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Background: Significant progress has been achieved in the management of
multiple myeloma (MM) by implementing high-dose therapy and stem cell
transplantation. Moreover, the prognosis of patients has been enhanced due
to the introduction of novel immunomodulatory drugs and the emergence of
new targeted therapies. However, predicting the survival rates of patients with
multiple myeloma is still tricky. According to recent researches, platelets have a
significant impact in affecting the biological activity of tumors and are essential
parts of the tumormicroenvironment. Nonetheless, it is still unclear how platelet-
related genes (PRGs) connect to the prognosis of multiple myeloma.

Methods: We analyzed the expression of platelet-related genes and their
prognostic value in multiple myeloma patients in this study. We also created a
nomogram combining clinical metrics. Furthermore, we investigated disparities
in the biological characteristics, immunological microenvironment, and reaction
to immunotherapy, along with analyzing the drug susceptibility within diverse
risk groups.

Results: By using the platelet-related risk model, we were able to predict
patients’ prognosis more accurately. Subjects in the high-risk cohort exhibited
inferior survival outcomes, both in the training and validation datasets, as
compared to those in the low-risk cohort (p < 0.05). Moreover, there were
differences in the immunological microenvironments, biological processes,
clinical features, and chemotherapeutic drug sensitivity between the groups
at high and low risk. Using multivariable Cox regression analyses, platelet-
related risk score was shown to be an independent prognostic influence in MM
(p < 0.001, hazard ratio (HR) = 2.001%, 95% confidence interval (CI):
1.467–2.730). Furthermore, the capacity to predict survival was further
improved when a combined nomogram was utilized. In training cohort,
this outperformed the predictive value of International staging system (ISS)
alone from a 5-years area under curve (AUC) = 0.668 (95% CI: 0.611–0.725) to
an AUC = 0.721 (95% CI: 0.665–0.778).
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Conclusion: Our study revealed the potential benefits of PRGs in terms of survival
prognosis of MM patients. Furthermore, we verified its potential as a drug target for
MM patients. These findings open up novel possibilities for prognostic evaluation
and treatment choices for MM.

KEYWORDS

multiple myeloma, platelet, prognostic gene signature, immune microenvironments,
biological functions, sensitivity to chemotherapeutic agents

1 Introduction

A cancerous plasma cell generated from bone marrow is
called multiple myeloma. It is a clonal plasma cell disease that
creates an excess of monoclonal immunoglobulin (Joshua,
2005). And it accounts for about 10% of all hematologic
malignancies (Joshua et al., 2019). In recent times,
substantial progress has been witnessed in the management
of multiple myeloma, encompassing intensive therapy,
transplantation of stem cells, the emergence of innovative
medications, drugs for specific targets, and new
immunomodulatory drugs (Joshua et al., 2019), improving
survival rates for patients of all ages (Libby et al., 2014;
Blimark et al., 2018). However, the clinical illness course is
highly variable due to underlying molecular variance
(Sonneveld et al., 2016). Although some patients achieve
long periods of remission after treatment, the most patients
will experience multiple relapses. Eventually, the remissions
become shorter in duration, and the patients die from
treatment-related complications or the disease itself (van de
Donk et al., 2021). As a result, additional robust prognostic
markers are required to improve forecast accuracy and to
supplement classic ISS or Revised International Staging
System (R-ISS) stages. A more effective risk categorization
approach is also required to help with the management of
MM patients.

Several studies demonstrated that platelet counts fluctuated
frequently during cancer progression, indicating poor
prognosis, especially in some malignant solid tumors such as
colon, stomach, ovarian and lung cancers (Sierko and
Wojtukiewicz, 2004; Gay and Felding-Habermann, 2011). In
addition to being crucial for all stages of platelet generation and
proliferation, a number of cytokines, including thrombopoietin
(TPO), interleukin-6 (IL-6), interleukin-11 (IL-11), and
interleukin-1b (IL-1b), are also involved in the pathology of
myeloma (Anderson et al., 1999; Lauta, 2001). sP-selectin, IL-6,
and TPO concentrations were observed to be significantly
higher in newly diagnosed MM patients than in healthy
individuals. Increased myeloma cell infiltration, platelet
activation, and elevated platelet-derived growth factor
(PDGF) expression in bone marrow stromal cells could all be
the cause of this (Lemancewicz et al., 2014). Numerous
substances that might affect the cancer microenvironment,
including fibroblast growth factor (FGF) and vascular
endothelial growth factor (VEGF), can be released by
activated platelets. These molecules can also drive tumor
angiogenesis. Additionally, platelets contribute significantly
to the supply of transforming growth factor (TGF)-β, which

helps tumor cells evade the immune system’s detection and
destruction (Neuzillet et al., 2015; Abdol Razak et al., 2017). In
addition to this, activated platelets can help bloodstream tumor
cells stick to the vessel wall, evade immune evasion, and
continue to exist and grow in the intended organs (Lei et al.,
2022). There are growing evidences that tumor invasion and
metastasis can be considerably decreased by blocking
platelet activity (Xiulan et al., 2022). Experimental data
indicated that platelet counts were halved and tumor growth
was significantly reduced in tumor-bearing mice following
administration of the anti-platelet antibody (Stone et al.,
2012). Nevertheless, it is yet to be determined if these
platelet-related genes are linked to the prognosis of
patients with MM.

Consequently, creating a platelet-related predictive model
to direct personalized treatment for multiple myeloma is
therapeutically useful. We created a predictive model using a
publicly available dataset of platelet-related genes. This study
further integrated bioinformatics analysis with extensive
validation using a considerable amount of samples from MM
patients in order to confirm the correlation between PRGs and
the prognosis of multiple myeloma. We also looked into the
model’s sensitivity to immunotherapy and chemotherapy drugs.
The prognostic accuracy of ISS and R-ISS was greatly improved
with the addition of our platelet-related model. Figure 1
summarized the procedure for data analysis. In conclusion,
this study not only provides a new factor that predicts the
prognosis of multiple myeloma, but also provides new
directions for multiple myeloma in targeted therapy and
immunotherapy research.

2 Materials and methods

2.1 MM data collection

We used the Gene Expression Omnibus (GEO) database
(https://www.gsea-msigdb.org/gsea/index.jsp/) to collect gene
expression profiles and relevant clinical data, and this study
employed three different datasets, namely, GSE136337,
GSE4204, and GSE24080. In preparation for subsequent
analysis, the expression profiles underwent a
log2 transformation. For a comprehensive overview of the
clinicopathological and survival data, please refer to Table 1.
In this study, platelet-related genes were extracted from the
platelet-related genomes available in the Gene Set Enrichment
Analysis (GSEA) database (http://www.gsea-msigdb.org/gsea/
msigdb). A grand total of 1247 genes were chosen for
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subsequent investigation. Supplementary Table S1 contains
information about the genes that overlap.

2.2 Construction and validation of a platelet-
related risk score

We utilized the GSE136337 dataset acquired from the GEO
dataset as a training cohort to create the risk score model
associated with platelets. In order to determine PRGs with
prognostic significance, we performed univariate Cox regression
analysis on the genes under consideration. A significance threshold
of p < 0.001 was applied to screen for genes with potential
prognostic associations. Subsequently, a platelet-related risk
model was constructed using Least absolute shrinkage and

selection operator (LASSO) Cox regression. The model’s
coefficients were derived from the previous step. By applying
this model, a platelet-related risk score was calculated for MM
patients in each dataset. In particular, the GSE4204 and
GSE24080 datasets served as validation cohorts. In order to
enhance patient stratification, the individuals in each dataset
were divided into cohorts of high-risk and low-risk, depending
on the risk score median specific to each dataset.

Survival disparities between different risk groups were
compared by generating survival curves and dot plots. The R
language package “stringr” was employed to create heat maps,
enabling a comparison of platelet-related gene expressions across
multiple datasets. Furthermore, receiver operating characteristic
(ROC) curves were utilized to confirm the sensitivity and
specificity of genes associated with platelets.

FIGURE 1
Workflow of data analysis in our study.
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TABLE 1 Clinical co-variates of the training and validation cohorts.

Characteristics Training cohort GSE136337
(N = 415)

Validation cohort GSE24080
(N = 559)

Validation cohort GSE4204
(N = 537)

Sex

Female 158 (38.1%) 222 (39.7%) -

Male 257 (61.9%) 337 (60.3%) -

Age

<65 years 299 (72.0%) 433 (77.5%) -

≥65 years 116 (28.0%) 126 (22.5%) -

Albumin

≥3.5 g/dL 331 (79.8%) 482 (86.2%) -

<3.5 g/dL 84 (20.2%) 77 (13.8%) -

β2M

<3.5 mg/L 197 (47.5%) 320 (57.2%) -

3.5–5.5 mg/L 106 (25.5%) 125 (22.4%) -

≥5.5 mg/L 112 (27.0%) 114 (20.4%) -

LDH

≤250 U/L 392 (94.5%) 509 (91.1%) -

>250 U/L 23 (5.5%) 50 (8.9%) -

Del (17p)

False 400 (96.4%) - -

True 15 (3.6%) - -

t (4,14)

FALSE 401 (96.6%) - -

True 14 (3.4%) - -

t (14,16)

FALSE 414 (99.8%) - -

True 1 (0.2%) - -

ISS

I 163 (39.3%) 296 (53.0%) -

II 133 (32.0%) 149 (26.7%) -

III 119 (28.7%) 114 (20.3%) -

R-ISS

I 149 (35.9%) - -

II 243 (58.6%) - -

III 23 (5.5%) - -

Risk score

High 206 (49.6%) 279 (49.9%) 268 (49.9%)

Low 209 (50.4%) 280 (50.1%) 269 (50.1%)

Survival

Alive 239 (57.6%) 287 (51.3%) 445 (82.9%)
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2.3 Comparative analysis of clinical
characteristics

Univariable and multivariable Cox regression analyses were
utilized to assess the influence of independent prognostic factors
on the overall survival in both the training and validation cohorts. In
addition, in the GSE136337 dataset, we examined clinical
characteristics and compared risk scores between subgroups to
identify potential subgroup differences.

2.4 Immune-related analysis and immune
treatment sensitivity of the platelet-
related model

To minimize variations arising from different algorithms, we
employed multiple algorithms to evaluate the immune
microenvironment of the subgroups. Specifically, estimating the
proportion of immune and cancer cells (EPIC) (Racle et al.,
2017), xCell (Aran et al., 2017), and single-sample genome
enrichment analysis (ssGSEA) were utilized for this purpose.
Furthermore, the correlations between eight platelet-related genes
and immune cells were assessed using the cell-type identification by
estimating relative subsets of RNA transcripts (CIBERSORT)
method (Newman et al., 2015). Utilizing these methodologies,
potential links between platelet-related genes and populations of
immune cells can be explored. Additionally, the immune cell
microenvironment scores of high-risk and low-risk groups were
assessed and compared through the implementation of xCell and
immunophenotype score (IPS) techniques (Charoentong et al.,
2017). This allowed us to obtain knowledge about the variations
in the composition of the immune microenvironment among these
subgroups. Moreover, we assessed the differences in immune
checkpoint responsiveness between the groups at high risk and
low risk, enabling us to evaluate the possible consequences for the
response to immunotherapy.

2.5 Drug sensitivity prediction

To compare the drug susceptibility between the low- and high-risk
groups, the R package “pRRophetic” was utilized, enabling a
comprehensive assessment of differences in drug response and
sensitivity.

2.6 Validation of mutations and interaction
network linked to platelet externally using
online databases

To validate the cellular expression of PRGs, the Cancer Cell
Line Encyclopedia database (CCLE) was utilized. The CCLE
database can be browsed through this link: https://portals.
broadinstitute.org/ccle. In order to examine the interactions
between proteins (PPIs) associated with platelet-related genes,
we obtained the PPI network linked to PRGs from the Search
Tool for the Retrieval of Interaction Gene/Proteins (STRING)
database (version 11.5) (https://www.string-db.org/).This

network analysis provided insights into the molecular
interactions and potential functional relationships among
these genes.

2.7 Gene set enrichment analysis

In order to explore potential underlying mechanisms linked to
the platelet-related genes, we carried out pathway analysis utilizing
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
We assessed enriched pathways across various datasets by utilizing
the Gene Set Enrichment Analysis (GSEA) v4.0.2 software (http://
software.broadinstitute.org/gsea/login.jsp). Our analysis considered
statistical significance as p < 0.05 and q < 0.25.

2.8 Construction and validation a combined
predictive nomogram

Utilizing the results obtained from univariable and
multivariable Cox regression analyses, we created a combined
nomogram facilitating prognostication of the overall survival
rates at 1-year, 3-year, and 5-year for MM patients. This
nomogram incorporated age, ISS stage, and the platelet-related
risk score as prognostic factors. To validate the performance of
the nomogram, calibration curves were plotted to assess its
accuracy in predicting patient outcomes. In addition, we
assessed the predictive abilities of ISS stage, platelet-related
risk score, and the nomogram through the application of
time-dependent ROC curves for the survival time points at
1 year, 3 years, and 5 years. Decision curve analysis (DCA) was
performed to assess the clinical usefulness of every individual
clinical characteristic and the risk score. This analysis allowed us
to assess the net benefits of each factor in terms of survival
prediction.

2.9 Cell lines and patients

The LP-1 and MM1.R cell lines, referred to as MM cell lines,
were acquired from Fenghui Biotechnology Co., Ltd in Hunan,
China. The cultivation of these cell lines took place in a controlled
environment within a humid incubator set at 37°C with 5% CO2.
The study included a total of 25MM patients and 15 healthy
individuals, and their clinical characteristics are presented in
Supplementary Table S2. The First Affiliated Hospital of Wenzhou
Medical University’s ethical committee granted the study permission.
All study participants gave their informed consent, and the research
followed the guidelines set forth in the Helsinki Declaration.

2.10 Quantitative real-time PCR

Bone marrow puncture was performed on 25 patients and
15 healthy people in the control group. And 5 mL of aspirate was
taken from their bone marrow. Bone marrow mononuclear cells
(BMMNC) were then isolated using density gradient centrifugation.
We employed the Righton DNA&RNA Blood and Tissue Kit (supplied
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by Righton Bio, Shanghai, China) to perform total RNA isolation from
the bone marrow of clinical MM patients and healthy volunteers,
adhering to the guidelines provided by the manufacturer. To generate
complementary DNA (cDNA), cDNA synthesis kits (obtained from
Vazyme, Nanjing, China) were utilized in the subsequent reverse
transcription step. To conduct PCR amplification, we employed the
Taq Pro Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China)
in accordance with the guidelines provided by the manufacturer. For
quantifying the expression levels of PRGs, we utilized quantitative
reverse transcription PCR (qRT-PCR). To serve as an internal
reference gene, β-ACTIN was selected, and the primers specified in
Table 2 were applied. To ensure accuracy and reproducibility, each
sample was subjected to three repetitions.

2.11 Statistical analysis

For the purpose of these tasks, multiple software programs
were utilized to conduct clinical evaluations and statistical
analyses. The software programs employed included
GraphPad Prism version 9.0.0 by GraphPad Software Inc. in
San Diego, CA, United States, SPSS version 25.0 by SPSS Inc. in
Chicago, IL, United States, as well as the widely used R
software developed by the R Foundation for Statistical
Computing in Vienna, Austria. In order to pinpoint the
potential PRGs, we carried out univariate Cox regression
analysis and LASSO regression analysis. Following that, we
conducted multivariate Cox regression analysis to evaluate
the predictive worth of the platelet-related risk score and
clinical characteristics. We compared the survival rates
through the utilization of Kaplan-Meier curves and log-rank
test. To examine variables that followed a normal distribution,
we utilized the independent t-test to make comparisons
between groups. Categorical variables, on the other hand,
underwent analysis using the Chi-square test. In situations
where the distribution was non-normal, we employed the
Mann-Whitney U test to compare two groups. For this
particular investigation, we deemed a significance level of
p < 0.05 as statistically meaningful. Regarding graphical
representations, p-values were denoted as follows: *: p <
0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
Additionally, the label “ns” conveyed a lack of statistical
significance.

3 Results

3.1 Subject selection and baseline covariates

In this research, we conducted an examination on the survival
information of 1511 individuals diagnosed with multiple
myeloma. The data was collected from three datasets,
specifically GSE136337, GSE4204, and GSE24080. The Cox
regression analysis for uni- and multi-variables included
subjects with relevant clinical co-variates from the training
cohort (N = 415; GSE136337) and the validation cohort (N =
559; GSE24080). Unfortunately, due to insufficient clinical
information, further Cox regression analyses could not be

conducted on the second validation cohort (N = 537;
GSE4204). Table 1 presents the clinical information for all
three datasets, providing a comprehensive overview of the
relevant patient characteristics.

3.2 Construction of a prognostic platelet-
related risk score

In the GSE136337 training cohort, we identified 18 platelet-
related genes that showed significant associations with survival
through univariable Cox regression analyses (p < 0.001). This is
depicted in Figure 2A. To construct the platelet-related risk
score, we applied LASSO Cox regression analysis and selected
eight genes with high coefficients (Figures 2B–D). Among these
genes, Transgelin 2 (TAGLN2), Filamin A (FLNA), Kinesin
Family Member 23 (KIF23), Familial hypercholesterolemia
(FH), H2B clustered histone 12 like (H2BS1, also known as
H2BC12L), and Inhibitor of nuclear factor kappa B kinase
regulatory subunit gamma (IKBKG) were identified as high-
risk genes, while Chromogenic in situ hybridization (CISH) and
Cathepsin W (CTSW) were labeled as low-risk genes. The
following formula was used to determine the platelet-related
risk score: platelet-related risk score = (0.1023 × expression of
TAGLN2) + (0.0277 × expression of FLNA) + (0.1552 ×
expression of KIF23) + (0.0067 × expression of FH) +
(0.0319 × expression of H2BS1) + (0.2144 × expression of
IKBKG)—(0.0672 × expression of CISH)—(0.0115 ×

TABLE 2 Primers used in the study.

Gene symbol Polarity Sequence 5′–3′

CISH forward CTGCTGATACCCGAAGCGACA

reverse GTTGATGACAAGGCGGCACA

TAGLN2 forward ACCCAGTGCCGAAAGGATGT

reverse GAAGATGTCAGTGGTGTTAATGCC

FLNA forward GGGACAGAAGGGCACGGTA

reverse CAGGCACTCGGGTTACAGG

KIF23 forward GAAGTGGGAGAAAGAATGTGAGC

reverse CAGTTTTAGGTTCGGTAACAATAGC

H2BS1 forward AGAAGGACGGCAGGAAGCG

reverse TTGTAATGCGGCAGGCGG

IKBKG forward GAGCAGCGTGGTGGGCAGT

reverse CGGAACGGTCTCCATCACAATC

PTEN forward AAGACCATAACCCACCACAGC

reverse TCATTACACCAGTTCGTCCCT

CTSW forward GAGTTACCTGAGCCCAGAAGA

reverse GCCCTCCGATAGCCATAG

β-ACTIN forward TCAAGATCATTGCTCCTCCTGAG

reverse ACATCTGCTGGAAGGTGGACA
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expression of CTSW). By employing this equation, platelet-
related risk scores were computed for every individual in
both the training and validation cohorts. Subsequently,
employing the median value of each set, the specimens were
categorized as high-risk or low-risk groups.

3.3 The prognostic capacity of the platelet-
related risk score

Using Kaplan-Meier curves, we examined the differences in
survival rates between the high-risk and low-risk cohorts. Our
results revealed that patients categorized as high-risk exhibited
inferior survival outcomes in comparison to those classified as
low-risk across all datasets (Figure 3A). These findings were
further supported by the dot plots (Figure 3C). In the dot
plots, dead and alive points represented the survivors and
deaths in each dataset respectively. And detailed data have
been shown in Table 1. The overall survival time for alive and
dead points were elevated in the low-risk group compared to the
high-risk group, which showed consistent patterns of worse
survival in the high-risk groups in each dataset. In order to
assess the precision and accuracy of the platelet-related risk
score, a time-dependent ROC analysis was performed. Within
the GSE136337 training dataset, the AUC for survival at 1-year,
3-year, and 5-year intervals were found to be 0.627 (95% CI:
0.498–0.756), 0.701 (95% CI: 0.628–0.775), and 0.712 (95% CI:

0.658–0.776) correspondingly, as shown in Figure 3B.
Furthermore, we compared the expression patterns of eight
PRGs across the three datasets using heat maps. Consistent
with the previously discussed formula for platelet-related gene
expression, the high-risk group displayed lower expression levels
of CISH and CTSW, while the other six genes exhibited an
opposite trend (Figure 3D). Notably, the time-dependent ROC
curves, heat maps, and dot plots of GSE24080 and
GSE4204 demonstrated similar trends to those observed
in GSE136337.

3.4 Comparative analysis of clinical
characteristics and drug sensitivity

We utilized both univariate and multivariate Cox regression
analyses to evaluate the forecasting potential of the platelet-
related risk score. Additionally, the influence of various
clinical factors such as sex, age, albumin, β2-microglobulin,
lactic dehydrogenase (LDH), ISS, and R-ISS stage were
examined utilizing identical methods in the GSE136337 and
GSE24080 datasets (Table 3). In the training dataset, the
multivariate analysis revealed a HR of 2.001 (95% CI:
1.467–2.730; p < 0.001) for the platelet-related risk score.
Similarly, in the validation dataset, the multivariate analysis
showed a HR of 1.530 (95% CI: 1.117–2.097; p = 0.008) for
the platelet-related risk score. The findings of the study

FIGURE 2
Construction of the platelet-related model. (A) Forest plot of hazard ratios manifesting the prognostic values of platelet-related genes. (B) LASSO
coefficients of the 8 predictor genes for constructing the prognostic model. (C,D) LASSO Cox regression analysis for variable selection.
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demonstrated that the platelet-related risk score maintained its
independent association with survival outcomes.

Our study conducted an investigation into the correlation
between risk scores and various clinical features in GSE136337.
Notably, higher levels of LDH, albumin, and β2-microglobulin were

consistently observed to be positively correlated with higher risk
scores, as illustrated in Figure 4A. Additionally, the study observed a
progressive increase in risk scores with higher ISS or R-ISS staging,
suggesting a direct relationship between disease severity and the
platelet-related risk score.

FIGURE 3
(A) Kaplan-Meier curves of patients in the high- and low-risk group (p < 0.0001). (B) The AUCof themodel assessed by time-dependent ROC curves.
(C)Dot plots comparing outcomes of subjects in the high- and low-risk cohorts. (D) The heat map displays results for the eight genes in both the training
and validation cohorts.
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Remarkably, this study examined the responsiveness of the
group at high-risk in comparison to the low-risk group towards
different therapeutic agents. The outcomes indicated that the high-
risk participants displayed a resistant response to etoposide,
methotrexate, lenalidomide, and doxorubicin, as affirmed by the
decreased half maximal inhibitory concentration (IC50) values
recorded for these drugs (Figure 4B). On the other hand, the
group at high-risk exhibited increased sensitivity to AMG.706
(motesanib), axitinib and imatinib, which are vascular endothelial
growth factor receptor inhibitors.

These findings provide valuable insights into the relationship
between platelet-related risk score and clinical features, further
highlighting the potential implications for personalized treatment
strategies based on risk stratification.

3.5 Immune-related analysis and immune
treatment sensitivity using platelet-related
risk score

The group comparison charts, which were created using
different algorithms, highlighted the disparities in the
immunological microenvironment between the high-risk and
low-risk groups.

The low-risk group outperformed the high-risk group in terms
of immunological and microenvironment scores, as determined by
the xCell technique. The group at high risk exhibited a slightly

elevated stromal score while it was not statistically significant. These
results imply an increased level of immune cell infiltration in the
group at low risk, as well as a greater level of stromal cell infiltration
in the high-risk group (Figure 5A).

Furthermore, we compared the differences in immune cells and
stromal cells between the high-risk and low-risk groups using the
Epic, xCell, and ssGSEA methods (Figures 5E,G,H). Across all three
approaches, we consistently noticed an increased extent of immune
cell infiltration within the low-risk group. This encompassed the
presence of γδ T cells, NK cells, effector CD4+ T cells and activated
B cells. Intriguingly, we also detected favorable associations between
CISH and CTSW expression and distinct immune cell subtypes,
including activated NK cells, activated CD4+ memory T cells and
CD8+ T cells, as determined by the application of the CIBERSORT
technique (Figure 5D). These cells of the immune system are
essential players in the process of combating tumors and are
linked to a positive prognosis for patients. These findings further
support and validate our initial hypothesis.

We also explored the variance in immune checkpoint molecule
expression among the high-risk and low-risk clusters. Remarkably,
our findings revealed that the high-risk cohort demonstrated
elevated levels of immune checkpoint molecule expression,
encompassing PD-L1, PD-L2, and CTLA-4. (Figure 5F). These
molecules play an essential function in governing the immune
response against tumors and inhibiting the activity of immune
cells (Yi et al., 2021; Fan et al., 2022). The potential justification
for targeted immunotherapeutic interventions is indicated by the

TABLE 3 Univariate and multivariate Cox regression analyses of survival in the training and validation cohorts.

Characteristics Training cohort
GSE136337 (n = 415)

Validation cohort
GSE24080 (n = 559)

Univariate
analysis

Multivariate
analysis

Univariate
analysis

Multivariate
analysis

Regression
coefficient (SE)

P Hazard ratio
(95% CI)

P Regression
coefficient

(SE)

P Hazard
ratio

(95% CI)

P

Age (<65 vs. ≥65 years) 0.580 (0.156) <0.001 1.754 (1.284–2.373) <0.001 0.198 (0.178) 0.267 - -

Sex (female vs. male) −0.246 (0.154) 0.11 - - −0.03 (0.155) 0.848 - -

Albumin (≥3.5 vs. <3.5 g/dL) 0.409 (0.177) 0.021 - - 0.653 (0.190) 0.001 - -

β2m (<3.5 vs.
3.5–5.5 vs. ≥5.5 mg/L)

0.424 (0.091) <0.001 - - 0.544 (0.088) <0.001 - -

LDH (≤250 vs. >250 U/L) 0.729 (0.270) 0.007 - - 1.347 (0.195) <0.001 - -

del (17p) 0.009 (0.417) 0.812 - - - - - -

t (4,14) 0.036 (0.455) 0.936 - - - - - -

t (14,16) 0.721 (1.004) 0.472 - - - - - -

ISS (Ⅰ vs. Ⅱ vs. Ⅲ) 0.502 (0.095) <0.001 1.519 (1.108–2.083) 0.009 0.558 (0.091) <0.001 1.644
(1.369–1.974)

<0.001

R−ISS
(Ⅰ vs. Ⅱ vs. Ⅲ)

0.594 (0.133) <0.001 1.043
(0.656–1.659)

0.857 - - - -

Risk (low vs. high) 0.783 (0.157) <0.001 2.001 (1.467–2.730) <0.001 0.613 (0.165) <0.001 1.530
(1.117–2.097)

0.008

Albumin, β2M, and LDH, were not included in the multivariate analysis, because of co-linearity with the ISS, or R-ISS.
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observed increase in PD-L1, PD-L2, and CTLA-4 among individuals
in the high-risk group.

Moreover, we utilized the IPS to further assess and compare
the immune-related scores between the high-risk and low-risk
groups. The IPS incorporates four distinct immune phenotypes:
antigen presentation (AP), effector cells (EC), suppressor cells
(SC), and checkpoints (CP). The comprehensive measure of
tumor immunogenicity, known as the IPS z-score,
incorporates the aforementioned scores and enables the
prediction of immune checkpoint inhibitor (ICI) therapy
response in different cancer types (Givechian et al., 2018).
When comparing the groups at high risk and low risk, it was
observed that the high-risk group exhibited higher scores for EC,
CP, and AZ (Figure 5B). Based on this discovery, it is implied that
individuals in the high-risk category might demonstrate
heightened receptiveness to ICI therapy. This aligns with the

prior analyses conducted on the disparities in immune
checkpoint function between these two cohorts. Furthermore,
we examined the correlation of IPS scores with eight genes, and
we observed a negative correlation between the protective genes
(CISH and CTSW) and immunosuppressive cells, as well as a
positive correlation with antigen presentation (Figure 5C). These
results align with our previous findings, further supporting the
notion that platelet-related genes may serve as valuable
indicators of the immune status in MM patients.

3.6 Investigation of biology functions based
on platelet-related risk score

A thorough examination was carried out to investigate the
biological functions linked to both the high-risk and low-risk

FIGURE 4
(A) Relationship between risk score and distinct clinical traits. (B) Evaluations of the drug susceptibility among the subtypes.
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groups. To delve into the enrichment of KEGG pathways associated
with genes related to platelets, GSEA was conducted on each dataset
(Figures 6A–C). By performing this analysis, a notable clustering of

enriched pathways was observed in the high-risk group, such as
proteasome pathway, cell cycle, DNA mending, nucleotide
elimination mending, along with the one-carbon reservoir of

FIGURE 5
Characterization of the tumor microenvironment and immune treatment sensitivity of the glycolytic model. (A) Immune-related scores calculated
by xCell. (B) Immune-related scores calculated by IPS. (C) Relationships of prognostic genes with distinct immune phenotypes. (D) Relationships of
prognostic genes with immune cells. (E) Comparison of immune cell infiltration levels between high- and low-scoring cohorts using EPIC. (F)
Comparison of 3 immune checkpoints expression between high- and low-risk groups. (G, H)Comparison of immune cell infiltration levels between
high- and low-scoring cohorts using ssGSEA and xCell.
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folate, which display close associations with the progression
of tumors.

After examining the Matascape database, we discovered two
pathways that exhibited a higher abundance of eight genes related to
platelets (Figure 6E). These pathways were cytokine signaling in the
immune system and platelet degranulation. Furthermore, using the
STRING database, we conducted an analysis of the interactions that

occur between the eight PRGs. The results revealed associations
between TAGLN2, KIF23, FLNA, and IKBKG, indicating potential
interactions and functional relationships between these genes
(Figure 6F). The biological mechanisms underlying the high-risk
group and the role of platelets in the progression of MM are
illuminated by these discoveries. Our understanding of the complex
interplay between platelets and tumor development inMM is enhanced

FIGURE 6
Investigation of biology functions based on prognostic platelet-related signature. (A–C) enriched pathways of the high-risk group in each cohort.
(D) The external validation of the expression levels of the eight genes using CCLE. (E) Enriched pathways among the eight PRGs obtained fromMetascape.
(F) Protein–protein interactions among the eight PRGs obtained from STRING.
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by the pathways and protein-protein interactions that have
been identified.

3.7 External validation using
online databases

The CCLE database revealed that TAGLN2, FH, FLNA,
IKBKG, and KIF23 were significantly upregulated at the

cellular level. In contrast, CISH and CTSW displayed
downregulation in the cellular level. It is worth noting that the
expression patterns of these genes except for H2BS1 align with
the previously mentioned model formula, indicating
their consistency with the platelet-related risk score
(Figure 6D). These results offer more proofs for the biological
significance and applicability of the discovered
platelet-related genes in the setting of multiple
myeloma.

FIGURE 7
Creation of a predictive nomogram to evaluate clinical application. (A) The nomogram for the training cohort based on age, ISS phase, and glycolytic
risk score. (B) To verify the accuracy of the 1-, 3-, and 5-year survival predictions, calibration plots were created. (C) Combined with various clinical co-
variates and time-dependent ROC analyses at 1, 3, and 5 years. (D) DCA were used to determine the survival net benefits of each clinical trait and the
risk score.

Frontiers in Pharmacology frontiersin.org13

Lin et al. 10.3389/fphar.2024.1377370

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1377370


3.8 Construction and validation of the
combined nomogram

Age and platelet-related risk scores were integrated into
combined nomograms to predict 1-, 3-, and 5-year survival rates
(Figure 7A). Calibration plots were employed to evaluate the
performance of the nomograms in forecasting survival rates over
the specified timeframes. Notably, the calibration plots of the
training cohort demonstrated a high degree of consistency
between the predicted and actual values of 1-, 3-, and 5-year
(Figure 7B). By incorporating age, ISS, and the platelet-related
risk score, the nomogram significantly enhanced the accuracy of

1-, 3-, and 5-year survival predictions in the training cohort. The
AUC of 1-, 3-, and 5-year improved from 0.717, 0.639, and 0.668
(using ISS alone) to 0.749, 0.692, and 0.721 (using the nomogram)
respectively, indicating the superior performance of the nomogram
in survival prediction (Figure 7C). Similarly, the validation dataset
(GSE24080) also demonstrated improved prediction accuracy with
the nomogram, yielding AUC values of 0.718, 0.687, and 0.692 for
1-, 3-, and 5-year survival respectively, compared to AUC values of
0.677, 0.634, and 0.647 obtained using ISS alone. The performance of
the nomogram surpassed other metrics when assessed using DCA
curves. Notably, the platelet-related risk score demonstrated
superior net gain in survival at 1, 3, and 5 years, further

FIGURE 8
External validation in MM cell lines (A) and patients (B) using qRT-PCR (Mean ± SEM). ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.
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reinforcing its role as a valuable independent prognostic marker
(Figure 7D). Using the same method, the nomogram was validated
at GSE24080, and the related images are shown in Supplementary
Figure S1. In summary, the platelet-related risk score serves as an
additional and reliable prognostic marker, complementing the
conventional ISS stage.

3.9 External validation using qRT-PCR

To further assess the predictive capacity of our identified
platelet-related genes in MM, we performed qRT-PCR
experiments on MM cell lines and patient samples. In line with
the platelet-related risk score formula, the expression levels of
TAGLN2, FLNA, KIF23, FH, H2BS1 and IKBKG displayed an
upregulation trend in MM1.R and LP-1 MM cell lines
(Figure 8A). Conversely, CTSW and CISH exhibited a
downregulation trend in these cell lines, consistent with the
predicted pattern based on the formula.

Moreover, we extended our analysis to MM patient samples,
comparing the expression of the PRGs with normal controls. The
results demonstrated that CISH and CTSW expression was lower in
MM patient samples compared to the normal controls, while the
other six genes exhibited an opposite trend, showing higher
expression levels in MM patient samples (Figure 8B).

4 Discussion

In recent years, novel antitumor agents such as proteasome
inhibitors and immunomodulatory drugs have led to advances in
overall survival (OS) in multiple myeloma (Rossi et al., 2013).
However, most patients will experience multiple relapses.
Eventually, the remissions become shorter in duration, and
the patients die from treatment-related complications or the
disease itself (van de Donk et al., 2021). The complexity and
instability of the genome in multiple myeloma significantly
impact treatment outcomes (Keats et al., 2012; Miller et al.,
2017). To increase these patients’ chances of survival, a more
precise OS prediction model for targeted therapy or
immunotherapy is therefore required.

The role played by platelets in multiple myeloma is complex. In
previous studies, P-selectin was demonstrated as a cellular adhesion
molecule that interacted with activated endothelial cells positioned
on the blood vessels’ surface and activated platelets (Daniëlle M
et al., 2017). Studies have shown that P-selectin plays a crucial role in
the initial metastatic phases of cancer through its interaction with
circulating malignant cells (Hans-Åke et al., 2021). Furthermore,
scientific experiments have provided evidence of a substantial rise in
P-selectin levels among individuals with recently diagnosed MM
when compared to those who are in good health (Dorota et al.,
2013). This occurrence could potentially stem from the activation of
platelets and heightened infiltration of myeloma cells (Abdel
Kareem et al., 2011). Furthermore, platelets release soluble factors
such platelet factor 4, CD40 ligand, and P-selectin, which contribute
to cancer-associated thrombosis (Hans-Åke et al., 2021). And it has
been shown that people with cancer exhibit these indicators of
platelet activation at higher levels (Hans-Åke et al., 2021). For

example, cancer cells have been shown to produce CD40L, which
stimulates platelet aggregation and activation. And in this way
promotes tumor metastasis (Wiktoria et al., 2022). Due to these
different mechanisms, platelets may represent potential
therapeutic targets.

Therefore, we created a prognostic model that was defined by
eight genes connected to platelets based on the dataset of
GSE136337 in our research. Additionally, The model performed
well on the external validation dataset GSE24080 and GSE4204. And
we verified that this platelet-related gene profile was an independent
factor of survival prognosis using multifactorial Cox regression.

As the protective prognosis marker, CISH plays a crucial role in
the control of immune-related signaling pathways, impacting the
polarization of lymphocytes and activation of myeloid cells through
the regulation of downstream signaling molecules involved in key
cytokines like IL-4, IL-6, and IFN-γ. Disruptions in CISH activity
can disturb these cellular processes, resulting in the onset of
inflammatory, autoimmune disorders and cancerous conditions
(Sobah et al., 2021). CTSW is a member of the cysteine protease
family. Most histones are found in antigen-presenting cells and are
involved in antigen processing. It has been shown that CTSW is
highly expressed in peripheral derived regulatory T cells (pTreg)
cells and plays an important role in inhibiting pTreg cell
differentiation and function (Li et al., 2023). And numerous
experiments have shown that Treg cells not only inhibit anti-
tumor immune responses, but also promote tumor
microenvironmental vascular regeneration (Chaudary and Hill,
2007; Kim et al., 2020; Li et al., 2024). Thus CTSW may inhibit
tumor development by suppressing Treg cell proliferation, which
requires further experimental demonstration.

Many of the identified platelet-related genes have been found to
have the potential to predict the prognosis of tumors and were
related to the biological process of platelets. TAGLN2, FLNA, KIF23,
H2BS1, IKBKG and FH were identified as negative prognostic
factors. Among them, FLNA is linked to numerous biological
processes, including cell signaling and motility. And it plays a
crucial role in cell migration and adhesion, which puts it in close
proximity to cancer invasion and metastasis (Kim et al., 2020).
Recently, it has been shown that FLNA interacts with its platelet
partners, including aIIbb3, the signaling pathway of the vascular
hemophilia factor receptor GPIb-IX-V, tyrosine kinase, and collagen
receptor glycoprotein VI (GPVI). And it is involved in platelet
activation (Rosa et al., 2019; De Silva et al., 2022; Ellis et al., 2024).
Moreover, TAGLN2 governs the dynamics of the cytoskeletal
protein actin by reinforcing actin filaments and plays a crucial
role in the remodeling procedures of the actin cytoskeleton,
encompassing cellular proliferation, differentiation, migration,
and programmed cell death (Dutta et al., 2021). Various studies
have shown that potentially carcinogenic factor TAGLN2 is altered
at the transcriptional and translational levels in a variety of
malignancies, including as leukemia, breast cancer, colorectal
cancer and lymphoma (Zhao et al., 2021; Pan et al., 2023). It has
also been suggested that TAGLN2 is associated with angiogenesis
(Zhao et al., 2021). However, the signaling pathways associated with
it in relation to cancer development are currently unclear and need
to be further investigated. KIF23 plays a key role in cell proliferation,
metabolism, differentiation, metastasis and survival through the
activation of PI3K/AKT/mTOR and Wnt/β/Linker protein
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signaling pathway (Huang et al., 2022; Jin et al., 2022), and has been
demonstrated in cancers such as gastric cancer and diffuse large
B-cell lymphoma (Gong et al., 2022; Bai and Liu, 2023). The role of
other negative genes in tumors still needs to be further discussed
and explored.

By biological function analysis, some pathways related to
platelets and tumors were enriched in the high-risk
group. Among them, the proteasome pathway, which is known
to interact with platelets, was shown to be strongly related with the
high risk group (Colberg et al., 2020). Furthermore, cellular
pathways like cell cycle, DNA mending, nucleotide elimination
mending, along with the one-carbon reservoir of folate, which
display a close association with the progression of tumors, were
also magnified in the group at high risk (Marteijn et al., 2014;
Hopkins et al., 2022; Liu et al., 2022). In Matascape database, two
pathways associated with platelet were found highly linked to the
eight genes. These pathways were cytokine signaling in the immune
system and platelet degranulation. Platelets play a pivotal role in the
advancement of tumors through initiating and clumping onto the
surface of tumor cells. This process prompts degranulation and
subsequent shielding of tumor cells against identification and
eradication by immune cells of the host (Wang et al., 2022; Liao
et al., 2023). This phenomenon promotes accelerated tumor cell
growth and facilitates metastasis. The enrichment of cytokine
signaling in the immune system further supports the involvement
of platelets in immune cell activities during the progression of
multiple myeloma (Li et al., 2022), consistent with previous findings.

Additionally, we found positive correlations between the expression
of positive genes and many immune cell subtypes, such as active CD8+

T cells, activated CD4+ memory T cells and activated NK cells. Within
the tumor microenvironment (TME), effector CD4+ T cells and γδ
T cells exert a crucial function in immune surveillance against tumor
growth (Park and Lee, 2021). Throughout the progression of MM, the
functionality of NK cells may undergo substantial modifications,
thereby ultimately impeding the advancement of the disease (Pazina
et al., 2021). Moreover, the activity of NK cells demonstrated a positive
correlation with the duration of disease remission among patients
diagnosed with MM (Pazina et al., 2021). Numerous investigations
have demonstrated that malignant plasma cells enhance their own
survival and proliferation by modulating the bone marrow
microenvironment, and that immunosuppression thereby raises the
risk of infection and subsequent cancer (Caro et al., 2022). The
development of relapse and medication resistance in plasma cells, as
well as their survival and proliferation, are all influenced by interactions
within the bone marrow microenvironment in multiple myeloma
patients (Yang and Lin, 2015). This is consistent with our findings.
Furthermore, the high-risk groups exhibited increased immunogenicity
and immune checkpoint expression levels. All of these findings point to
a complicated mechanism that the platelet-related high-risk group may
have that helps define the immune milieu and forecast immune-
targeted therapy.

We discovered that there were differences in the pharmacological
sensitivity between the low-risk and high-risk groups. The high-risk
group that showed resistance to etoposide, methotrexate, lenalidomide
and doxorubicin. All multiple myeloma patients get standard first-line
therapy consisting of dexamethasone, an oral immunomodulatory drug
(such as lenalidomide) and an injectable proteasome inhibitor (such as
bortezomib) (Cowan et al., 2022). Lenalidomide as an

immunomodulatory agent improves survival of multiple myeloma
patients through anti-proliferative and immunomodulatory effects
(McCaughan et al., 2022). In addition, The VDT-PACE
chemotherapy regimen, which consists of bortezomib,
dexamethasone, thalidomide, cisplatin, doxorubicin,
cyclophosphamide and etoposide, is very beneficial for patients who
have been diagnosed with severe diseases such plasma cell leukemia or
extramedullary plasmacytomas (Kapoor et al., 2012). This shows that
individuals with high platelet risk scores are resistant to typical
treatment for multiple myeloma, implying a shorter survival time,
which is consistent with our findings.

However, we found high sensitivity to vascular endothelial growth
factor receptor inhibitors such as motesanib, imatinib, and axitinib in
the high-risk group. This was consistent with our finding of high platelet
risk scores. Previous studies have found axitinib in combination with
chemotherapeutic or targeted agents improves antitumor efficacy in
many tumor models such as non-small-cell lung cancer and renal
cancer when compared to single agent treatment (Hoh et al., 2014;
Bondarenko et al., 2015). Because the combinations are linked to the
blockade of vascular permeability, angiogenesis, and concurrent
induction of apoptosis in tumor cells (Liu et al., 2019). Motesanib
and imatinib, as comparable inhibitors, have similar effects to axitinib
(Liu et al., 2019). This is consistent with the strong ICI treatment
response observed in the high-risk group mentioned earlier. And this
may suggests vascular endothelial growth factor receptor inhibitors and
immune checkpoint inhibitors may be new treatment options for
multiple myeloma.

However, our study has some limitations. Firstly, GEO database is
lack of specific treatment information so that we could not take
treatment into account in the survival prognosis of patients.
Secondly, our study is a retrospective analysis. So it is better to
perform a prospective multicenter study. Thirdly, the platelet-related
risk score included eight genes associated with survival, but contribution
of each gene in this formula should be studied. The link between these
genes and platelet-related biological processes and multiple myeloma
remains unproven, and detailed mechanisms still need to be explored at
the cellular and molecular levels. Ultimately, in terms of therapeutic
analysis, further studies are needed to confirm the therapeutic benefits
of antiplatelet drugs in MM.

In conclusion, our study firstly developed and validated a platelet-
related risk score for MM patients, which was recognized as an
independent factor influencing survival. The nomogram and
created eight platelet-related gene signature demonstrated
outstanding results in both internal and external cohorts. And the
trend of platelet-related genes in MM patients was demonstrated in
in vitro experiments. Drug selection for chemotherapy, targeted
therapy and immunotherapy drugs can be more effectively
directed for high-risk patients with the use of the platelet-related
risk score and nomogram. In addition to indicating the prognosis in
MM patients, platelet-related genes may also offer novel avenues for
therapeutic research in multiple myeloma.
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