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Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor
treatments. These aggressive cancer cells are preserved and sustained by
adjacent cells forming a specialized microenvironment, termed niche, among
which tumor-associated macrophages (TAMs) are critical players. The cycle of
tricarboxylic acids, fatty acid oxidation path, and electron transport chain have
been proven to play central roles in the development and maintenance of CSCs
and TAMs. By improving their oxidative metabolism, cancer cells are able to
extract more energy from nutrients, which allows them to survive in nutritionally
defective environments. Becausemitochondria are crucial bioenergetic hubs and
sites of these metabolic pathways, major hopes are posed for drugs targeting
mitochondria. A wide range of medications targeting mitochondria, electron
transport chain complexes, or oxidative enzymes are currently investigated in
phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article
aims to highlight recent literature on themetabolic adaptations of CSCs and their
supporting macrophages. A focus is provided on the resistance and dormancy
behaviors that give CSCs a selection advantage and quiescence capacity in
particularly hostile microenvironments and the role of TAMs in supporting
these attitudes. The article also describes medicaments that have
demonstrated a robust ability to disrupt core oxidative metabolism in
preclinical cancer studies and are currently being tested in clinical trials.
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Introduction

There is a consensus that conventional cancer treatments fail due to the failure to
eliminate tumor stem cells (CSCs), i.e., the stem, regenerative, and undifferentiated
component of the tumor. Tumor cells that survive treatment are more difficult to
eradicate, are aggressive, are responsible for relapses, and possess stem-like properties
overall (Baccelli and Trump, 2012; Fan et al., 2023). The expression of surface stemness
markers (e.g., CD44, CD133, CD25, ABC transporters), stemness genes (e.g., OCT4, SOX2,
NANOG) and aldehyde dehydrogenase 1-ADH1; the capacity for tumorigenicity when
transplanted into mice even at low clonal density and the ability to grow in culture in non-
adherent conditions forming spheres are classically used to identify CSCs. Although it is still
under debate whether tumor-initiating cell originates from the transformation of normal
stem cells or the clonal evolution of genetically unstable cells with a capacity for the
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interconversion of different cellular states (Jordan, 2004; Sell, 2010),
the concept of plasticity is central in CSC biology (Plaks et al., 2015).
The plasticity of CSCs enables them to adapt and survive throughout
biological stresses caused by the treatment and the continuous TME
changes during tumor evolution, allowing dynamic and reversible
transitions between quiescent and proliferative states, epithelial and
mesenchymal states, differentiation, and metastasis (Plaks et al.,
2015; Agliano et al., 2017; Müller et al., 2020; Romano et al., 2020).
Under a persistently hostile environment that can develop at either
the primary or metastatic tumor site, CSCs exploit evolutionarily
conserved adaptation mechanisms and become dormant (Garimella
et al., 2023), leading to a type of clinical remission, in which cancer
cells are occult, undetectable, and asymptomatic for a variably
protracted period, after which the tumor can recur in primary or
distant sites (Enderling et al., 2013). The extreme variability and
plasticity of CSCs due to genetic and epigenetic remodeling
(Garimella et al., 2023) make their targeting challenging.

The maintenance of CSCs is ensured by adjacent cells in the
TME, in particular by tumor-associated macrophages (TAMs) that
form a specialized microenvironment that supports their survival
against stress and injury and exerts a central role in maintaining
their self-renewal and resistance characteristics. Tumor adaptation
with the TME and interactions with TAMs throughout cancer
progression can also lead differentiated tumor cells to take on
CSC characteristics. (Ayob and Ramasamy, 2018).

Over the past decade, thanks to a deeper understanding of the
CSC biology of resistant tumors, numerous efforts have focused on
designing tailored therapies to target CSCs towards personalized
medicine (Khan et al., 2015). However, the results obtained to date
are far from conclusive and therapies against cancer stem cells
remain an unmet goal (Cole et al., 2020).

In recent years, our understanding of cancer metabolic
adaptations in a stressful TME has placed new hopes in modern
cancer chemotherapy that can hinder CSCs with their dynamic
cellular states by targeting the cornerstone of energy metabolism
(Ayob and Ramasamy, 2018). Metabolic adaptations of CSCs and
their supporting TAMs actually represent a demanding field of
investigation. Our article deals with such an urgent field of
investigation that may give new directions to cancer treatment.
We review the latest studies that converge on the perception that
mitochondrial function and OXPHOS metabolism meet the
requirements of CSCs and their supporting TAMs from different
tumor types. We offer an overview of therapies that disrupt the core
of oxidative metabolism and, having shown a robust ability against
CSCs in preclinical cancer studies, are currently studied in phase
1 and phase 2 clinical trials in their aspects of pharmacodynamics,
pharmacokinetics, bioavailability, toxicity, together to efficacy on
refractory and resistant tumors.

CSCs and the mitochondrial
respiratory machinery

The discovery that cancer has metabolic alterations dates back to
the early 1920s when the biochemist OttoWarburg first proved that,
oppositely to healthy cells, the metabolism of cancer cells mainly
relies on glycolysis, uncoupled to OXPHOS, even under normal
oxygen concentrations and fully functioning mitochondria. Tumor

cells encompass hypoxia and re-oxygenation (Belisario et al., 2020),
continuing their growth notwithstanding mutable environmental
conditions. High lactate levels in the TME favor tumor acidosis and
adaptation of cancer cells to hypoxia (Bononi et al., 2022). Hypoxia
exerts a selection pressure that leads to the survival of
subpopulations with the genetic machinery for malignant
progression induced by HIF-1α and HIF-2α (Allavena et al.,
2021). Lactate generated by glycolytic tumor cells is secreted
outside the cell through the monocarboxylate transporter (MCT)
4 and can be metabolized by adjacent cells (Martinez-Outschoorn
et al., 2017). In oxygenated areas, lactate enters the tumor cell
through MCT1 transporters and, upon conversion into pyruvate,
produces the so-called “reverse Warburg phenotype” (Marchiq and
Pouysségur, 2016). Pyruvate fuels the tricarboxylic acid (TCA) cycle
and mitochondrial respiratory chain, increasing the NADH/NAD +
ratio and mitochondrial biogenesis. In a physiological system of
mouse adipocytes, Yang et al. showed that increased NADH/NAD +
ratio induces Sirtuin 1 (SIRT1)-mediated deacetylation of the
peroxisome proliferator-activated receptor gamma coactivator-1α
(PGC-1α), leading to activation of such a pivotal promoter of
mitochondrial biogenesis (Yang et al., 2020).

Several studies highlight expression of MCT trasporters in
different cancer settings. Using varied tumor mouse models
(colorectal adenocarcinoma, human cervix squamous cell
carcinoma, hepatocarcinoma, lung adenocarcinoma), Sonveaux
et al. found MCT1 expressed on a subset of resistant cancer
stem-like cells and its targeting had clinical antitumor potential
(Sonveaux et al., 2008). They demonstrated that MCT1 inhibition
induced a switch from lactate-fueled respiration to glycolysis, which
overcame cancer resistance and induced sensitivity to ionizing
radiation (Sonveaux et al., 2008). Curry et al. interrogated head
and neck cancer (HNSCC) tissues to assess metabolic
compartmentation in primary tumors typically composed in
upper layer of differentiating squamous carcinoma cells and a
basal stem cell layer that regenerates the tumor. The basal layer
was mitochondrial-rich and specialized for the use of mitochondrial
fuels, such as L-lactate and ketone bodies and expressed high levels
of MCT1. Conversely, the majority of well-differentiated carcinoma
cells and cancer-associated fibroblasts (CAFs) showed strong
MCT4 immunoreactivity (Curry et al., 2013).

Pancreatic ductal adenocarcinoma (PDAC) cells do express
MCT1 and MCT4 (Kong et al., 2016). Through
immunohistochemistry of PDAC tissues, Sandforth et al.
demonstrated a co-localization of MCT1 with KLF4 (Sandforth
et al., 2020). Moreover, they demonstrated that MCT1 expression
on PDAC cell lines conferred greater potential of clonal growth,
along with drug resistance and elevated expression of the stemness
marker nestin and reprogramming factors (OCT4, KLF4, NANOG).
These effects on stemness properties were abrogated by targeting of
MCT1 (Sandforth et al., 2020). Pancreatic CSCs, defined using
spheres and enriched through CD133 marker, were also shown
to express increased levels of PGC-1α, demonstrated to be a relevant
determinant of their OXPHOS dependency (Sancho et al., 2015).
PGC-1α forced expression in CD133 pancreatic cancer cells
accelerated OXPHOS metabolism and enabled their self-renewal
and tumorigenic capacity (Valle et al., 2020).

MCT1 and MCT4 are expressed in glioblastoma tumors (Park
et al., 2018). Takada et al. measured an upregulation of MCT1 along
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with stem cell markers (Nestin, NANOG, CD133, SOX-2, and OCT-
4) in sphere-forming glioblastoma cells compared with adherent,
non-sphere forming cells. Inhibition of MCT1 decreased the
viability of glioblastoma CSCs compared with that of non-CSCs
(Takada et al., 2016). Mudassar et al. showed MCT1 transporters
were associated with high mitochondrial abundance in high grade
glioma cells (Mudassar et al., 2020). PGC-1α suppression hampered
spheroid formation of glioblastoma cells in vitro and their capability
to form in vivo tumors (Bruns et al., 2019). Other studies, associate
PGC-1α with cancer metastasis and resistance (Vazquez et al., 2013;
LeBleu et al., 2014). PGC-1α expression was co-induced with EMT
genetic program in breast cancer patients with distant metastasis
and poor outcome (LeBleu et al., 2014). Also, PGC-1α supports high
bioenergetic and ROS detoxification capacities of resistant
melanoma tumors with higher rates of survival under oxidative
stress compared to PGC-1α-negative melanomas (Vazquez et al.,
2013). Mitochondrial biogenesis is essential for the anchorage-
independent survival and propagation of stem-like cancer cells
(De Luca et al., 2015). For a review of MCT transporters in
cancer and the potential of new selective MCT1 and/or
MCT4 inhibitors in cancer therapeutics, we refer to Singh et al.
(Singh et al., 2023).

Evidence that oxidative phosphorylation is upregulated in CSCs
is increasingly emerging (Abdullah and Chow, 2013; Sancho et al.,
2016; Li et al., 2020; Karp and Lyakhovich, 2022). Studying one of
the most aggressive and resistant cancers, i.e., pancreatic ductal
adenocarcinoma, Viale et al. found that a subpopulation of dormant
tumor cells responsible for tumor relapse relied on oxidative
phosphorylation for survival and had features of cancer stem
cells (CD133+CD44high cells with spherogenic and tumorigenic
capabilities) (Viale et al., 2014). Valle et al. by changing the
carbon source from glucose to galactose in vitro, induced a
forced oxidative metabolism in pancreatic cancer cells (Valle
et al., 2020). Such a metabolic switch produced enrichment in
typical pancreatic CSC biomarkers (Hermann et al., 2007)
including pluripotency gene expression, tumorigenic potential,
upregulated immune evasion properties and acquisition of plastic
features such as a reversible quiescence-like state (Valle et al., 2020).
Dependency on mitochondrial metabolism has been demonstrated
in CSCs from ovarian cancer, identified through coexpression of
CD44 and CD117 and tumor-initiating capacity (Pastò et al., 2014).
In ovarian cancer patients, comparative transcriptome analyses
from ascites-derived tumor cell spheroids versus tumor samples
revealed upregulation of genes involved in oxidative
phosphorylation process along with those of chemoresistance, cell
adhesion and cell-barrier integrity (Ding et al., 2021).

In small cell lung cancer, resistant CSC-like cells, identified
based on selective expression of urokinase-type plasminogen
activator receptor (uPAR+), showed higher dependency on
oxidative phosphorylation than non-CSCs (uPAR−) (Gao et al.,
2016). The glycosylphosphatidylinositol (GPI)-anchored protein
uPAR is associated with multidrug resistance and with high
clonogenic activity (Gao et al., 2016). Vlashi et al. showed that
stem/progenitor cells from neurospheres depended on oxidative
phosphorylation and higher ATP content compared with
differentiated glioblastoma cells derived from culture in
monolayers (Vlashi et al., 2011). They also show that such a
OXPHOS dependence is lost during differentiation and

accompanied with a switch to aerobic glycolysis (Vlashi et al.,
2011). Evidence that mitochondrium is a relevant target to
overcome resistance of colorectal CSCs are reviewed by Rainho
et al. (Rainho et al., 2023). Following metabolic profiling of primary
chronic myeloid leukemia (CML) cells, Kuntz et al. found a three-
fold increase in the rate of mitochondrial oxygen consumption along
with a pattern of metabolites indicating increased lipolysis and fatty
acid oxidation in the stem cell-enriched population (CD34+CD38−),
compared to differentiated CML cells (CD34−) (Kuntz et al., 2017).
Inhibition of oxidative phosphorylation by tigecycline, an anti-
bacterial FDA-approved antibiotic, produced a selective cytotoxic
effect on CSC at clinically administrable doses (Kuntz et al., 2017).
This study highlights that although the nature of CSCs differs and
different origins of CSCs are postulated between hematological and
solid tumors (Bonnet and Dick, 1997; Jordan, 2004), the
requirements of CSCs appear to be met by oxidative metabolism
across different tumors.

The concept of metabolic symbiosis between hypoxic/glycolytic-
and OXPHOS-tumor cells that favors rapid adaptation of cancer to
changing environmental oxygen conditions (Nakajima and Van
Houten, 2013) can virtually unravel an interplay between non-
CSCs and CSCs in which differentiated tumor cells provide
glycolysis products that fuel oxidative metabolism of the stem,
regenerative and resistant cellular component of the
tumor. (Figure 1).

OXPHOS and multidrug resistance

Increased activity of ATP binding cassette (ABC) transporter
family members involved in multidrug resistance is a common
feature of CSCs (Begicevic and Falasca, 2017). There are several
efforts focused on creating druggable molecules to inhibit these
transporters. Five-cyano-6-phenylpyrimidin derivatives containing
an acylurea moiety demonstrated efficacy in inhibiting
P-glycoprotein ABCB1, a leading member of ABC transport
proteins found to be widely overexpressed in human solid
tumors and hematologic malignancies (Wang et al., 2018a; Wang
et al., 2018b). ABC transporters are highly dependent on ATP since
they use the energy from ATP hydrolysis to pump substrates out of
cells (Linton and Higgings, 2007). ATP generated by the respiration
of mitochondria in the proximity of the plasma membrane and
transported from the mitochondrial matrix to the cytosol nearby
plasma membrane produces a local rise of ATP level for the active
transporter’s need (Linton and Higgings, 2007), thus explaining why
mitochondrial and not glycolytic ATP preferentially fuels ABC
transporter activity in chemoresistant cancer cells (Linton and
Higgings, 2007). In a model of chemoresistant cancer cells,
Giddings et al. found that methylation-controlled J protein
(MCJ) affected ABC transporter function through regulation of
mitochondrial respiration (Giddings et al., 2021). MCJ localizes
on the inner membrane of mitochondria and negatively regulates
Complex I thus acting as an endogenous brake on mitochondrial
respiration (Hatle et al., 2013) As MCJ is often downregulated in the
tumors, the authors generated MCJ mimetics and investigated their
capability to inhibit ABC transporter function and therapeutic
efficacy in combination with doxorubicin, using ovarian and
mammary cancer cells and an in vivo mouse model of mammary
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tumor (Giddings et al., 2021). MCJ mimetics attenuated
mitochondrial respiration in chemoresistant cells and reversed
cancer chemoresistance in vivo tumor model MCJ-KO. The
tumors of mice treated with a combination of MCJ mimetics and
doxorubicin showed a prominent size reduction compared to those
treated with doxorubicin alone. There was no evidence of liver and
heart toxicity by MCJ mimetics nor effect on mouse body weight
(Giddings et al., 2021). Although not selectively involving CSCs, the
study by Giddings et al. sheds light on the aspect of chemoresistance
closely linked to the stem-cell-like concept.

OXPHOS and tumor dormancy

Dormancy is a strategy adopted by a tumor cell placed in a
persistently hostile environment that exploits evolutionarily
conserved adaptation mechanisms to succeed in tumor progression
(Merlo et al., 2006). Proliferation arrest, metabolic quiescence, and
immune occultation are the main features of tumor dormancy
(Enderling et al., 2013). Dormant cancer cells can reawaken in
response to signals which are not yet fully understood, resulting in
recurrence and metastasis (Gao et al., 2016; Park and Nam, 2020).
Adapting newly arrived cancer cells to the microenvironment of distal
organs is a stringent rate-limiting step in metastasis, and the
probability of completing this step varies widely depending on the
tumor type and the target organ. A study of the metabolic signature
associated with disseminated cancer cells suggested an activation of
mitochondrial bioenergetic pathways (TCA cycle and OXPHOS) and
the pentose-phosphate pathway (Dudgeon et al., 2020) upon seeding.
Newly seeded cancer cells slow down bioenergetics and become
dormant to survive in secondary sites (Ganguly and Kimmelman,

2023). Although how and when dormant tumor cells become
reactivated after inactivity remains not well understood, a role for
lipid metabolism in reawakening is emerging (Luo et al., 2017; Watt
et al., 2019). Pascual et al. (Pascual et al., 2017) found a subpopulation
of CD44bright slow-cycling cells in human oral carcinomas with a
unique ability to initiate metastasis that expressed high levels of the
fatty acid receptor CD36 and lipid metabolism genes (Pascual et al.,
2017). Using neutralizing antibodies for CD36 blockade, they were
able to inhibit metastasis formation in orthotopic mouse models of
human oral cancer. Conversely, palmitic acid or a high-fat diet
increased the metastatic potential of CD36+ cancer cells (Pascual
et al., 2017). Ladanyi et al. demonstrated a role for adipocytes in the
stimulation of CD36 and Fatty acid transport protein 1 (FATP1) in
ovarian cancer cells (Ladanyi et al., 2018) suggesting a significant role
for cancer-associated adipocytes in tumor growth and metastasis
through favoring lipid utilization and uptake and metabolic
reprogramming (Yao and He, 2021). Intriguingly, the oxidation of
Cys272 and Cys333 promoted the activation of CD36, suggesting a
regulatory effect of the redox signaling in the reactivation of dormant
cancer cells (Wang et al., 2019). Also, oxidative stress enabled
P450 epoxygenases to synthesize epoxyeicosatrienoic acids,
metabolites of arachidonic acid, with a vasodilation effect
facilitating exit from the dormant state (Borin et al., 2017).

The CSC niche and tumor associated
macrophages

Adjacent cells to CSC form a specialized microenvironment,
termed niche, essential for preserving and sustaining CSC against
stress and injuries with growth factors, cytokines, and extracellular

FIGURE 1
The prevalent metabolism adaptations in differentiated tumor cells compared to stem cell-like tumor cells support a metabolic symbiosis between
the different cellular states. The illustration was started from scratch, created with BioRender.com original design.
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matrix compounds (Allavena et al., 2021). In analogy to the
physiological stem cell niche, this specialized tissue structure
allows CSCs to survive and remain quiescent and also provides
cues for reactivation of proliferation, differentiation, and migration.
(Allavena et al., 2021).

CSCs niche dynamics vary between leukemia and solid tumors.
Tracing the cellular origins of human cancers has long been a
complex and contentious area in cancer research. Pioneering
work by John Dick and colleagues in the 1990s introduced the
hierarchical model in acute myeloid leukemia (AML), proposing
that a primitive stem or early progenitor cell serves as the cell of
origin for malignant transformation in AML (Lapidot et al., 1994;
Bonnet and Dick, 1997). This model delineates a rare population of
leukemic stem cells (LSCs) with high self-renewal potential and
immunophenotypic resemblance to healthy hematopoietic stem
cells (HSCs), which are exclusively capable of reinitiating
leukemia in immunodeficient mice (Lapidot et al., 1994; Bonnet
and Dick, 1997). In leukemia, the bone marrow serves as primary
niche, populated by healthy stem cells with which CSCs compete
(Marchand and Pinho, 2021). The leukemic niche is populated by
different cell types, such as mesenchymal stem cells (MSCs),
endothelial cells, megakaryocytes, macrophages, osteoblasts, and
nerve cells (Schepers et al., 2015). Bidirectional interactions
between leukemic cells and the bone marrow microenvironment
promote leukemic progression at the expense of healthy
hematopoiesis, implicating bone marrow mesenchymal stem cells
in the predisposition, manifestation, and evolution of hematological
malignancies (Korn and Méndez-Ferrer, 2017).

In contrast, solid tumors exhibit phenotypic plasticity, where tumor
cells can can interconvert between differentiated and stem-like states
across a continuum of cell fate specification (Quail et al., 2012).
Moreover, despite the presence of founder mutations within the
parental clones, a large number of additional mutations between
primitive and metastatic tumor implicate the concept of clonal
evolution in CSC development (Campbell et al., 2010; Kreso and
Dick, 2014). The fact that melanoma, breast, prostate, ovarian, and
lung cancer cells are all able to alter their gene expression to resemble
cell types that are not part of their original lineage (Quail et al., 2012)
exemplifies cancer cell plasticity that enables cancer cells to gain/lose
stem cell properties (Passalidou et al., 2002; Shirakawa et al., 2002; Lim
et al., 2009). Solid tumors contain non-tumor stromal cells supporting
CSCs including CAFs, MSCs, TAMs and other immune cells, and
extracellular matrix proteins (Mancini et al., 2021). The niche is
characterized by conditions of hypoxia, acidity, and low glucose
levels (Olivares-Urbano et al., 2020). The niche concept extends to
specialized pre-metastatic microenvironments that play a crucial role in
the colonization of disseminated tumor cells at secondary sites, with
organ-specific exosomes derived from primary tumors facilitating
colonization (Fong et al., 2015; Hoshino al.al 2015). Once the pre-
metastatic niche has finished priming, the metastatic niche generates a
microenvironment that sustains metastatic cancer stem cells, providing
physical anchorage, survival, immune surveillance protection, and
metabolic requirements for CSCs in distant metastatic sites (Joseph
et al., 2023).

TAMs are the leading players in the CSC niche, they physically
interact with CSCs and secrete a variety of soluble factors to protect
them from environmental damage (Jinushi et al., 2011; Fan et al.,
2014; Zhou et al., 2015; Oshimori, 2020). Notably, similarities exist

between TAMs from leukemias and solid tumors within their
respective niches. Such similarities consist in abundant
localization of TAMs in both leukemic and solid tumor niches
that positively correlate with CSC distribution (Wang and Zheng,
2019; Basak et al., 2023) and accumulation within hypoxic tumor
regions, where CSCs are also prevalent (Wang and Zheng, 2019;
Basak et al., 2023). CSCs exert significant influence over TME by
recruiting and polarizing macrophages toward a pro-tumor
M2 phenotype. In turn, M2-TAMs actively support CSC
maintenance, thus promoting a symbiotic relationship between
these cellular populations (Wang and Zheng, 2019; Basak
et al., 2023).

TAMs are able to activate signaling pathways essential to CSCs,
including those driven by Sonic Hedgehog (SHH), Neurogenic locus
notch homolog protein (NOTCH), STAT3, PI3k/Akt, Wingless
integrated (WNT)/b-catenin and NANOG, through soluble
factors or direct physical interaction with CSC (Allavena et al.,
2021). Tumor cells produce chemotactic factors (Allavena et al.,
2021), exosomes (Su et al., 2021) and metabolites (Diskin et al.,
2021) to recruit circulating monocytes and tissue-resident
macrophages and induce their polarization towards anti-
inflammatory, angiogenic and protumor (M2) phenotype typical
of TAMs. TAMs initiate reciprocal crosstalk with CSC to exert their
trophic action in the niche (Allavena et al., 2021). Transcription
factors involved in maintaining the pluripotency and self-renewal
characteristics of CSCs are highly expressed by TAMs (Shang et al.,
2023). The CSC’s role in modulating the TME and driving the
recruitment and alternative polarization of macrophages and
crosstalk between CSCs and TAMs have been extensively
reviewed in several articles (Sainz et al., 2016; Muller et al., 2020;
Allavena et al., 2021; Chae et al., 2023).

The primary tumor secretome influences the immune milieu at
distant organs, thus preparing the permissive soil for colonization of
disseminated cancer cells by re-educating the metabolic and epigenetic
state of resident cells in the host organs (Ganguly and Kimmelman,
2023). Macrophages play a special role in priming and disseminating
tumor cells for dormancy and stemness (Borriello et al., 2022). Using a
technique termed Window for High-Resolution Imaging of the Lung
(WHRIL) (Entenberg et al., 2018), Borriello et al. quantitatively
measured, in real-time, spontaneously disseminating tumor cells
during the process of metastasis to the lung, in a breast cancer
mouse model (Borriello et al., 2022). They found a subset of
macrophages within the primary tumor that caused activation of
genetic programs related to dissemination, dormancy, and stemness
in tumor cells approaching the intravasation site. Upon tumor cell
contact with macrophages, tumor cell expresses high levels of the actin-
regulatory protein MenaINV (Roussos et al., 2011). This actin isoform
plays an active role in tumor cell migration during intravasation within
the primary tumor (Pignatelli et al., 2016). Moreover, contact with
macrophages activated in tumor cells expression of stem-like SOX-9
phenotype and Nuclear Receptor Subfamily 2 Group F Member 1
(NR2F1), the orphan nuclear receptor and one of the best molecular
markers of dormancy that regulates expression of pluripotency genes
(Sosa et al., 2015). The depletion of macrophages significantly reduced
NR2F1 levels in the tumor cells and prevented dormancy (Borriello
et al., 2022). Before disseminating, tumor cells establish
microenvironmental niches incorporating macrophages in the
primary tumor that enable them to acquire a pro-dissemination,
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stem-like dormancy phenotype that is carried to the secondary site and
is lost during metastatic growth (Borriello et al., 2022). Dormancy
represents a typical risk for long-term breast cancer survivors. Dormant
breast cancer cells preferentially reside in the bone marrow. A study by
Walker et al. in a breast cancer mouse model showed that bone marrow
M2 macrophages supported tumor dormancy. Upon the M2 to
M1 switch through activation of TLR4 with LPS, M1 macrophages
reversed dormancy and induced sensitivity to carboplatin of breast
cancer cells (Walker et al., 2019). The authors demonstrated that M1-
derived exosomes produced clinical evidence of metastasis due to the
activation of NF-κB in quiescent breast cancer cells to reverse non-
cycling to cycling cells (Walker et al., 2019). Crosstalk between
macrophages and dormant cancer cells has been extensively
reviewed by Batoon and McCauley (Batoon et al., 2021). Figure 2
illustrates the interplay between dormant cell and macrophages.

Themitochondrial respiratorymachinery is a
significant driving force in TAM polarization

Phenotype, function, andmetabolic state are closely interconnected
aspects in macrophages and coordinated with each other (Minhas et al.,
2019; Emtenani et al., 2022; Gonzalez et al., 2023). Through single-cell
transcriptomic profiling of macrophages phagocytosing neoplastic cells,
Gonzales et al. demonstrated a strict linkage between phagocytosis,
immune-suppressive phenotype, and gene expression changes toward
OXPHOS, ribosomal, and othermetabolic genes (Gonzalez et al., 2023).
The correlation of the metabolic gene signature with worse clinical
outcomes was validated in human lung cancer (Gonzalez et al., 2023).
Consistent with the findings by Gonzales et al., Minhas et al. showed
that genetic or pharmacological blockade of de novo NAD + synthesis,

suppressed mitochondrial NAD + -dependent signaling and
respiration, and impaired phagocytosis and resolution of
inflammation due to changes in macrophage polarization state.
(Minhas et al., 2019). Emtenani et al. (Emtenani et al., 2022),
investigating gene expression in macrophages during the first
migratory stages of the tissue invasion, found a metabolic
reprogramming towards OXPHOS and ribosome biogenesis of
migrating macrophages. In this cell model, the authors identified
Atossa, a transcriptional regulator inducing expression of an RNA
helicase termed Porthos. This factor increased the translation efficiency
of short 5′UTR mRNAs that included a subset of mitochondrial
OXPHOS genes of the respiratory complexes (Emtenani et al., 2022).

Like CSCs, M2 macrophages can resist and remain functional in
adverse environmental conditions such as low nutrients, low pH,
hypoxia, and oncometabolite abundance (Liu et al., 2021). Like
CSCs, M2 macrophage metabolism exploits the mitochondrial
respiratory machinery that is a significant driving force in alternative
macrophage polarization (O’Neill et al., 2016; Liu et al., 2021). While
aerobic glycolysis produces most of the ATP and intermediates for
biosynthetic pathways required for effector (microbicidal and
antitumor) functions of M1 macrophages (Warburg and Minami,
1923; Altenberg and Greulich, 2004; Tannahill et al., 2013), to
sustain their activities, M2 macrophages use the TCA cycle to obtain
reducing equivalents, assuring constant energy production in concert
with mitochondrial OXPHOS (Figure 3). Acetyl-CoA oxidized in the
TCA cycle mainly derives from fatty acid oxidation (Odegaard and
Chawla, 2011; O’Neill et al., 2016). M2 macrophages actively extract
fatty acids from circulating lipoproteins internalized through CD36
(Evans et al., 1993) and endocytosis (Huang et al., 2014). The pivotal
role of fatty acids oxidation in alternative macrophage polarization is
underscored by the observation that blocking palmitate entry into the

FIGURE 2
Metabolic aspects of TAMs in tumor dormancy and reawakening. The illustration was started from scratch, created with BioRender.com
original design.
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mitochondrial matrix hampers IL-4-induced M2 polarization
(Malandrino et al., 2015). Enhanced fatty acid oxidation in
palmitate-incubated macrophages reduced the inflammatory profile
(Malandrino et al., 2015). Proliferator-activated receptors of
peroxisomes, organules involved in the oxidation of long-chain fatty
acids and eicosanoid-CoA esters (Reddy and Hashimoto, 2001) were
shown to regulate the transcription of M2 genes, (Odegaard et al., 2008;
Chawla, 2010; Nelson et al., 2018).

OXPHOS-targeted drugs in clinical trials

Efforts in recent years led to design of numerous clinical trials
for the assessment of the anticancer effectiveness of drugs targeting
mitochondrial metabolism with the aim of hindering CSCs and
microenvironmental signaling together.

The electron transport chain has indepth been explored for
development of inhibitors for each complex (Sainero-Alcolado et al.,
2022). However, these compounds can exhibit remarkable toxicity that
prevents their use in clinical practice (Sainero-Alcolado et al., 2022). The
antidiabetic agent metformin (Watanabe, 1918) counts more than
400 registered clinical trials in the last 5 years as a cancer
chemopreventive or therapeutic agent, alone or in combination with
neoadjuvant chemo-radiation therapy (https://www.clinicaltrials.gov).
Themaster pathway ofmetformin anticancer activity is the activation of
the adenosine monophosphate-activated protein kinase (AMPK) that
inhibits mammalian target of rapamycin (mTOR) (Zhou et al., 2001)
pathway triggered by inhibition of complex I through drug binding in
the quinone channel (Owen et al., 2000). Recently, metformin was

found to cause a mitochondrial effect independent of inhibition of
complex1 by direct molecular targeting PEN2, a subunit of γ-secretase
(Ma et al., 2022). PEN2 binds to ATPase H+transporting accessory
protein 1, inhibits the activity of ATPase without increasing AMP or
ADP, and then activates the lysosomal AMP-independent AMPK
pathway (Ma et al., 2022). Still, other mechanisms concur to its
anticancer activity that are still not well understood. Metformin
reduces cancer risk, decreases cancer-related mortality in patients
with diabetes (Decensi et al., 2010), and has excellent performance
in preclinical studies. Particularly, a preclinical study shows that
metformin selectively targets cancer stem cells and acts together
with chemotherapy to block tumor growth and prolong remission
(Hirsch et al., 2009). A prospective phase I clinical trial (NCT01442870)
assessing the safety of metformin in combination with chemotherapy in
patients with solid tumors suggests that metformin can be given safely
with chemotherapy (Saif et al., 2019). Brown et al. evaluated the impact
of metformin on CSC number and clinical outcomes in nondiabetic
patients with advanced-stage epithelial ovarian cancer. Metformin
decreased by 2.4-folds the number of ALDH+CD133+ CSCs and
increased sensitivity to cisplatin ex vivo. Translational studies
confirm an impact of metformin on ovarian cancer CSCs and
suggest epigenetic change in the tumor stroma, specifically MSCs,
may drive the platinum sensitivity ex vivo. Metformin treatment was
associated with increased overall survival, supporting the use of
metformin in phase III studies (Brown et al., 2020). However,
benefits in cancer treatment are often quite vague in clinical trials;
thus, there are challenges in the clinical translation of metformin. In a
very recent review, Hua et al. (Hua et al., 2023) point out that the
mechanisms of action of metformin must be seen in the context of

FIGURE 3
Metabolic features of TAMs in CSC niche. The illustration was started from scratch, created with BioRender.com original design.
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cancer hallmarks, the well-standardized set of crucial functional
capabilities for malignant transformation (Hanahan, 2022). In their
article, after summarizing the current knowledge on the antitumor
action of metformin, the authors elaborate the underlying mechanisms
in terms of cancer hallmarks and propose new perspectives of
metformin use potentially applicable to cancer treatment
(Hanahan, 2022).

IACS-010759, an inhibitor of complex I, was found to reduce
mitochondrial function of enriched tumor cell spheroids from the
ascites of high-grade serous ovarian cancer patients. Also, IACS-
010759 treatment reduced the fraction of CD34+ progenitor AML
cells in a dose-dependent manner (Molina et al., 2018). Current
clinical trials with IACS-010759 involve advanced tumors (phase 1,
NCT03291938) and AML (phase 1, NCT02882321). Tamoxifen was
found to interact with the flavin mononucleotide site of complex I
leading to mitochondrial failure (Moreira et al., 2006). It is
investigated in cancers other than breast, and genito-urinary
tract, as intraocular melanoma, in combination with cisplatin
(phase 2, NCT00489944); high risk stage III melanoma in
combination with sorafenib (phase 2, NCT00492505);
oesophageal cancer (phase 1, NCT02513849); osteosarcoma
(phase 1, NCT00001436). Pyrvinium pamoate is a lipophilic
cation belonging to the cyanine dye family, inhibiting complex I.
(Schultz and Nevler, 2022). It has been used in the clinic as a safe and
effective anthelminthic for over 70 years (Schultz and Nevler, 2022)
and currently is investigated in pancreatic cancer to determine its
safety and tolerability (phase 1, NCT05055323). Atovaquone, with a
structure similar to protozoan ubiquinone, is an inhibitor of
complex III (Mather et al., 2005) approved by the US Food and
Drug Administration against plasmodium falciparum. Atovaquone
reduced the tumorsphere formation and invasion ability of
EpCAM+CD44+ CSCs isolated from HCT-116 colon carcinoma
cell lines (Fu et al., 2020). It was found to inhibit proliferation
and induce apoptosis of CSCs (CD44+CD24Low− and ALDH+)
derived from the mammary breast cancer cell line MCF7
(Fiorillo et al., 2016b) and of ALDH+CD133+ cancer stem-like
cells from two high-grade serous ovarian cancer patients (Kapur
et al., 2022). Atovaquone anti-cancer efficacy has been assessed in
varied mouse cancer models (Rodriguez-Berriguette et al., 2024) and
is currently investigated in NSCLC (phase 1, NCT04648033),
ovarian cancer (phase 2, NCT05998135), AML (phase 1,
NCT03568994). Niclosamide is an uncoupler of electron
transport chain (Chen et al., 2018). Jin et al., showed that
niclosamide is a potent inhibitor of the NF-κB pathway and
exerts a synergism with Ara-C or VP-16 against primary AML
cells. They also suggested that this drug has the potential to eradicate
AML blasts since they demonstrated that niclosamide kills AML
CD34+CD38−stem-cells, while sparing normal bone marrow
progenitors (Jin et al., 2010). Niclosamide efficiently decreased
therapy resistance in colorectal cancers by reducing CSC
populations and their self-renewal activity, thereby attenuating
the survival potential of CSCs following chemoradiation (Park
et al., 2019). Clinical trials with niclosamide involved treatment
of refractory AML (phase 1, NCT05188170), colorectal cancer
(phase 1, NCT02687009; phase 2, NCT02519582), and castration
resistant prostate cancer (phase 1, NCT03123978; phase1,
NCT02532114; phase 2, NCT02807805). Table 1 lists active or
recently completed clinical trials investigating outcomes with

respiratory-complex inhibitors in refractory tumors, ONC201 and
ONC206 are imidazo-pyrido-pyrimidine derivatives that bind to the
mitochondrial serine protease termed caseinolytic protease
proteolytic subunit (ClpP) with the ability to reduce
mitochondrial oxidative phosphorylation, oxygen consumption
rate, ATP production and increase mitochondrial generation of
reactive oxygen species (Przystal et al., 2022). They were found for
the first time to affect mitochondrial activity in diffuse midline
glioma cells in children and young adults and considered two
promising agents against Histone three lysine27-to-methionine
(H3.3K27M)-mutated gliomas. Treatment with ONC201 reduced
self-renewal, clonogenicity and cell viability of GBM cells (He et al.,
2021). Similar results of inhibition of tumorsphere formation, CSC
genes NANOG and SOX2, and CSC frequency were obtained by
Jeon et al., due to selective antagonism of dopamine receptor (Jeon
et al., 2023). Moreover, ONC201 targets chemotherapy-resistant
colorectal cancer stem-like cells (Prabhu et al., 2015) and
significantly decreased CSC frequency and tumor initiation
capability in a breast cancer mouse model (Greer et al., 2022). In
chemo-refractory AML patient samples, ONC201 induced apoptosis
in leukemia stem/progenitor cells (CD34+/CD38-) to an extent that
was equivalently observed in non-CSCs (Ishizawa et al., 2016)
Especially ONC201 is an investigational agent that has shown a
favorable safety profile in phase 1 and phase 2 clinical trials in
advanced cancers. Several clinical trials have been designed to assess
efficacy of ONC201 and ONC206, alone or in combination with
chemo or immunotherapy, against several cancer types, including
colorectal cancer, pediatric H3. K27M-mutant gliomas, adults with
recurrent H3.K27M-mutant gliomas, recurrent gliomas, rare
primary central nervous system neoplasms, neuroendocrine
tumors, multiple myeloma, endometrial cancer, advanced solid
tumors, metastatic breast cancer, relapsed/refractory non-
Hodgkin’s lymphoma, relapsed or refractory acute leukemias,
oral cancer (Table 2). Two completed clinical trials
(NCT02250781, NCT02324621) evaluated the safety,
pharmacokinetics, and pharmacodynamics of ONC201 in
patients with advanced solid tumor that is refractory to standard
treatment, or for which no standard therapy is available. Results
from these studies indicated that oral ONC201 is well-tolerated and
had immunostimulatory activity. Patients treated with ONC201,
who experienced at least stable disease by RECIST for 12 or more
weeks, broad induction of immune cytokines and effector molecules
was observed (Stein et al., 2019). Also, increased intratumoral
infiltration of cytotoxic NK cells and granzyme B was observed
in a metastatic prostate cancer patient in response to ONC201.

In a recent review article, Karp and Lyakhovich outlined antibiotics
that, by inducing mitochondrial dysfunction, hinder OXPHOS and the
rate of oxygen consumption, reduce ATP and ΔΨm levels, and increase
ROS (Karp and Lyakhovich, 2022). Antibiotics act on the prokaryotic
ribosomal complex by binding to the bacterial 30S ribosomal subunit,
thus preventing associationwith aminoacyl transfer RNAs (tRNAs) and
counteract translation with a consequent bacteriostatic effect (Luger
et al., 2018). Translation of mitochondria-encoded proteins occurs
within the mitoribosome organelle and produces 13 proteins that
are components of respiratory complexes (Luger et al., 2018). The
evolutionary conserved link between mitochondria and bacteria
supports the use of these drugs to target CSC metabolism (Luger
et al., 2018; Karp and Lyakhovich, 2022). Bedaquiline is an anti-
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microbial agent that is approved by the FDA for the treatment of
resistant tuberculosis. It significantly blocks the expansion CSCs
generated by breast cancer MCF7 cell line, as determined by
reduced expression of CD44 and ALDH1, under anchorage-
independent growth conditions and the mammosphere assay
(Fiorillo et al., 2016a). Several preclinical studies support efficacy of
doxycycline against CSCs (Lamb et al., 2015; Yang et al., 2015; Liu et al.,
2022). Lamb et al. found that doxycycline was effective against tumor-
sphere formation across different cancer types including breast, ovarian,
prostate, lung, pancreatic cancers, melanoma, and glioblastoma (Lamb
et al., 2015). In early breast cancer patients, Scatena et al. conducted a
clinical pilot study with doxycycline finding a significant decrease in
cancer tissues of twoCSCmarkers, namely, CD44 andALDH1 (Scatena
et al., 2018). Yang et al. show that doxycycline severely affected colony
formation and viability of human cervical carcinoma stem cells (He-La
CSCs), decreased expression of SOX-2 and surface markers CD133 and
CD49f. Moreover, upon injection into NOD-SCID mice the
doxycycline pretreated HeLa-CSCs had drastically reduced capacity
of tumor growth (Yang et al., 2015). Liu et al. showed that the drug
significantly inhibited the CSC-like properties of pancreatic cancer cells,
namely, mammosphere formation and CD133 expression (Liu et al.,
2022). Treatment of Panc-1 with doxycycline significantly enhanced the
effect of chemotherapy drugs (i.e., cisplatin, oxaliplatin, 5-FU, sorafenib,
and gemcitabine) in comparison with the results obtained when only

chemotherapy drugs were used. Among the antibiotics with preclinical
evidence of efficacy to suppress CSCs, for which we refer ad hoc review
articles (Karp and Lyakhovich, 2022; Garimella et al., 2023),
doxycycline, a tetracycline derivative is the most investigated in
clinical trials. Clinical trials investigating the drug alone or in
combination with standard therapy involve varied tumors, among
which: pancreatic cancer (phase 2, NCT02775695); pleural neoplasm
(observational, NCT03465774; interventional, NCT02583282; phase 2,
NCT01411202); cutaneous T-cell lymphoma (phase 2, NCT02341209);
advanced melanoma, in association with temozolomide and
ipilimumab (phase 1, NCT01590082); relapsed NHL (phase 2,
NCT02086591); bone metastatic breast cancer, in association with
bisphosphonates (NCT01847976); in localized breast cancer and
uterine cancer (phase2, NCT02874430) or head and neck cancer
(phase 2, NCT03076281), in association with metformin.
Tigecycline, a glycylcycline designed to overcome tetracycline
resistance was shown to interfere with the generation of CSCs
(LGR5⁺CD44⁺) in a colon adenocarcinoma murine model (Ruiz-
Malagón et al., 2023). Moreover, tigecycline impacted tumorsphere
formation in a number of cancer cell lines, including ER (−) breast,
ovarian, lung, prostate, and pancreatic cancers and melanoma (Lamb
et al., 2015). Currently, tigecycline is investigated in acute and chronic
myeloid leukemia (phase 1, NCT01332786; observational,
NCT02883036). The macrolide azithromycin exerted a very

TABLE 1 Clinical trials investigating the outcomes of the treatments of refractory tumors with inhibitors of mitochondrial respiratory complexes.

Title ClinicalTrials.
gov ID

Phase Primary outcome
measure

Study
completion,
actual/estimated

Enrollment,
actual/
estimated

Oxidative Phosphorylation Inhibitor
IACS-010759 in Treating Patients With
Relapsed or Refractory Acute Myeloid
Leukemia

NCT02882321 1 Maximum tolerated dose 2022–04 17

Clinical response (duration,
progression free survival, overall
survival)

The study terminated for
apparent lack of
effectiveness

A Study to Determine if the Drug,
Pyrvinium Pamoate, is Safe and
Tolerable in Patients With Pancreatic
Cancer

NCT05055323 1 Safety and tolerability 2024–04 18

Pharmacokinetic, pharmacodynamic
profile and bioavailability in humans

Atovaquone With Radical
ChemorADIotherapy in Locally
Advanced NSCLC (ARCADIAN)

NCT04648033 1 Dose limiting toxicity; maximum
tolerated dose; recommended phase II
dose

2023–10 21

Repurposing Atovaquone for the
Treatment of Platinum-Resistant
Ovarian Cancer

NCT05998135 2 Progression free survival 2025–06 28

Atovaquone (Mepron®) Combined With
Conventional Chemotherapy for de
Novo Acute Myeloid Leukemia (AML)
(ATACC AML)

NCT03568994 1 Atovaquone plasma levels at time
points including bone marrow
assessment. Toxicity and steady state
concentrations when given in
combination with standard
chemotherapy

2025–10 26

Niclosamide in Pediatric Patients With
Relapsed and Refractory AML

NCT05188170 1 Dose-limiting toxicity; clinical
response

2026–12 16

Enzalutamide and Niclosamide in
Treating Patients With Recurrent or
Metastatic Castration-Resistant Prostate
Cancer

NCT03123978 1 Safety and recommended dose 2022–04 6

Abiraterone Acetate, Niclosamide, and
Prednisone in Treating Patients With
Hormone-Resistant Prostate Cancer

NCT02807805 2 PSA response rate; dose limiting
toxicity; clinical response

2024–06 37
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significant inhibitory effect on mammosphere formation when
combined with doxycycline (Fiorillo et al., 2019). It is investigated in
Familial Adenomatous Polyposis (FAP) carrying premature nonsense
mutations (phase 4, NCT04454151). Table 3 resumes active or recently
completed clinical trials investigating outcomes of antibiotics in
refractory tumors.

CPI-613 (devimistat) is a nonredox active lipoate analog
developed by Cornerstone Pharmaceuticals. CPI-613 mimics the
cofactor of the E2 catalytic subunit of pyruvate dehydrogenase and
ketoglutarate dehydrogenase (Stuart et al., 2014), inhibiting the
enzymatic activity of these complexes operating on the TCA
cycle (Stuart et al., 2014) and impairs ATP synthesis (Anderson
et al., 2022). Also, TCA cycle inhibition leads to increased
mitochondrial turnover due to mitophagy (Anderson et al., 2022).

In ovarian cancer, CPI-613 treatment was found to negatively
impact CSC-rich spheres and resulted in a decrease in
tumorigenicity in vivo. Moreover, CPI-613 treatment induced a
decrease in CD133+ and CD117+ cell frequency in vitro and in vivo
(Bellio et al., 2019). In early clinical trials in pancreatic cancer
patients, devimistat produced impressive response rates (Alistar
et al., 2017) leading to a phase 3 clinical trial (Philip et al., 2019).
Moreover, in preclinical models, devimistat sensitized AML cells to
chemotherapy and decreased mitochondrial respiration, leading to a
phase I study in relapsed and refractory AML patients (Pardee et al.,
2018). However, devimistat did not improve overall survival in the
multi-center phase 3 randomized clinical trial (NCT03504423)
where 528 patients with metastatic pancreatic adenocarcinoma
were randomized to receive either devimistat in combination

TABLE 2 Clinical trials investigating the outcomes of tumor treatments with ONC2091 and ONC206 (Imipridones).

Title ClinicalTrials.
gov ID

Phase Primary outcome
measure

Study
completion,
actual/estimated

Enrollment,
actual/
estimated

Testing ONC201 to Prevent Colorectal
Cancer

NCT05630794 1 To determine the optimal cancer
preventive dose of ONC201

2028-01-01 24

ONC201 in Pediatric H3 K27M
Gliomas

NCT03416530 1 Determination of recommended
Phase 2 dose, as a single agent or in
combination with radiation

2023-09-30 active 130

ONC201 and Atezolizumab in Obesity-
Driven Endometrial Cancer

NCT05542407 1 Determination of recommended
phase 2 dose in combination with
Atezolizumab; tumor response
according to RECIST Criteria

2025-01-15 58

ONC201 in Adults with Recurrent
H3 K27M-mutant Glioma

NCT03295396 2 Overall response rate 2023-09-30 active 95

Oral ONC201 in Recurrent GBM,
H3 K27MGlioma, and Midline Glioma

NCT02525692 2 Progression-free survival as assessed
by using RANO-HGG criteria

2023–12 active 89

ONC201 in Recurrent or Metastatic
Type II Endometrial Cancer
Endometrial Cancer

NCT03485729 2 Progression-free survival 2022-12-31 active 30

ONC201 for the Treatment of Newly
Diagnosed H3 K27M-mutant Diffuse
Glioma Following Completion of
Radiotherapy: A Randomized, Double-
Blind, Placebo-Controlled, Multicenter
Study

NCT05580562 3 Overall survival; progression free
survival as assessed by using RANO-
HGG criteria

2026–08 450

Phase II Study of ONC201 PlusWeekly
Paclitaxel in Patients with Platinum-
Resistant Refractory or Recurrent
Epithelial Ovarian, Fallopian Tube, or
Primary Peritoneal Cancer

NCT04055649 2 Incidence of treatment related adverse
events; incidence of dose limiting
toxicities

2026-04-28 62

objective response rate

progression free survival

Phase I/II Study of Oral ONC201 in
Patients with Relapsed or Refractory
Acute Leukemias and High-Risk
Myelodysplastic Syndromes

NCT02392572 1 and 2 Maximum tolerated dose (Phase I);
objective response (Phase II)

2024-11-30 120

Phase I Study of Oral ONC206 in
Recurrent and Rare Primary Central
Nervous System Neoplasms

NCT04541082 1 Maximum tolerated dose of single-
agent, oral; number of participants
who experienced dose-limiting
toxicities

2025–02 102

ONC206 for Treatment of Newly
Diagnosed, Recurrent Diffuse Midline
Gliomas, and Other Recurrent
Malignant CNS Tumors (PNOC023)

NCT04732065 1 Proportion of participants with dose-
limiting toxicities; maximum tolerated
dose

2027-12-31 256
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with modified Folfirinox or Folfirinox (Rafael Pharmaceuticals, Inc.,
2021). Similarly, the phase 3 study ARMADA 2000 (NCT03504410)
was not completed due to a lack of efficacy in patients with relapsed
or refractory AML (Anderson et al., 2022). Despite preliminary
unsuccessful results, investigations in the clinics continue with the
aim of assessing with more precision devimistat capabilities against
difficult-to-treat tumors and defining the best condition for
devimistat use. Table 4 lists active clinical trials evaluating this
drug in the treatment of advanced/refractory tumors. Figure 4
illustrates the mechanism of action of anti-mitochondrial drugs
used in clinical trials.

OXPHOS-targeted drugs affect TAMs

Several studies suggest that the effects of pharmacological agents
inhibiting mitochondrial metabolism, well reported for bulk tumor
cells and cancer stem cells, extend beyond tumor cells and apply also
to TAMs, which can contribute to their efficacy. Metformin has the
potential to shift the balance of TAMs from an immunosuppressive
M2 phenotype to an antitumor M1 phenotype (Wu et al., 2022;
Abdelmoneim et al., 2023). A plethora of studies on different cancer
models report its efficacy against TAMs (Liu et al., 2018; Wang et al.,
2020; Munoz et al., 2021; Wei et al., 2021; Kang et al., 2022; Taylor
et al., 2022; Cao et al., 2023). In mice-bearing prostate tumors,
metformin remarkably suppressed the infiltration of TAMs
mechanistically by inhibiting the cyclooxygenase-COX-2/
prostaglandin-PGE2 axis in tumors. The reduction of TAMs
following administration of metformin was responsible for the
suppression of tumor growth and metastasis (Liu et al., 2018).
Evaluating matched pre- and post-treatment tumor specimens
from esophageal cancer patients in a phase II clinical trial of
low-dose metformin treatment found significant changes in the
TME. Precisely, metformin produced a decrease in tumor-
promoting CD163+ macrophages and an increase in tumor-
suppressive CD11c+ macrophages, in CD8+ cytotoxic T
lymphocytes and CD20+ B lymphocytes. Also, metformin
augmented macrophage-mediated phagocytosis of esophageal

cancer cells in vitro. Similar results of TME reprogramming were
obtained with short-term metformin treatment of an esophagus
cancer mouse model together with inhibition of tumor growth.
(Wang et al., 2020). Employing microparticles loading metformin,
Wei et al. showed their efficacy in repolarizingM2-like TAMs to into
M1-like phenotype and remodeling TME by increasing the
recruitment of CD8+ T cells into tumor tissues and decreasing
immunosuppressive infiltration of myeloid-derived suppressor
cells and regulatory T cells (Wei et al., 2021). Metformin
combined with a tumor vaccine significantly increased the
expression of M1 markers CD86 and MHC-II in TME, reduced
tumor growth and inhibited lung metastasis in select tumor models
(Munoz et al., 2021). A study on epithelial ovarian cancer patients
showed that metformin combined with platinum, in comparison
with platinum alone, significantly reduced CD68+ macrophages and
cancer-associated MSCs in TME of 38 cancer samples (Taylor et al.,
2022). Two studies of colorectal cancer TME showed that metformin
decreases CD206+ and CD163+ M2 macrophages in an AMPK-
dependent manner (Kang et al., 2022) and promotes the polarization
of TAMs to M1 through inhibition of HIF-1α and mTOR signal
(Cao et al., 2023). A role for tamoxifen in TAM reprogramming to
the M1 phenotype has been demonstrated in pituitary adenoma,
resulting in inhibition of the migration of cancer cells.
Mechanistically, such reprogramming was mediated by
STAT6 inactivation and inhibition of the macrophage-specific
protein tyrosine phosphatase SHP (Lv et al., 2022). Tamoxifen in
combination with clodronate caused TAM depletion in castration-
resistant ER-positive subtype of prostate cancer tumors (Semenas
et al., 2021). It should be however noted that an expansion of an
M2 population in the TME connoted tamoxifen resistance in the
postmenopausal breast cancer (Xuan et al., 2014). Atovaquone, used
within a stabilizer drug delivery platform composed by
protoporphyrin IX nanoparticles, induced M2-type TAMs
polarization toward M1-type TAMs, transforming “cold tumor”
into “hot tumor” and synergized with anti-PD-L1 immunotherapy
in a murine model of colon carcinoma (Feng et al., 2023).
ONC201 affects macrophage immunometabolism and leads to a
pro-inflammatory TME in glioblastoma (Geiß et al., 2021).

TABLE 3 Clinical trials investigating the outcomes of tumor treatments with antibiotics.

Title ClinicalTrials.
gov ID

Phase Primary outcome
measure

Study
completion,
actual/estimated

Enrollment,
actual/
estimated

Efficacy of Doxycycline on
Metakaryote Cell Death in Patients
with Resectable Pancreatic Cancer

NCT02775695 2 The number of dead/dying
metakaryotes per 1 g of tissue. and
the plasma drug concentrations

2022–05 12

Indwelling Pleural Catheters with or
without Doxycycline in Treating
Patients With Malignant Pleural
Effusions

NCT03465774 Observational Time to pleural catheter removal;
recurrence of effusion; quality-
adjusted survival; dyspnea

2025–04 208

Metformin Hydrochloride and
Doxycycline in Treating Patients
with Localized Breast or Uterine
Cancer

NCT02874430 2 To percentage of cells that express
caveolin-1, MCT1, MCT4 and
TOMM20 at baseline and after
treatment; safety and tolerability

2023–06 27

Azithromycin Treatment for
Readthrough of APC Gene Stop
Codon Mutations in Familial
Adenomatous Polyposis (FAP)

NCT04454151 4 Evaluation of changes in number
and size of adenomas measured by
upper endoscopy

2022–04 10
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Doxycycline inhibits M2-type polarization of human and bone
marrow-derived mouse macrophages in a dose-dependent
manner and in vivo M2-mediated neovascularization in a laser
injury model of choroidal neovascularization (He and Marneros,
2014). In pulmonary metastases of osteosarcoma, doxycycline
affects macrophage polarization by skewing the tumor induced
M2-like TAMs to anti-tumor M1-like subsets, through this
mechanism it prevents the progress of pulmonary micro-
metastases to macro-metastases at early-stage disease.

(Hadjimichael et al., 2022). Table 5 illustrates studies
investigating the effects of OXPHOS-targeted drugs on TAMs.

Non-pharmacological disruption of energy
metabolism

Studies conducted on triple-negative breast cancer (TNBC)
suggest that starvation could have a therapeutic value in cancer.

TABLE 4 Clinical trials investigating the outcomes of the treatments of refractory tumors with CPI-613 (Devimistat).

Title ClinicalTrials.
gov ID

Phase Primary outcome
measure

Study
completion,
actual/estimated

Enrollment,
actual/
estimated

A Study of CPI-613 for Patients with
Relapsed or Refractory Burkitt
Lymphoma/Leukemia or High-Grade
B-Cell Lymphoma with High-Risk
Translocations

NCT03793140 2 Overall response rate will be defined as
rate of complete response + partial
response + minor response + stable
disease as determined as per the
criteria for response assessment in
lymphoma (RECIL)

2024–12 24

Open Label Phase I/II Clinical Trial to
Evaluate CPI-613 in Patients with
Advanced Malignancies

NCT00741403 1 To evaluate the safety, tolerability,
maximum tolerated dose, and efficacy
pharmacokinetics of CPI-613 given
twice weekly for three consecutive
weeks in cancer patients

2016–12 actual 39

Phase 2 Safety, Tolerability and Efficacy
Study of CPI-613 in Cancer Patients

NCT01832857 2 Overall survival 2016–12 actual 7

CPI-613 (Devimistat) in Combination
with Chemoradiation in Patients with
Pancreatic Adenocarcinoma

NCT05325281 1 Maximum tolerated dose will be
determined by testing increasing
doses of CPI-613, starting from
500 mg/m2 and up to 1,500 mg/m2,
on dose escalation cohorts of three
patients in combination with Gem-RT
therapy

2027–08 24

A Study of CPI-613 for Patients with
Relapsed or Refractory Burkitt
Lymphoma/Leukemia or High-Grade
B-Cell Lymphoma with High-Risk
Translocations

NCT03793140 2 Overall response rate will be defined as
rate of complete response + partial
response + minor response + stable
disease as determined as per the
criteria for response assessment in
lymphoma (RECIL)

2024–12 24

CPI-613 in Combination with Modified
FOLFIRINOX in Locally Advanced
Pancreatic Cancer

NCT03699319 1 and 2 Overall survival
Maximum tolerated dose of CPI-613
in combination with mFOLFIRINOX
in the added small cohort of
participants with higher doses of CPI-
613 developed to redefine maximum
tolerated dose

2024–10 49

CPI-613 Given with Metformin in
Patients with Relapsed or Refractory
Acute Myeloid Leukemia (AML)

NCT05854966 2 Number of participants to receive at
least one cycle of maintenance therapy
-feasibility

2025–09 17

CPI-613 in Combination with
Bendamustine in Patients with Relapsed/
Refractory T-Cell Non-Hodgkin
Lymphoma

NCT04217317 2 Number of participants to successfully
complete therapy regimen

2025–06 12

Gemcitabine and Cisplatin with or
Without CPI-613 as First Line Therapy
for Patients with Advanced Unresectable
Biliary Tract Cancer (BilT-04)

NCT04203160 1 and 2 Maximum tolerated dose 2025–06 78

Overall response rate according to the
RECIST criteria

CPI-613 (Devimistat) in Combination
with Hydroxychloroquine and 5-
fluorouracil or Gemcitabine in Treating
Patients with Advanced
Chemorefractory Solid Tumors

NCT05733000 2 Overall response rate according to the
RECIST criteria

2030-03-04 94
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Specifically, Salvadori et al., showed that fasting mimicking (FMD)
starvation produced a significant impairment of CSCs
(CD44+CD24−) compared with non-CSC in TNBC murine model
and decreased mammosphere generation and volume. FMD delayed
tumor progression in a syngeneic TNBC mouse model. Moreover,
combining FMD cycles with PI3K/AKT/mTOR inhibitors resulted
in long-term animal survival and reduced the treatment-induced
side effects (Salvadori et al., 2021). The authors suggest that FMD-
induced depletion of TNBC CSCs when tumors are in a less
advanced stage could enormously enhance the efficacy of
subsequent treatments targeting both CSCs (such as the FMD)
and more differentiated cancer cells (such as PI3K/AKT/
mTORC1 inhibitors) in late-stage cancers (Salvadori et al., 2021).

Similarly, Pateras et al. showed that short-term starvation
increased sensitivity to DNA-damaging chemotherapeutic agents
(doxorubicin or cisplatin) and inhibited oxidative stress-induced
DNA damage repair in TBNC cells. Mechanistically, the
combination of STS and chemotherapy-induced an increase of
ROS production in such cancer cells through a collapse of
mitochondrial respiration and an altered ATP production. In
contrast, in normal, non-transformed cells, this combination has
a protective effect (Pateras et al., 2023). The reasons for the
differential response of normal versus cancer cells to dietary
restriction remain unknown. More insights into starvation-

induced mechanisms may lead to safe and effective anti-cancer
treatments and help to overcome the chemotherapy resistance of
cancer. Future ad hoc designed clinical trials are needed to assess
dietary recommendations as an adjunct to chemotherapy for TNBC
treatment and to confirm the efficacy of the combined approach.

Concluding remarks

In various tumors, CSCs and their supporting macrophages have
been shown to be highly dependent on mitochondrial function and
OXPHOS metabolism. Such a metabolic dependency of CSCs has
stimulated modern chemotherapy targeting mitochondria/OXPHOS
for cancer cure. To date, numerous clinical trials are underway across a
wide range of advanced, resistant, and refractory tumors with a wide
range of anti-mitochondrial and anti-metabolic agents. Numerous
further agents are the subject of preclinical investigations linking
laboratory drug discovery to the initiation of human clinical trials.
However, the clinical use of pharmacological agents targeting such
metabolic vulnerabilities of CSCs presents numerous challenges. There
are issues related to the toxicity of antimitochondrial drugs; also, results
so far obtained with clinical trials are sometimes vague or unflattering.
More studies are needed to codify and quantify drug effects on healthy
cells and find a therapeutic window and valuable tools that assist

FIGURE 4
Mechanisms of the mitochondrial drugs used in clinical trials that have been shown to target CSCs in preclinical setting (https://www.clinicaltrials.
gov). The illustration was started from scratch, created with BioRender.com original design.
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personalized therapies for precise administration indication. Despite
these issues, awareness of the metabolic plasticity of CSCs supports
perseverance in the anti-mitochondrial therapeutic approach. An
increasing number of investigations of anti-mitochondrial
medications in clinical trials are underway to hinder hard-to-treat
tumors. The precise definitions of the therapeutic window and dose
of the drug, mode of administration, optimization strategies for selective
delivery to tumor cells, and combination with distinct targeted agents
are currently being investigated in an attempt to guarantee a safety
profile and at the same time undermine CSCs and their selection
advantage that causes relapse. Moreover, the implementation of ad hoc
phase 1 and 2 studies could accelerate the combined use of drugs
potentially active against CSCs with those of standard cancer protocols,
thus improving helpful information to adopt the use of such
combination as the first line of intervention against tumors with a
high frequency of recurrence.

Limitation

We have not described the influence of all the components of the
niches that vary between solid tumor, and leukemia, as well as
primary and metastatic tumor. Still, we focused on TAMs because
the study of the niche components would have opened up very broad
scenarios that deserve to be treated and explored in depth in a
separate article. Furthermore, the studies we have presented often
extend to the concept of stem cell-like cells and refer to specific
tumors and experimental contexts that are not generalizable to
different CSCs from all kinds of tumors.
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TABLE 5 Effects of OXPHOS-targeted drugs on TAMs.

Treatment Effect on TAMs Mechanism Cancer Type/Model Reference

Metformin Shifts TAMs fromM2 to M1 phenotype COX-2/PGE2 axis inhibition Prostate tumors Liu et al. (2018)

Reprogrammed TAMs ↓CD163+, ↑CD11c+ Esophageal Wang et al. (2020)

Increased recruitment of CD8+ T cells Hepatocellular carcinoma Wei et al. (2021)

Reprogrammed TAMs ↑CD86+ Breast cancer Munoz et al. (2021)

Lung carcinoma

Oral Squamous Cell Carcinoma

Reprogrammed TAMs ↓CD68+ Epithelial ovarian cancer Taylor et al. (2022)

AMPK-dependent ↓CD206+ Colorectal cancer Kang et al. (2022)

HIF-1α and mTOR inhibition Colorectal cancer Cao et al. (2023)

Tamoxifen Shifts TAMs fromM2 to M1 phenotype STAT6 inactivation, SHP inhibition Pituitary Adenoma Lv et al. (2022)

TAMs depletion PIP5K1α/AKT and MMP9/VEGF axis
inhibition

Prostate (ER-positive subtype) Semenas et al. (2021)

Expansion of M2 population ↑CD163+ macrophages infiltration Postmenopausal Breast Xuan et al. (2014)

Atovaquone Shifts TAMs fromM2 to M1 phenotype Reprogrammed TAMs ↓CD206+, ↑CD11c+ Colon carcinoma Feng et al. (2023)

ONC201 Inhibition of OXPHOS Activation of ClpP Glioblastoma Geiß et al. (2021)

Doxycycline Inhibits M2-type polarization of
macrophages

IL-4-induced luciferase activity and
MRC1 inhibition

Choroidal neovascularization He L et al. (2014)

Shifts TAMs fromM2 to M1 phenotype ↓MMPs, ↓VEGF Pulmonary metastases of
osteosarcoma

Hadjimichael et al.
(2022)
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