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Accurate calculation of drug-target affinity (DTA) is crucial for various
applications in the pharmaceutical industry, including drug screening, design,
and repurposing. However, traditional machine learning methods for calculating
DTA often lack accuracy, posing a significant challenge in accurately predicting
DTA. Fortunately, deep learning has emerged as a promising approach in
computational biology, leading to the development of various deep learning-
based methods for DTA prediction. To support researchers in developing novel
and highly precision methods, we have provided a comprehensive review of
recent advances in predicting DTA using deep learning. We firstly conducted a
statistical analysis of commonly used public datasets, providing essential
information and introducing the used fields of these datasets. We further
explored the common representations of sequences and structures of drugs
and targets. These analyses served as the foundation for constructing DTA
prediction methods based on deep learning. Next, we focused on explaining
how deep learning models, such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Transformer, and Graph Neural Networks
(GNNs), were effectively employed in specific DTA prediction methods. We
highlighted the unique advantages and applications of these models in the
context of DTA prediction. Finally, we conducted a performance analysis of
multiple state-of-the-art methods for predicting DTA based on deep learning.
The comprehensive review aimed to help researchers understand the
shortcomings and advantages of existing methods, and further develop high-
precision DTA prediction tool to promote the development of drug discovery.
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1 Introduction

Drug-target affinity (DTA) is a critical metric and the core of drug discovery. While the
wet experiments have been used to calculate DTA with high accuracy, the time-consuming
and laborious nature of these experiments can no longer meet the demands of modern drug
screening, especially with the massive drug-target pairs. Fortunately, the emergence of
computational methods for predicting DTA has accelerated the drug screening process,
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helping to shorten the drug development cycle and reduce the costs
(Kairys et al., 2019; Abbasi et al., 2021; Xu et al., 2021; Zhang
et al., 2023a).

At present, while there are non-machine learning methods
available for computing DTA, such as FEP (Free-Energy
Perturbation) (Jorgensen and Thomas, 2008) and MM/GBSA (or
MM/PBSA) (Çınaroğlu and Timuçin, 2020), which can effectively
estimate the binding free energy or affinity of drug-target, these
methods not only demand a significant amount of computing
resources, but also exhibit slow processing speeds when dealing
with a large number of drug-target pairs. In contrast, data-driven
machine learning methods offer fast processing speeds and high
computational accuracy. The computational methods based on
machine learning for predicting DTA can be classified into two
categories: traditional machine learning methods and deep learning
methods. Traditional machine learning methods employ linear
regression, random forest regression, nearest neighbor regression,
and support vector machine regression (Ballester and Mitchell,
2010; Li et al., 2015; Shar et al., 2016) to predict DTA. Although
these methods perform well performance, they cannot automatically
extract high-level hidden features from drugs and targets. With the
emergence of deep learning models, DTA prediction methods based
on deep learning (Öztürk et al., 2018; Wang et al., 2021a; Rube et al.,
2022) can automatically extract high-level hidden features from the
sequences and structures of drugs and targets, resulting in the
improved performance compared to traditional machine learning
methods. Except for a few methods that utilize deep learning to
extract high-level features from target-target and drug-drug
interaction networks (Dehghan et al., 2023; Rafiei et al., 2023),
based on the different combinations of multiple modal features of
drugs and targets, such as fingerprints, SMILES, two-dimensional
molecular topology graphs, three-dimensional spatial structures,
physicochemical properties, sequences, and contact maps, deep
learning-based DTA prediction methods can be broadly divided
into three categories: sequence-based, hybrid-based, and structure-
based methods.

Sequence-based methods (Öztürk et al., 2018; Karimi et al.,
2019; Wang et al., 2021a; Li et al., 2022b; Ghimire et al., 2022; Zhao
et al., 2022; Gim et al., 2023; Jin et al., 2023; Kalemati et al., 2023; Ru
et al., 2023; Zhou et al., 2024) aim to extract implicit sequence
features from drug SMILES (Simplified Molecular Input Line Entry
System) (Weininger, 1988) and target sequences using deep learning
models. These methods leverage various sequence deep learning
models such as Convolutional Neural Networks (CNNs) (LeCun
et al., 2015), Recurrent Neural Networks (RNNs) (Zaremba et al.,
2015), and Transformers (Vaswani et al., 2017). In the current
sequence-based methods, 1D-CNN, RNNs, and Transformers are
commonly used to extract high-level sequence features. On the other
hand, 2D-CNN is employed to extract sequence features from a two-
dimensional matrix composed of drugs or targets. For instance,
DeepDTA (Öztürk et al., 2018) utilized a CNN module with three
consecutive 1D convolutional layers to extract sequence features
from drug SMILES and target sequences, respectively. SimCNN-
DTA (Shim et al., 2021), on the other hand, employed 2D-CNN to
predict DTA by utilizing the outer product between column vectors
of two similar matrices representing drugs and targets. While CNNs
effectively capture the local features from drug SMILES and target
sequences, they may overlook long-range dependencies between

atoms or amino acids. To address this issue, RNNs with memory
functions can be utilized to extract long-range dependent features, as
demonstrated in DeepAffinity (Karimi et al., 2019) and DeepCDA
(Abbasi et al., 2020). However, CNNs and RNNs may not focus on
the key features influencing drug-target interaction or provide
interpretability for the model’s effectiveness. Some attention
mechanisms (Vaswani et al., 2017) are employed to capture the
key features (Zeng et al., 2021; Chen et al., 2022; Ghimire et al., 2022;
Monteiro et al., 2022; Zhang et al., 2022; Zhao et al., 2022). For
example, AttentionDTA (Zhao et al., 2022) utilized attention
mechanisms to focus on subsequences within drug SMILES and
target sequences that played a crucial role in affinity prediction.
MRBDTA (Zhang et al., 2022) incorporated multi-head attention
mechanisms, effectively capturing drug-target interaction sites and
providing interpretational analysis for its effectiveness. CAPLS (Jin
et al., 2023) employed the cross-attention mechanism to capture the
mutual effect of protein-binding pocket and ligand. MT-DTA (Zhu
et al., 2023b) built a variational autoencoders system with a cascade
structure of attention model and CNNs to extract the implied high-
level interactive features from target sequences and drug SMILES.
Sequence-based methods have the advantage of easily obtaining the
target sequences and drug SMILES data. These methods excel in
processing sequence data swiftly, without demanding substantial
computing resources, and exhibit a fine performance in predicting
DTA based on the extracted high-level sequence features.
Nevertheless, these methods overlook additional multimodal
information related to targets and drugs, like topology graphs
and 3D structures. It is important to note that structural
information harbors crucial features that significantly influence
DTA prediction. Disregarding this essential structural data may
limit the accuracy, depth, and interpretability of understanding in
predicting DTA. However, utilizing the structures of targets to
enhance DTA faced limitations in the early states, as only a small
portion of target sequences had known structures. Consequently, the
exploration of hybrid-based methods emerged by incorporating the
structural features of drugs into sequence-based approaches.

Hybrid-based methods (Karimi et al., 2021; Wang et al., 2021b;
Zhang et al., 2021; Cheng et al., 2022; Li et al., 2022a; Lin et al., 2022a;
Tian et al., 2022; Yang et al., 2022; Jiang et al., 2023; Pan et al., 2023;
Wang et al., 2023a; Wang and Li, 2023; Xia et al., 2023; Yang et al.,
2023; Zeng et al., 2023; Zhang et al., 2023b; Zhang et al., 2023a; Zhu
et al., 2023a; Zhu et al., 2023c; Nguyen et al., 2022.) leverage deep
learning models to extract sequence features from drug SMILES and
target sequences, as well as the structural features from two-
dimensional molecular topology graphs and three-dimensional
structures of drug small molecules. These methods focus on
integrating the structural features of drugs into sequence-based
approaches. For the structures of drugs, tools like RDKit
(Landrum, 2013) are commonly used to convert drug SMILES
into the molecular graphs. GNN models (Xu et al., 2019) are
employed for capturing the structural features of drugs. For
instance, GraphDTA (Nguyen et al., 2021) utilized GCN and
CNN to extract the structural features from drug molecular
graphs and sequence features from target sequences, respectively.
These extracted features were then combined as inputs and passed
through fully connected layers to predict DTA. SAG-DTA (Zhang
et al., 2021) incorporated a GCN with multiple self-attention graph
pooling layers to extract the hidden features from drug molecular
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graphs. CNN was directly applied to the target sequences for
learning high-level features. TDGraphDTA (Zhu et al., 2023c)
introduced the transformer and diffusion to predict drug-target
interactions using multi-scale information interaction and graph
optimization. Hybrid-based methods combine the structural
features of drugs with sequence-based approaches, enriching the
features of drugs. Typically, GNN are employed to extract the drug
structural features from molecular graphs converted from drug
SMILES. These molecular graphs are relatively small and have
minimal impact on the computational speed of the model.
However, three-dimensional structural features of drugs are
underutilized in hybrid-based methods. Furthermore, these
methods completely overlook the structural features of target and
make it difficult to provide explanatory analysis for the effectiveness
of the model, leaving ample opportunity for performance
enhancement. However, with the advent of AlphaFold (Jumper
et al., 2021) and ColabFold (Kim et al., 2023), two target
structural prediction tools, obtaining target structures has become
less challenging. Consequently, there is a growing interest in
methods that utilize the structures of drugs and targets for
predicting DTA. Structure-based methods are gaining increased
attention from researchers in this context.

Structure-based methods (Gomes et al., 2017; Stepniewska-
Dziubinska et al., 2018; Zhang et al., 2019; Jiang et al., 2020; Seo
et al., 2021; Shen et al., 2021; Lin et al., 2022b; Ma et al., 2022; Lu
et al., 2023; Wu et al., 2024) employ deep learning models like GNN
and 3D Convolutional Neural Network (3D-CNN) to extract
implicit structural features from the molecular graphs of drugs
and targets or the 3D structures of drug-target complexes. Using
GNNs (Li et al., 2021; Yuan et al., 2021; Chu et al., 2022; Jiang et al.,
2022; Liao et al., 2022; Pandey et al., 2022; Bi et al., 2023; Wang et al.,
2023b; Zhang et al., 2023d; Zhang et al., 2023c; Ma et al., 2023;
Mekni et al., 2023; Tsui et al., 2023; Tian et al., 2024), the molecular
graphs of drugs and targets are fed into GNN to obtain the structural
features. For example, PSG-BAR (Pandey et al., 2022) served as an
example where a contact map was generated based on the 3D
structure of target. Target graph was then constructed using the
contact map, and the structural features were extracted using RGAT.
For drug, the graph was generated based on its structural file, and
RGAT was also employed to extract high-level features.
AttentionMGT-DTA (Wu et al., 2024) represented drugs and
targets by a molecular graph and binding pocket graph,
respectively. Graph transformer module was utilized to extract
the structural features of drugs and binding pockets. WGNN-
DTA (Jiang et al., 2022) constructed protein and molecular
graphs through sequence and SMILES that can effectively reflect
their structures. Weighted graph neural networks were used to
extract the structural features of molecules and proteins for
predicting DTA. On the other hand, 3D-CNN-based methods
(Zheng et al., 2019; Kwon et al., 2020; Liu et al., 2021; Wang
et al., 2022) directly take the 3D structure of drug-target complex
as input and use the extracted spatial features of complex as input for
the FC network to predict DTA. For example, AK-Score (Kwon
et al., 2020) employed the ensemble of multiple independently
trained networks that consisted of multiple channels of 3D-CNN
layers to predict the binding affinity of a complex. Sfcnn (Wang
et al., 2022) converted drug-target complex into 3D grids for CNN
training to extract the structural features. Structure-based methods

offer effective utilization of the structural features of drugs and
targets, yielding impressive performance. They are especially
valuable for providing explanatory analyses that shed light on the
model’s effectiveness, thereby facilitating research into DTA
prediction methods and promoting wider application of these
models. However, it is important to acknowledge some
limitations. One such limitation is the reliance on tools like
AlphaFold to obtain the target structures. While AlphaFold has
shown higher accuracy in predicting the structures of monomeric
proteins, its performance in predicting the structures of other
proteins still requires optimization. Additionally, structure-based
methods extract structural features from protein structure graphs,
which can be computationally demanding and result in slower
processing speeds.

In this review, we aimed to highlight the crucial significance of
precise DTA prediction, followed by a comprehensive overview of
the universal datasets and widely used representation methods for
the sequences, structures, and complexes of drugs and targets. We
then focused on the widespread application of popular deep learning
techniques in DTA prediction. Our goal was to provide a
comprehensive overview of datasets, representation, methods, and
deep learning techniques for predicting DTA. By doing so, we intend
to empower researchers to effectively utilize these resources in
developing innovative DTA prediction methods, thereby
providing essential support for drug discovery, design, and
repurposing endeavors. The main contributions of this review
can be summarized as follows:

(1) A comprehensive statistical analysis has been carried out on
datasets, representations, model architectures, and
performance evaluation of state-of-the-art methods based
on deep learning for predicting DTA.

(2) Elaboration on the extraction process of crucial implicit
features from diverse modalities of drugs and targets using
cutting-edge deep learning technologies like CNN, RNN,
GNN, and Transformer.

(3) An in-depth analysis of the strengths and limitations of
advanced deep learning methods for predicting DTA is
conducted from three perspectives: sequence, hybrid, and
structure. This analysis serves as a foundation for
researchers to develop novel and more accurate tools for
DTA prediction.

2 Dataset

A high-quality dataset of drug-target binding affinity serves as
the fundamental basis for the development of computational
methods that leverage deep learning for predicting DTA.
Currently, the most widely used datasets for DTA prediction
include PDBbind (multiple versions) (Wang et al., 2005), Davis
(Davis et al., 2011), KIBA (Tang et al., 2014), BindingDB (Liu et al.,
2007), and Metz (Metz et al., 2011). To supplement these universal
affinity datasets, UniRef (Suzek et al., 2015), UniProt (The et al.,
2021), Protein Data Bank (PDB) (Berman, 2000), STITCH (Kuhn
et al., 2007), and ZINC (Irwin and Shoichet, 2006) can provide
additional sequences and structures for drugs and targets that may
be missing.
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2.1 Statistical analysis of commonly used
datasets for DTA prediction

We performed a comprehensive statistical analysis on the
datasets utilized in nearly 80 references on drug-target affinity
cited in this review to assess their usage. The results of our
analysis, as depicted in Figure 1, revealed that PDBbind, Davis,
KIBA, BindingDB, andMetz were the five most frequently employed
datasets. Among these, PDBbind and BindingDB were primarily
utilized for deep learning methods based on hybrid or structure.
These two datasets offer comprehensive sequence and structural
data for drugs and targets. On the other hand, Davis, KIBA, and
Metz were predominantly employed for sequence-based deep
learning methods, although some hybrid or structure-based deep
learning methods also utilized them. It is worth mentioning that the
structures of targets in Davis, KIBA, andMetz were sourced from the
PDB database.

2.2 Introduction to commonly used datasets
for DTA prediction

In this section, we provide a detailed introduction to the five
most frequently used datasets: PDBbind, Davis, KIBA, BindingDB,
and Metz. In addition, we will also introduce the ToxCast dataset
(Feng et al., 2019), which is commonly used in multi-task
prediction methods.

2.2.1 PDBbind
PDBbind dataset comprises four commonly used versions:

2013, 2016, 2018, and 2020. Each version of the dataset consists of

two distinct parts: the general set and the refined set (Table 1). To
illustrate, let’s consider the PDBbind dataset (version 2016),
which includes a total of 13,283 samples: 9,226 samples for
the general set and 4,057 samples for the refined set. The
refined set is obtained based on the quality protocols,
including measured resolution and experimental precision.
This process ensures the exclusion of ligands, ternary
complexes, or steric hindrance complexes with resolutions
above 2.5 Å, R factors exceeding 0.25, instances of covalent
bonding, and complexes lacking reported binding affinities in
terms of Kd (dissociation constant) or Ki (inhibitor constant), or
falling outside the necessary range (Kd < 1 pM). Each sample
represents a drug-target pair labeled with affinity value known as
the dissociation constant (Kd). Notably, each sample provides
drug SMILES and target sequence, as well as the 3D structure of
target and pocket information related to drug-target binding.
Thanks to the extensive sequence and structural information
available for drugs, targets, and pockets in PDBbind dataset, it
has become widely recognized as a universal dataset for
predicting DTA in sequence, hybrid, and structure-based deep
learning methods. Furthermore, it is worth mentioning that the
CASF series datasets used to test the performance of models in
certain studies (Stepniewska-Dziubinska et al., 2018; Wang et al.,
2022), such as CASF-2013 (Li et al., 2014), CASF-2016 (Su et al.,
2019), are the core sets derived from the corresponding refined
sets of PDBbind datasets.

2.2.2 Davis and KIBA
Davis dataset (Table 2) comprises 68 compounds and

442 proteins, generating a total of 30,056 compound-protein
affinity samples, each labeled with the dissociation constant

FIGURE 1
Statistics on the usage of the datasets for predicting DTA based on deep learning.
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(Kd). It is worth noting that all drug-target pairs that can not be
experimentally measured for bioactivity are assigned a bioactivity
value of 10 μM (corresponding to a pKd of 5) in Davis dataset. But
the number of data points within this range is very large.
Consequently, some methods have chosen to remove the data
points with a bioactivity value of 10 μM from the Davis dataset,
thereby creating what is known as the Filtered Davis dataset
(Rifaioglu et al., 2021). KIBA dataset (Table 2) includes
246,088 interaction pairs of samples derived from 467 proteins
and 52,498 compounds. Notably, KIBA contains three types of
labels: inhibition concentration 50 (IC50), dissociation constant
(Kd), and inhibition constant (Ki). Due to their focus on only
providing the sequences of drugs and targets, Davis and KIBA are
predominantly utilized in sequence-based deep learning methods.
Nonetheless, a few hybrid or structure-based approaches have also
been successfully employed using these datasets. It is important to
note that while Davis and KIBA do not include the 3D structures of
targets and drugs, they can be accessed by downloading them from
the PDB and ZINC databases, respectively.

2.2.3 BindingDB
BindingDB dataset is primarily composed of drug-target pair

samples sourced from some scientific literatures, encompassing
four different types of affinity labels: IC50, Kd, Ki, and EC50
(median effect concentration). Table 3 displays the number of
drugs, targets, and drug-target interaction pairs in each label

category. Notably, BindingDB provides drug SMILES and target
sequences, while their structures can be obtained from PDB and
ZINC databases, respectively. This comprehensive information
enables BindingDB to be widely utilized in sequence, hybrid, and
structure-based methods, typically to evaluate the generalization
performance of DTA prediction methods.

2.2.4 Metz
Metz dataset comprises 1,423 drugs and 170 targets, resulting in

a total of 35,259 drug-target pairs. Each pair is labeled with an
affinity value represented by Ki (in the form of pKi value).
Furthermore, the relationship between drugs and targets can be
accessed from the STITCH database, which consolidates diverse
chemical and protein networks.

2.2.5 ToxCast
Toxcast is a toxicology research dataset derived from high-

throughput in vitro screening of chemicals, primarily measuring
AC50, which represents the concentration at half of the maximum
activity. This dataset has a large scale, covering different types of
proteins, and contains qualitative results from more than
600 experiments involving over 8,000 compounds. With around
530,000 observations of drug-target pairs and over 600 labels, it is
well-suited for multi-task prediction. Its subsets are frequently
utilized for case studies or generalization performance testing of
DTA methods.

TABLE 1 Statistic of commonly used PDBbind dataset with different versions.

Version Total number of samples General set Refined set

2013 11,184 8,225 2,959

2016 13,283 9,226 4,057

2018 16,126 11,663 4,463

2020 19,443 14,127 5,316

TABLE 2 Detailed information on datasets Davis, Filtered Davis, and KIBA.

Dataset Compounds Proteins Total number of samples

Davis 68 442 30,056

Filtered Davis 68 379 9,125

KIBA 52,498 467 246,088

TABLE 3 Details of BindingDB dataset.

Dataset Label Drugs Targets Total number of samples

BindingDB IC50 265,627 2,793 376,751

Kd 5,895 812 12,589

Ki 93,437 1,619 144,525

EC50 31,970 513 37,896
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2.3 Introduction to supplementary used
databases for DTA prediction

2.3.1 Uniprot
Uniprot database (The et al., 2021) is a sequence database

designed specifically for proteins that contains approximately
220 million protein sequences and related annotation
information on the biological functions of proteins. It has the
ability to add new protein entries, as well as supplement and
update publicly available annotation information, and is widely
regarded as the protein database with the most extensive
collection and comprehensive annotation information.

2.3.2 PDB
PDB database (Berman, 2000) is the premier collection of 3D

structures for biological macromolecules, such as proteins, nucleic
acids, etc., which contains the 3D structures of all resolved proteins.
In addition to annotating the 3D structural information of proteins,
PDB also provides various file types for downloading and visualizing
the 3D structures of proteins.

2.3.3 STITCH
STITCH database (Kuhn et al., 2007) is a valuable resource

that includes information on interactions between
43,000 compounds and 9,643,763 proteins from 2,031 species.
It shares protein interaction data with the STRING database
(https://cn.string-db.org/), making it an important database for
studying compound sequences. Each interaction in STITCH
database is assigned a score value, which represents the
affinity or probability of the interaction between a compound
and a protein. STITCH also provides information on compounds
that are similar to the drug of target, along with their
similarity scores.

2.3.4 ZINC
ZINC (Irwin and Shoichet, 2006) is a free commercial database

used for virtual screening of compounds, which provides access to
3D structures of over 230 million molecules. It offers multiple
docking program interfaces, user-defined molecular operations,
and web-based database search and browsing capabilities.

3 Representation

3.1 Sequence representation

Drug SMILES and target sequences are composed of different
characters. Therefore, they are commonly encoded using one-hot
encoding or label encoding in sequence and hybrid-based methods.
Their sequence features are extracted using CNN, RNN, or
Transformer. In structure-based methods, the extracted features
from sequences are utilized as node features in the graphs of drugs
and targets. In addition, traditional sequence features such as
molecular fingerprint, position-specific score matrix (PSSM)
(Altschul, 1997), and Hidden Markov Matrix (HMM) (Remmert
et al., 2012) are also widely employed in DTA prediction.

3.2 Structure representation

For drug, the structure representation often involves graph. One
common type of the drug graph is based on the drug SMILES, which
can be converted using RDKit tool. Another type of the drug graph is
based on the 3D structural file, where atoms serve as vertices and
bonds act as edges. Node features in the drug graph can be derived
from the physical-chemical properties of atoms or extracted from
drug SMILES using deep learning techniques.

For target, the secondary structural information can be obtained
directly from the relevant file of target and is widely employed in
traditional machine learning and deep learning methods. The
tertiary structural graph of target can be roughly categorized into
two types: contact map and spatial topology graph. Contact map is
created based on the sequence or tertiary structure of target,
generating a map of interaction between amino acids. Structural
features of target can be extracted directly from the contact map
using CNNmodels. Alternatively, the contact map can be converted
into a target graph, allowing the use of GNNs to extract structural
features. Spatial topology graph of target is constructed based on the
3D structural file. Nodes in the graph represent amino acids,
typically carbon α atoms, and edges are formed based
on distance thresholds, such as Euclidean distance between
carbon α atoms.

3.3 Interaction network graph
representation of drug-target complex

In DTA prediction, the interaction between a drug and its target
is often represented as a graph. This involves extracting interaction
features using GNN. The construction of the interaction network
graph is based on the 3D structure of drug-target complex. To create
the graph, the atoms of drug and the carbon atom of amino acid in
target (typically the carbon α atom) are selected as the vertices of
graph. The Euclidean distance between each atom and the carbon
atom is then calculated. If the distance is less than or equal to a
specified threshold (usually set to 8 Å or 10 Å), an edge is created to
connect the corresponding atom to the amino acid. Any atoms and
amino acids that did not participate in the construction of the
interaction graph are excluded. This process results in an interaction
network graph that represents the drug-target complex, which can
be used for analysis and prediction of DTA.

3.4 3D structural spatial grid representation
of drug-target complex

While the interaction network graph of drug-target complex can
provide valuable information about the structural features, some
atoms and amino acids are ignored. As a result, deep learning
methods that utilize a complete 3D structural spatial grid
representation of drug-target complex are widely used. The 3D
structural spatial grid representation of the complex is composed of
the spatial coordinates of all atoms, and 3D-CNN is used to extract
the spatial structural features from the complex’s 3D structure.
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4 Drug-target affinity prediction
methods based on deep learning

Currently, computational methods for predicting DTA using
deep learning can be broadly categorized into three groups based on
the progression from sequence to structure: sequence-based, hybrid-
based, and structure-based methods. In the following chapters, we
will provide a comprehensive overview of the feature extraction
process for each category.

4.1 Sequence-based deep learning methods

Sequence-based deep learning methods (Figure 2) utilize
drug SMILES and target sequences as input. These methods
employ various deep learning techniques, including CNN,
RNN, Transformer, and attention mechanisms, to extract
essential features from the input sequences. In the following
sections, we will provide an overview of some classic sequence-
based methods.

4.1.1 DeepDTA
In DeepDTA (Öztürk et al., 2018), drug SMILES and target

sequences were encoded as label encodings and used as inputs. The
sequence feature extraction was conducted by two independent
CNN blocks, each comprising three 1D convolutional layers.
Drug SMILES and target sequences, were separately processed
through the embedded layers and passed into their respective
CNN blocks. This allowed for the extraction of high-level
sequence features from drugs and targets. Subsequently, the
extracted sequence features were concatenated and fed into a
three-layer FC network to predict DTA. DeepDTA not only
showed superior performance compared to traditional machine
learning methods, but also enabled automatic extraction of
sequence features and end-to-end DTA prediction. This
contributed to the transition from traditional machine learning
methods to deep learning methods in the field of DTA prediction.

4.1.2 DeepCDA
In the architecture of DeepCDA (Abbasi et al., 2020), drug

SMILES and target sequences were used as inputs. Initially, both
drug SMILES and target sequences underwent encoding via
coding layers. The encoded representations were then
separately fed into identical feature extraction networks. Each
feature extraction network consisted of two components: a CNN
block and an LSTM block. CNN block comprised three
convolutional layers, responsible for extracting short-distance
features from the sequences. These short-distance features were
subsequently inputted into a multi-layer LSTM block to capture
long-distance dependent features. By combining CNN and
LSTM, DeepCDA effectively considered local and long-range
dependent features of the sequence. To further extract crucial
information influencing drug-target interaction, a bidirectional
attention mechanism was employed to fuse the extracted
sequence features. This fusion process enabled comprehensive
feature mining that accounts for the interaction between drugs
and targets. Finally, the fused features were fed into a FC layer to
predict DTA.

4.1.3 AttentionDTA
AttentionDTA (Zhao et al., 2022) took drug SMILES and

target sequences as input, which were encoded using label
encoding. A character embedding layer was inserted between
the label encoding layer and the feature extraction block to
convert drug SMILES and target sequences into embedding
matrices. These matrices were then passed through a CNN
block consisting of multiple 1D-CNN layers to extract implicit
sequence features. To capture the non-covalent interactions
between the atoms of drug and the amino acids of target,
AttentionDTA incorporated a bilateral multi-head attention
mechanism. This mechanism took the features extracted by
the CNN block as input, allowing it to capture the interaction
information that affected drug-target interaction. The resulting
key interaction information was subsequently fed into a multi-
layer perceptron (MLP) for DTA prediction.

FIGURE 2
The overview architecture of sequence-based deep learning methods for predicting DTA.
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4.2 Hybrid-based deep learning methods

Hybrid-based deep learning methods (Figure 3) have been at the
forefront of utilizing the structural features of drugs. The process
begins by obtaining the graph representation of drug directly from
its SMILES using RDKit tool. Subsequently, GNN is employed to
learn implicit high-level structural features from the graph. Finally,
these extracted structural features are combined with the sequence
features of target to predict DTA. These methods effectively
integrate the sequence and structural information to enhance the
performance.

4.2.1 GraphDTA
GraphDTA (Nguyen et al., 2021) was a representative hybrid-

based deep learning method for predicting DTA. It leveraged the
structural features of drugs and the sequence features of targets.
Initially, drug SMILES was converted into a molecular graph
using the RDKit tool. Subsequently, a three-layer GNN was
employed to extract the structural features. As for target, the
sequence underwent label encoding and embedding layers before
being inputted into a convolutional block comprising three 1D-
CNN layers to learn sequence features. Finally, the extracted
structural features of drugs and the sequence features of targets
were combined and fed into a FC network with multiple layers to
estimate DTA.

4.2.2 MGraphDTA
MGraphDTA (Yang et al., 2022) took a similar approach by

leveraging the structures of drugs and target sequences. However, it
enhanced the global structural features extraction by employing a
deeper multi-scale GNN (MGNN). This allowed for a
comprehensive understanding of the global relationships between
atoms in drug and captured various features within the structure of
drug. Simultaneously, multi-scale CNN (MCNN) was applied to
extract multi-scale features from target sequences. Following this,
the multi-scale features from the structures of drugs and target
sequences were separately fused, and the resulting fused features
were concatenated to form a combined representation of drug-target
pair. Finally, the combined representation was fed into MLP to
predict DTA.

4.2.3 ColdDTA
Deep learning methods have exhibited promising performance

on randomly split public datasets, but their performance tends to
significantly decrease when applied to practical scenarios. To
address this issue, ColdDTA (Fang et al., 2023) utilized the
structural knowledge of drugs and target sequence information to
enhance the model’s generalization performance by data
augmentation and attention-based feature fusion techniques. The
construction process of ColdDTA was as follows: firstly, a new drug-
target pair was generated by removing a subgraph from the original
graph of drug. Next, the structural features of drug and the sequence
features of target were extracted using GNN and CNN, respectively.
These extracted features were then fused via an attention-based
fusion block to better capture the interaction mechanism between
drug and target. Finally, the fused features were inputted into MLP
to predict DTA.

4.3 Structure-based deep learning methods

Currently, structure-based deep learning methods for predicting
DTA can be broadly categorized into two types. The first type
involves extracting structural features from the molecular graphs of
drugs and targets using GNN, followed by fusing the extracted
features to predict DTA using a FC network (Figure 4A). The second
type is based on 3D structures of drug-target complexes, where high-
level structural features are extracted using 3D-CNN to predict DTA
(Figure 4B). With the emergence of AlphaFold and ColabFold,
obtaining the structures of targets has become more feasible.
Furthermore, the rapid development of GNN and 3D-CNN has
provided critical support for extracting structural features. As a
result, structure-based methods have garnered increasing attention
from researchers.

4.3.1 GSAML-DTA
GSAML-DTA (Liao et al., 2022) employed a hybrid network

model combining GNN and GAT to extract structural features from
drugs and targets. The process began by converting drug SMILES
and target sequences into drug molecular graphs and contact maps,
respectively, using different tools. Subsequently, drug molecular

FIGURE 3
The overview architecture of hybrid-based deep learning methods for predicting DTA.

Frontiers in Pharmacology frontiersin.org08

Zeng et al. 10.3389/fphar.2024.1375522

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1375522


graphs and contact maps were separately inputted into the hybrid
network model of GNN-GAT with an attention mechanism to
extract structural features of drugs and targets. Following this,
the extracted features were concatenated and further optimized
through an interactive information module. Finally, the
optimized features were fed into a FC network to predict DTA.
By leveraging the GNN-GAT hybrid network model with attention
mechanism and the interactive module, GSAML-DTA aimed to
enhance the accuracy of DTA prediction.

4.3.2 HGRL-DTA
HGRL-DTA (Chu et al., 2022) utilized a hierarchical graph

representation learning model for predicting DTA. This model
established a hierarchical graph framework where the drug-target
binding affinity data was represented as an affinity graph, with drugs
and targets serving as vertices within the graph. Simultaneously,
drugs and targets were represented as molecular graphs,
respectively. To begin, GNN was employed to learn global-level
affinity relationship within the affinity graph. Additionally, GNN
was also used to separately capture the local chemical structural
features of drugs and targets. Through a message propagation
mechanism, the learned hierarchical graph information was
integrated, and the structural features of drugs and targets were
refined using GCN. Finally, these extracted structural features of
drugs and targets were combined and inputted into a FC network to
predict DTA. By leveraging the hierarchical graph setup, GNN-
based representation learning, and message propagation
mechanism, HGRL-DTA aimed to improve the accuracy of DTA
prediction.

4.3.3 MSGNN-DTA
MSGNN-DTA (Wang et al., 2023b) employed a multi-scale

graph construction approach to capture the structural features of
drugs and targets frommultiple perspectives. For drugs, two types of
graphs were constructed. Firstly, an atomic level graph was
generated using RDKit tool based on drug SMILES. In this
graph, atoms were represented as vertices, chemical bonds
between atoms were represented as edges, and the topology was
represented by a two-dimensional matrix. Secondly, a motif level
graph was created by considering certain motifs (e.g., benzene rings)
as vertices, with edges indicating the presence of chemical bond
connections between motifs. Regarding target, target sequence was
converted into a contact map using ESM-1b (Rives et al., 2021).
Additionally, a weight map was constructed based on WGNN-DTA
(Jiang et al., 2022). In weight map, residues served as vertices,
interactions between residues served as edges, and weights of
edges were probability values. To obtain multi-scale topological
feature representations, GNN was utilized to extracted high-level
structural features from the atomic level graphs and motif level
graphs of drugs, as well as the weight graphs of targets. Subsequently,
an attention mechanism was employed to fuse the multi-scale
structural features and generate a join feature representation. The
joint feature representation was then inputted into a multi-layer FC
network for DTA prediction.

4.3.4 Sfcnn
Aside from utilizing GNN to extract the structural features from

molecular graphs of drugs and targets, there are some methods that
use 3D-CNN to extract the structural features from drug-target

FIGURE 4
The overview architecture of structure-based deep learning methods. (A) The extraction of structural features from molecular graphs of drugs and
targets using Graph Neural Networks (GNN), and (B) the extraction of structural features of drug-target complexes from their 3D structures using 3D
Convolutional Neural Networks (3D-CNN).
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complexes. One such method was Sfcnn, which employed 3D-CNN
to generate a score function for DTA prediction. To begin, the drug-
target complex was transformed into a 3D grid representation. This
grid served as input to 3D-CNN, which learned high-level structural
features. Finally, multiple density layers were applied to the
extracted features for DTA prediction.

5 Performance analysis of multiple
state-of-the-art methods based on
deep learning

5.1 Common performance
evaluation metrics

In this review, predicting drug-target affinity is a regression task,
and commonly used performance evaluation metrics of the model
include Mean Absolute Error (MAE), Mean Square Error (MSE),
Root Mean Square Error (RMSE), Pearson Correlation Coefficient
(PCC), Spearman (ρ), Concordance Index (CI), and R2.

MAE Eq. 1 is used to measure the mean absolute error between
prediction value and actual value. It reflects the size of actual
prediction error.

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣, ∈ 0,+[ ∞) (1)

MSE Eq. 2 and RMSE Eq. 3 are often used to measure the
deviation between prediction value and actual value. It is a measure
of accuracy used to compare the prediction errors of different
models for specific dataset and measure the error rate of the
regression model. For MAE, MSE, and RMSE, the smaller their
values are, the better effect of the model is.

MSE � 1
n
∑n
i�1

yi − ŷi( )2 (2)

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
, ∈ 0,+[ ∞) (3)

R2 Eq. 4 is mainly used to measure how well the prediction value
fits the actual value. When our model does not have any deficiencies,
R2 will get the maximum value of 1. If R2 is 0, our model is equal to
the baseline model. When R2 is less than 0, it means that our model
is not as good as the baseline model.

R2 � 1 −
∑n
i�1

yi − ŷi( )2
∑n
i�1

yi − �y( )2 , ∈ 0, 1[ ] (4)

In formula Eqs 1–4, n is the number of samples, yi is the vector
of actual value, ŷi is the precdition vector, and �y is the average value
of all actual values yi (1≤ i≤ n).

PCC Eq. 5 is used to measure the mutual relationship (linear
correlation) between two variables X and Y, and its range is [−1, 1].
PCC is widely used in academic research to measure the strength of
the linear correlation between two variables. Cov (X, Y) represents
the covariance of two variables X and Y. σX is the standard deviation
of X. If ρXY > 0, it means that X and Y are positively correlated;

ρXY < 0, X and Y are negatively correlated; ρXY � 0, X and Y are not
correlated.

ρXY � cov X, Y( )
σXσY

, ∈ −1, 1[ ] (5)

Spearman Eq. 6 is a nonparametric measure of the dependence
of two variables. n is the number of samples. The difference between
prediction value and actual value of each group is di (1≤ i≤ n). The
closer value of correlation coefficient ρ is to +1 or −1, the stronger
correlation between two variables.

ρ � 1 − 6∑d2
i

n n2( ) (6)

CI Eq. 7 is used to evaluate the prediction accuracy of the
model. Where bi is the prediction value for the larger affinity δi, bj
is the prediction value for the smaller affinity δj, Z is a
normalization constant. For function φ(x), it is 1 if the value of
x is greater than 0, 0.5 if the value of x is equal to 0, and 0 if the
value of x is less than 0.

CI � 1
Z

∑
δi > δj

δ bi − bj( ) 1≤ i, j≤ n( ) (7)

5.2 Performance analysis of multiple state-
of-the-art methods based on PDBbind,
KIBA, and Davis datasets

Figure 1 highlights PDBbind, KIBA, and Davis datasets as
commonly used datasets for predicting DTA using deep learning.
We summarized the performance evaluation metrics values of
several state-of-the-art methods on PDBbind, KIBA, and Davis
datasets, as reported in recently published literatures (Wang
et al., 2023a; Zhu et al., 2023a; Bi et al., 2023; Xia et al., 2023;
Tian et al., 2024; Wu et al., 2024; Zhou et al., 2024), without
considering the specific partitioning of the corresponding datasets
by these methods. Although the statistical results (Tables 4, 5;
Figures 5–7) showed that these methods have achieved good

TABLE 4 Performance comparison of multiple state-of-the-art methods
based on PDBbind dataset.

Methods MSE RMSE CI

Pafnucy 1.418 1.129 0.789

DeepDTA 1.443 1.148 0.771

DeepDTAF 1.355 1.073 0.799

FusionDTA 1.504 1.2 0.766

DataDTA 1.274 1.012 0.806

GraphDTA 1.579 1.193 0.66

WideDTA 1.633 1.295 0.638

DeepGS 1.385 1.096 0.784

DeepFusionDTA 1.235 1.203 0.774

AffinityVAE 1.398 1.102 0.792
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prediction performance for DTA on commonly used benchmark
datasets, the further improvement in DTA prediction still faces
challenges. Researchers are actively working on extracting high-level
implicit features from the sequences, structures, or complexes of
drugs and targets, with the aim of developing novel methods with
even better performance for predicting DTA.

6 Conclusion

Deep learning-based computational methods for DTA
prediction have become a crucial component of drug discovery
in the pharmaceutical industry. Despite the significant progress

achieved by these methods, there is still a gap between their
current prediction accuracy and the expectations of researchers.
Therefore, to further facilitate the development of novel and high-
precision computational methods for DTA prediction, this review
provides detailed statistics, summaries, and elaboration on
commonly used datasets, the sequence and structural
representations of drugs and targets, as well as representative
deep learning methods.

From the comprehensive overview of advanced methods for
predicting DTA based on deep learning, three key points stand out:

1. It is essential to thoughtfully combine deep learning models
like CNN, RNN, and GNN to extract crucial implicit features

TABLE 5 Performance comparison of multiple state-of-the-art methods based on KIBA and Davis datasets.

Dataset Methods MSE CI Methods MSE CI

KIBA GanDTI 0.469 0.878 DGraphDTA 0.127 0.902

GraphDTA 0.441 0.881 HiSIF-DTA 0.12 0.904

WGNNDTA 0.43 0.886 GTAMP-DTA 0.123 0.917

MGraphDTA 0.427 0.889 TransVAE-DTA 0.2536 0.8221

UCMCDTA 0.421 0.891 AttentionMGT-DTA 0.14 0.893

Davis GanDTI 0.236 0.885 DGraphDTA 0.202 0.905

GraphDTA 0.225 0.895 HiSIF-DTA 0.191 0.907

WGNNDTA 0.211 0.898 GTAMP-DTA 0.177 0.923

MGraphDTA 0.205 0.899 TransVAE-DTA 0.3229 0.8596

UCMCDTA 0.203 0.9 AttentionMGT-DTA 0.193 0.891

FIGURE 5
Performance analysis of multiple state-of-the-art methods based on PDBbind dataset. The general set and refined set are used as the training
dataset, while the core set serves as the test dataset. The evaluationmetric values of thesemethods in the figure are sourced fromReferences (Wang et al.,
2023a; Zhu et al., 2023a).
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influencing DTA prediction from the sequences, structures,
and other data related to drugs and targets.

2. Deep learning models are employed to extract numerous
features from diverse modalities of drugs and targets.
Further refinement and effective fusion of these features are
vital to obtain comprehensive deep features.

3. Most DTA prediction methods using deep learning lack
explanations of their effectiveness. This absence hinders
researchers from enhancing current methods.

In the future, it is imperative to delve into DTA prediction
methods based on deep learning from three key perspectives:

FIGURE 6
Performance analysis of multiple state-of-the-art methods based on KIBA dataset. The evaluation metric values of these methods in the figure are
sourced from References (Bi et al., 2023; Xia et al., 2023; Tian et al., 2024; Wu et al., 2024; Zhou et al., 2024).

FIGURE 7
Performance analysis of multiple state-of-the-art methods based on Davis dataset. The evaluation metric values of these methods in the figure are
sourced from References (Bi et al., 2023; Xia et al., 2023; Tian et al., 2024; Wu et al., 2024; Zhou et al., 2024).
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1. Alongside commonly used deep learning models like CNN,
RNN, and GNN, it is essential to incorporate unsupervised
learning models such as contrastive learning to
comprehensively capture the pivotal features influencing
DTA prediction.

2. The emergence of tools such as AlphaFold has made it
no longer difficult to obtain the structures of targets, with
these structures playing a crucial role in determining
molecular function. Hence, delving deeper into the
three-dimensional spatial structural features of drugs and
targets will help enhance the performance of DTA
prediction.

3. While some deep learning-based methods for DTA
prediction have shown promising results on standard
datasets, their generalization performance is not
satisfactory. Therefore, focusing on selecting specific
datasets within particular fields and constructing deep
learning models for DTA prediction that directly cater to
practical application requirements will emerge as a
prominent area of research interest.
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