who are challenged with gluten. However, it is
considered more of a supplement to a gluten-free diet rather
than a replacement for it (Hoilat et al., 2022).

Moreover, an important role in the degradation of intestinal villi
in CD patients appears to be IL-15, which is an inflammation-
stimulating cytokine. A study using the first anti-IL-15 monoclonal
antibodies - AMG 714 - was conducted by Lähdeaho et al. on a
group of 64 patients with CD (Lähdeaho et al., 2019). In a
randomized, double-blind, placebo-controlled, parallel-group
study, 150 mg and 300 mg of AMG 714 compared with placebo
in adults with CD after controlled gluten provocation, there was no
statistically significant difference in change in villous height to crypt
depth ratio from baseline after 12 weeks of treatment. However, at
the 300 mg dose, authors observed alleviation of some symptoms in
response to gluten ingestion assessed by lower - than at the 150 mg
and placebo dose - intraepithelial lymphocyte density, patient-
reported outcomes, and diarrhea. The authors indicate that the
study suggests that the inhibition of IL-15 is a viable strategy in the
treatment of CD and point to the need for further studies on non-
responsive to gluten-free diet CD (Lähdeaho et al., 2019).

Trials have been also conducted on antigen-specific
immunotherapy. Nexvax2 is a therapeutic vaccine that contains
three gluten peptides derived from wheat, barley, and rye, including
HLA-DQ2-restricted epitopes commonly recognized by gluten-specific
T-cells. However, studies have shown that the vaccine did not achieve
the desired effect of reducing symptoms caused by gluten consumption
and did not increase tolerance to gluten peptides (Goel et al., 2017).

Moreover, novel therapies include probiotic therapy that
potentially may improve gut microbiota composition and
maintain gut microbiota homeostasis, digest gluten peptides into
small polypeptides, and limit the availability of immunogenic
polypeptides to lamina propria (Krishnareddy, 2019; Varma and
Krishnareddy, 2022). The potential benefits of probiotics in the
treatment of celiac disease are presented in Figure 1.

Reviews of studies indicate that probiotics may improve
gastrointestinal symptoms in patients with CD, moderate the
immune response, and improve dysbiosis in patients with CD
and autoimmune CD. However, high-quality clinical trials are
needed to increase the certainty of the evidence (Seiler et al.,
2020; Mozafarybazargany et al., 2023). The positive impact of
probiotics on CD is primarily attributed to their ability to
improve the tightness of the intestinal barrier. Moreover, studies
have shown that bacteria from the Lactiplantibacillus and
Bifidobacterium genera, which possess extensive peptidolytic and
proteolytic activity, are particularly effective in breaking down
gluten compared to other intestinal bacteria (Moawad et al., 2023).

In 2023 Khorzoghi et al. observed that 12-week treatment with a
probiotic combination containing Bifidobacterium and
Lactiplantobacillus species and S. thermophilus resulted in a
reduction in the intensity of CD clinical symptoms - fatigue,
muscle discomfort, bloating, and a gassy feeling - compared to
placebo (Soheilian Khorzoghi et al., 2023).

However, it seems that probiotics are not seen as a promise for a
quick cure, but rather as a supplement to alleviate the severity and
symptoms (Kõiv and Tenson, 2021).

Moreover, endopeptidases of several Lactobacillus species–L.
ruminus, L. john donne, L. amylovorus, L. salivarius, L.
alimentaris, L. brevis, L. sanfranciscenis and L. hilgardi–can
degrade gluten peptides when added to the starter culture for
wheat bread production. This presents promising opportunities
for the practical application of these strains in gluten-free food
production.

In Table 4 we present ongoing and completed clinical trials
concerning pharmaceutical treatment of CD.

Another proposed approach, currently at the experimental stage,
is to bind gluten and prevent its further metabolism using poly
(hydroxyethylmethacrylate-co-styrenesulfonate). This method has
been shown to reduce the digestion of wheat gluten and barley
hordein, as well as attenuate the immune response to gluten in food
mixtures in rodents (Pinier et al., 2012). In contrast, Kaperchan et al.
proposed a series of gluten peptides in which the proline residues
were replaced by azidoprolines. These peptides bind to HLA-DQ2
with an affinity similar to that of the natural gluten peptide. Some of
these peptides are non-immunogenic and block gluten-induced
immune responses. Therefore, they could potentially be used to
develop HLA-DQ2-blocking peptides (Kapoerchan et al., 2008).

Technolodzy próbują też wykorzystać możliwości modyfikacji
genetycznej to reduce immunotoxic components of gluten
(Ghazanfar et al., 2023; PubMed, 2024).

3 Conclusion

Celiac disease is an immune-mediated disorder influenced by
genetic variants, with MHC variants explaining most of the
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heritability of CD. In addition to genetic factors, external factors also
play a role in increasing the risk of the disease.

Nutritional factors are one such external factor, however,
while several links have been suggested between a Western-
style diet and CD development, this area has not yet been
fully investigated. It is recommended to avoid large amounts
of gluten in the first month after gluten introduction, but there is
no evidence to support the protective properties of breastfeeding
or the timing of gluten introduction. The composition and
function of gut microbiota have been linked to CD and
common gastroenterological infections have been shown to
increase the risk of developing CD. The type of delivery is not
an independent factor in the development of CD or CD
autoimmunity. What is interesting, it has been found that
smokers have a significantly lower risk of developing CD
compared to non-smokers.

Currently, the GFD is the only widely accepted treatment for
CD, although there is ongoing research for novel therapies. The
investigations focus on reducing immunogenic gluten peptides,
blocking the immune response to gluten peptides, and
immunotherapy to restore gluten tolerance. Novel therapies also
include probiotic therapy and modulators of tight junctions that
regulate intestinal permeability. It is thought that a cure for CD,
which would offer an alternative to the gluten-free diet with its
many restrictions, is becoming more attainable as our
understanding of the causes and factors of CD increases.
However, most of the available options appear to complement a
gluten-free diet and offer the opportunity to improve
gastrointestinal symptoms among patients, rather than being a
direct substitute for a gluten-free diet.
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