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Background: Melatonin is responsible for regulating the sleep-wake cycle and
circadian rhythms in mammals. Tramadol, a synthetic opioid analgesic, is used to
manage moderate to severe pain but has a high potential for abuse and
dependence. Studies have shown that melatonin could be a potential
modulator to reduce tramadol addiction.

Methods: Male Wistar rats were used to investigate the effect of melatonin on
tramadol-induced place preference. The rats were divided into four groups:
control, tramadol, tramadol + melatonin (single dose), and tramadol + melatonin
(repeated doses). Tramadol was administered intraperitoneally at 40 mg/kg, while
melatonin was administered at 50 mg/kg for both the single dose and repeated-
dose groups. The study consisted of two phases: habituation and acquisition.

Results: Tramadol administration produced conditioned place preference (CPP)
in rats, indicating rewarding effects. However, melatonin administration blocked
tramadol-induced CPP. Surprisingly, repeated doses of melatonin were
ineffective and did not reduce the expression of CPP compared to that of the
single dose administration.

Conclusion: The study suggests that melatonin may be a potential therapeutic
option for treating tramadol addiction. The results indicate that melatonin
attenuates the expression of tramadol-induced CPP, supporting its uses as an
adjunct therapy for managing tramadol addiction. However, further studies are
needed to investigate its effectiveness in humans.
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Introduction

The hormone melatonin, secreted by the pineal gland in the brain (Claustrat and
Leston, 2015), plays a crucial role in regulating the sleep-wake cycle and circadian rhythms
of mammals (Claustrat and Leston, 2015). Beyond these functions, melatonin exhibits a
broad spectrum of physiological activities, including antioxidant activity,
immunomodulation, and neuroprotection (Esposito and Cuzzocrea, 2010; Bantounou
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et al., 2022). Recent researches have explored its potential
therapeutic benefits in sleep disorders, depression, anxiety, and
drug addiction (Turek and Gillette, 2004; Papp et al., 2006;
Cardinali et al., 2012; Onaolapo and Onaolapo, 2018; Alghamdi
and Alshehri, 2021). Additionally, studies have investigated its
efficacy in treating cardiovascular diseases, cancer, and
Alzheimer’s disease (Sun et al., 2016; Li et al., 2017; Labban
et al., 2021). Evidence also suggests that melatonin possesses
anti-aging properties and can promote better sleep (Pereira et al.,
2020; Bocheva et al., 2022).

Tramadol, a synthetic opioid analgesic, is widely prescribed for
moderate to severe pain (Grond and Sablotzki, 2004; Subedi et al.,
2019). Despite its effectiveness in pain management, tramadol carries a
high potential for abuse and dependence (Roussin et al., 2015; Bassiony
et al., 2017; Barbosa et al., 2023). The conditioned place preference
(CPP) paradigm measures the drug-rewarding effects in animals
(Huston et al., 2013). In CPP, animals learn to associate a specific
location with the drug’s euphoric or dysphoric effects, and their
preference for that location indicates the drug’s reinforcing
properties (Bardo and Bevins, 2000). Studies have demonstrated that
tramadol induces CPP in rodents, implying its rewarding effects
(Epstein et al., 2006; Huston et al., 2013), which suggests a potential
for misuse and abuse. Research has shown that tramadol use can lead to
physical dependence and addiction, with individuals who have a history
of substance abuse being particularly at risk of developing tramadol
addiction (Epstein et al., 2006; Lanier et al., 2010).

The study of melatonin’s modulation of CPP in response to
tramadol in rats is critically important, given the escalating concerns
about tramadol misuse and abuse (Wood and Dargan, 2021).
Tramadol, a commonly prescribed opioid analgesic, is linked to
addiction, dependence, and various adverse effects (Reines et al.,
2020). Consequently, it is vital to investigate drugs that reduce
tramadol’s rewarding effects to prevent addiction and its associated
issues. Previous research indicates that melatonin might be an
effective treatment for diminishing the effects of several drug
addictions (Hemati et al., 2021). Recently, it has been shown that
melatonin can block morphine induced CPP through modulating
glutamate transporter −1 (GLT-1) and brain-derived neurotrophic
factor (BDNF), nuclear factor-kappa B (NF-κB), and cAMP
response element-binding protein CREB expression levels
(Alghamdi and Alshehri, 2021; Alshehri et al., 2021). Previous
research showed evidence that alcohol-dependent humans and
rodents experience reduction in melatonin levels and delay in
reaching their nocturnal peak concentration of melatonin and
activating melatonin receptors using melatonin or agomelatine
reduced alcohol seeking in rats (Vengeliene et al., 2015). Other
studies have shown melatonin can reduce cocaine (Takahashi et al.,
2017), methamphetamine (Clough et al., 2016), and fentanyl seeking

behavior (Du et al., 2024). Thus, exploring melatonin’s impact on
tramadol-induced CPP in rats is imperative to assess its therapeutic
potential for tramadol addiction management.

Melatonin has demonstrated potential effects against the
rewarding properties of various drugs of abuse, such as
cocaine and morphine, in animal models (Takahashi et al.,
2017). However, the impact of melatonin on tramadol-induced
CPP remains underexplored. Therefore, this study investigated
melatonin as a potential therapeutic compound for treating
tramadol addiction.

Materials and methods

Animals

Male Wistar rats weighing 250–300 g were utilized. They were
housed in pairs under a 12:12 light/dark cycle, with ad libitum access
to food and water. All animals were handled by expert researchers
and housed in pairs to minimize stress. The study received approval
from the King Fahd Medical Research Center Animal Care and Use
Committee. Furthermore, the Biomedical Ethics Research
Committee at the King Abdulaziz University (Reference 405-20)
the experiments in accordance with the ethical guidelines and
research protocols for living organisms established by the King
Abdulaziz City for Science and Technology, as authorized by the
Royal Decree No. M/59 on 24 August 2010.

Drugs

Tramadol hydrochloride (Sigma Aldrich, USA) and melatonin
(Sigma Aldrich, USA), were freshly prepared daily, using 0.5%
ethanol and diluted with saline to serve as the vehicle (i.p. 1 mL/kg).

Experimental design and dosing

Phase I
Figure 1 illustrates the habituation phase spanning from day 1 to

day 3. Throughout this phase, the animals were allowed to explore
the open apparatus for a total of 20 min each day. On day 4, a
20-min pre-test was performed to assess the animals’ preference. The
OPTO-MAX Auto-Track software documented various parameters,
including the duration, overall activity count, ambulatory count, rest
time, and distance covered by the animals in each chamber. A
preference for the black chamber was observed among the majority
of animals, necessitating the use of a biased approach.

FIGURE 1
Timeline of the CPP experiment showing the habituation, pre-test, acquisition and post-test.
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Phase II
During the acquisition phase, from day 5 to day 14, each animal

was placed in the assigned chamber for 45 min. The post-test was
conducted on day 15 for 20 min. During this test, the apparatus was
open to the animals for a total of 20 min, and the CPP score was
calculated. Animals were euthanized using isoflurane on day 16.

Animal groups and dosing

Four groups of animals, each comprising approximately 6-8 rats
as detailed in Table 1, were divided as follows: (1) control, (2)
tramadol, (3) tramadol + melatonin (single dose), and (4) tramadol
+ melatonin (repeated doses). The control group was administered
vehicle injections throughout the experiment. The tramadol group
received tramadol injections (40 mg/kg, i.p.) on alternate days,
totaling five injections. The tramadol + melatonin (single dose)
group was administered tramadol injections (40 mg/kg, i.p.) on
alternate days for five injections, with a single dose of melatonin
(50 mg/kg, i. p.) administered 30 min before the post-test. The
tramadol + melatonin (repeated doses) group received concurrent
injections of tramadol (40 mg/kg, i.p.) and melatonin (50 mg/kg,
i.p.) on alternate days, also totaling five injections.

CPP score, total activity, ambulatory count,
resting time, and distance traveled

The test utilized a three-compartment apparatus constructed
from Plexiglas (Columbus Instruments in Columbus, OH, USA). It
comprised two main chambers, each featuring unique visual cues
and flooring textures. The white chamber was marked by vertical
white stripes and a smooth white floor, whereas the black chamber
displayed a pattern of small white and black squares and had a small
circle drilled into the floor. A smaller external chamber situated
between these two served as a separator. Infrared sensors tracked the
animals’ movements and activity throughout the CPP test. The test
was recorded for 20 min and all parameters were recorded including
the time spent in each chamber, total activity, ambulatory count,
resting time, and distance traveled.

Data analysis

All data comprising the CPP score, such as the distance traveled,
resting time, ambulatory count, and total activity count, were
analyzed using a repeated measure ANOVA followed by the

Tukey’s post hoc test. Statistical significance was set at p < 0.05.
GraphPad Prism version 10.2.1 was used to analyze the results and
create the figures.

Results

The primary objective of this study was to investigate the effect
of melatonin on tramadol-induced CPP. We aimed to determine
whether melatonin administration could attenuate the CPP induced
by tramadol in rats Figure 2. Repeated measures ANOVA revealed
significant effect of the days (F (1, 7) = 78.4, p < 0.0001), the effect of
treatment (F (3, 21) = 22.79, p < 0.0001), and the interaction between
treatment and days (F (3, 21) = 17.82, p < 0.0001). Further analysis
using Tukey’s post hoc test indicated a significant increase in CPP
scores for animals that received five doses of tramadol during the
acquisition phase (tramadol group) compared to the control group
(p < 0.0001). However, administering melatonin 30 min before the
post-test prevented the tramadol-induced CPP (p < 0.0001). In
contrast, repeated doses of melatonin given with tramadol during
the acquisition phase did not reduce tramadol-seeking behavior
during the post-test (p = 0.5188). Also, post hoc test showed
significant increase in CPP score comparing pre-test and post-
test in tramadol group (p < 0.0001) and pre-test and post-test in
tramadol + MEL (R) group (p < 0.0001).

In addition to evaluating melatonin’s impact on tramadol-induced
CPP, we performed further analyses to examine additional relevant
parameters that might influence our results, Figure 3.We quantified the

TABLE 1 Animals groups and treatment.

Groups Treatment

Control Vehicle

Tramadol Tramadol (40 mg/kg, i.p)

Tramadol + melatonin (single dose) Tramadol (40 mg/kg, i.p)+Melatonin (50 mg/kg, i.p) single dose before post-test

Tramadol + melatonin (Repeated doses) Tramadol (40 mg/kg, i.p)+Melatonin (50 mg/kg, i.p), five doses during acquisition

FIGURE 2
CPP score for the effect of melatonin and tramadol in CPP on all
groups (control, tramadol, tramadol + melatonin “single dose”, and
tramadol + melatonin “repeated doses”).
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total activity, ambulatory count, resting time, and distance traveled.
These measures enabled more comprehensive understanding of the
animal’s behavior and more precise assessment of melatonin’s effects.

First, we assessed melatonin’s impact on tramadol’s total
activity, Figure 3A. Repeated measures ANOVA showed
significant effect on days (F (1, 7) = 9.321, p = 0.0185), no
treatment effect (F (3, 21) = 2.138, p = 0.1258), and no
interaction between treatment and days (F (3, 21) = 2.259, p =
0.1113). Second, we evaluated melatonin’s influence on tramadol’s
ambulatory count, Figure 3B. Repeated measures ANOVA indicated
significant effect on days (F (1, 7) = 8.343, p = 0.0234), no treatment
effect (F (3, 21) = 2.033, p = 0.1400), and no effect of treatment and
days (F (3, 21) = 2.422, p = 0.0944).

Third, we assessed the impact of melatonin on tramadol-
induced resting time, Figure 3C. Repeated measures ANOVA
indicated significant effects over days (F (1, 7) = 6.787, p =
0.0352), no significant treatment effect (F (3, 21) = 2.268, p =
0.1103), and no interaction between treatment and days (F (3,
21) = 2.199, p = 0.1182). Lastly, we evaluated the influence of
melatonin on the distance traveled, Figure 3D. Repeated measures
ANOVA showed significant effects on days (F (1, 7) = 9.295, p =
0.0186), no significant treatment effect (F (3, 21) = 2.261, p =
0.1110), and no interaction between treatment and days (F (3,
21) = 2.250, p = 0.1123).

Discussion

Several preclinical studies have reported the rewarding
outcomes of opioids using CPP and other behavioral techniques,
such as self-administration (Sim-Selley et al., 2000; Zhang et al.,
2012; Mavrikaki et al., 2017; Reeves et al., 2021). Moreover, CPP is
considered as one of the most popular non-invasive models for

measuring the motivational effects of drugs of abuse in experimental
animals (Mavrikaki et al., 2017). Previous reports have consistently
demonstrated the rewarding effects of tramadol using the CPP
technique (Abdel-Ghany et al., 2015; Sadeghi-Adl et al., 2020;
Barbosa et al., 2023). Melatonin, a hormone synthesized by the
pineal gland, is essential for maintaining the regular circadian
rhythm in mammals (Dubocovich, 2007). Notably, melatonin has
played a potential role in attenuating the seeking behavior for several
drugs of abuse (Kovanen et al., 2010; Conroy et al., 2012; Alghamdi
and Alshehri, 2021; Alshehri et al., 2021). The CPP paradigm can
provide further insights into animal behavior beyond the time spent
in each chamber, such as the resting time, total activity, ambulatory
count, and total distance.

Tramadol, an opioid analgesic, has shown potential for abuse
according to epidemiological evidence, coinciding with the increased
global demand for opioids over the past 2 decades (Berterame et al.,
2016; Dunn et al., 2019). Tramadol also induces physical dependence
and withdrawal syndrome upon discontinuation, similar to other
opioids (Carroll et al., 2006; Lofwall et al., 2007). Specifically, it has
been demonstrated to produce a CPP rewarding effect in rats (Sprague
et al., 2002; Tzschentke et al., 2002).Moreover, tramadol affectsmultiple
neurotransmitter systems, including serotonin and norepinephrine, and
its effects are partially antagonized by naloxone (Desmeules et al., 1996;
Apaydin et al., 2000). Notably, an in vivomicrodialysis study provided
evidence of a statistically significant increase in dopamine release within
the nucleus accumbens shell following a tramadol suggesting preclinical
evidence of tramadol’s rewarding effects within the reward circuit (Asari
et al., 2018). Consistent with previous findings, this study demonstrated
the CPP rewarding effects with tramadol administration in rats.

Studies on melatonin have demonstrated a decrease in
dopamine release, primarily through effects on dopamine
receptors (Zisapel et al., 1982; Zisapel, 2001). Furthermore,
stimulation of melatonin receptors has been shown to reduce

FIGURE 3
(A) Total activity, (B) ambulatory count, (C) resting time, and (D) distance traveled for the effect of melatonin and tramadol in CPP on all groups
(control, tramadol, tramadol + melatonin “single dose”, and tramadol + melatonin “repeated doses”).
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alcohol relapse-like behavior in Wistar rats (Vengeliene et al., 2015).
A single dose of melatonin significantly attenuated the expression of
tramadol-induced CPP. This finding aligns with those of a previous
report from our laboratory, which found that administering
melatonin 30 min before morphine treatment diminished the
morphine CPP effect (Alghamdi and Alshehri, 2021). The same
study also revealed that melatonin reversed the expression levels of
GLT-1, NF-κB, CREB, and BDNF. Similarly, other studies have
indicated that melatonin can restore neuronal impairment induced
by methamphetamine in mice (Veschsanit et al., 2021). Therefore,
melatonin is recognized for attenuating the rewarding effects and
modulating the neuronal impairment caused by drugs of abuse.

Conducting the CPP test during the day, rather than at night,
aligns with the pharmacological properties and mechanisms of
action of melatonin. Melatonin is a hormone primarily secreted
by the pineal gland in response to darkness, with levels typically
peaking at night to regulate the sleep-wake cycle and synchronize
circadian rhythms inWistar rats (Sánchez et al., 2004; Sánchez et al.,
2008). By administering melatonin and conducting the CPP test
during the day is to minimize any potential confounders associated
with melatonin release during the night and ensuring the reliability
of the results. Furthermore, this study performed several tests
including (total activity, ambulatory count, resting time, and
distance traveled) to assure the melatonin doses during the day
does not affect CPP tests.

The study’s observation that repeated doses of melatonin did not
reduce tramadol-seeking behavior during the post-test underscores
the complexity of the interaction between melatonin and tramadol
in the context of CPP. The initial administration of melatonin
30 min before the acquisition phase test successfully attenuated
the seeking behavior induced by tramadol. However, the efficacy
of melatonin appeared to diminish with repeated administration.
Tramadol is typically considered a mild μ-receptor agonist and also
affects other neurotransmitter systems, including serotonergic,
noradrenergic, and gamma-aminobutyric acid systems
(Bamigbade et al., 1997; Gillen et al., 2000; Jesse et al., 2010).
The mechanisms by which tramadol influences each of these
systems remain unclear, and limited research is available.

Melatonin produces analgesic properties through a variety of
biological pathways (Ambriz-Tututi et al., 2009). Animals and
humans studies have demonstrated its efficacy in alleviating
nociceptive and neuropathic pain (Srinivasan et al., 2012; Borsani
et al., 2017; Kuthati et al., 2019; Shokri et al., 2021). In rodent
models, melatonin shows antinociceptive and anti-hyperalgesic
effects against a range of stimuli, including inflammation and nerve
injury (Yu et al., 2000; Ulugol et al., 2006; Posa et al., 2018). These effects
are believed to be a result of the activation of melatonin receptors
present in critical pain-regulating regions such as the spinal cord,
thalamus, and hypothalamus (Laurido et al., 2002; Lopez-Canul
et al., 2015). Activation of these receptors results in the reduction of
cyclic AMP levels and inhibition of Ca2+ channels (Vanecek and
Vollrath, 1989), consequently lowering intracellular Ca2+ levels
(Vanecek, 1995; Vanecek and Watanabe, 1998), which are essential
in the central sensitization process associated with inflammatory and
neuropathic pain. Furthermore, melatonin modulates various receptor
systems, including dopaminergic (Abilio et al., 2003), GABAergic
(Golombek et al., 1996), opioidergic (Hemati et al., 2021), and
serotonergic pathways (Valdes-Tovar et al., 2018). Melatonin shows

anti-inflammatory and antioxidative characteristics (Nabavi et al., 2019;
Bantounou et al., 2022), further enhancing its analgesic efficacy
(Burchakov and Uspenskaya, 2019). Acting as a potent free radical
scavenger, melatonin neutralizes reactive oxygen and nitrogen species
and facilitate the activity of antioxidative enzymes such as glutathione
peroxidase and superoxide dismutase (Tsia and Hu, 2003; Reiter et al.,
2007). On the other hand, tramadol use have been reported to be
associated with the activation of proinflammatory cytokines (Kraychete
et al., 2009), and glutamatergic involvement (Chetan et al., 2015). Thus,
the complex mechanisms of melatonin together with tramadol reduce
seeking behavior associated with tramadol use. Using melatonin to
attenuate the seeking behavior of tramadol offers advantages in
regulating sleep patterns disrupted by tramadol use (Abdullah et al.,
2020), and neuroprotective properties, though its direct efficacy in
countering tramadol induce CPP. On the other hand, naloxone, as an
opioid receptor antagonist, directly blocks opioid effects of tramadol,
which may help prevent Tramadol induction of CPP; however,
naloxone will participate in the withdrawal symptoms in physically
dependent individuals which could limit its suitability for tramadol
since tramadol is weak mu opioids against (Lagard et al., 2018). Lastly,
the choice between melatonin and naloxone depends on factors such as
the severity of addiction, comorbid conditions, and treatment goals.

In this study, various behavioral tests such as total activity,
ambulatory count, resting time, and distance traveled serve as
important measurement for assessing the rewarding or aversive
properties of environmental stimuli. Total activity provides a
comprehensive measure of overall locomotor behavior, reflecting
the general stimulation level of the rats. Ambulatory count
specifically quantifies voluntary movements, to understand the
exploratory behavior and activity patterns within the test
environment. Resting time, conversely, shows periods of
inactivity or grooming potentially indicating the presence of
preferred or aversive behavior. Distance traveled serves as a
cumulative measure of the spatial exploration undertaken by the
subject throughout the conditioning process. These tests collectively
contribute to explaining the subtle behavioral responses associated
with conditioned preferences, offering valuable insights into the
underlying mechanisms of reward and aversion processing.

Limitation, the findings highlight the need to determine the
optimal dosing regimen for melatonin and to ascertain whether its
impact on drug-seeking behavior diminishes over time, necessitating
further research into the dynamics of this interaction.
Understanding how melatonin influences tramadol in a repeated
dosing context is crucial for explaining its potential therapeutic uses.
Additionally, investigating the molecular and neurobiological
alterations that occur with chronic melatonin administration in
conjunction with tramadol may reveal mechanisms underlying the
observed effects. In summary, the immediate influence of melatonin
on tramadol-induced CPP underscores the importance of
thoroughly understanding the temporal aspects and dose-
response relationships to fully understand melatonin’s potential
to attenuate tramadol’s drug-seeking behavior

Conclusion

The results of this study suggest that melatonin may offer
therapeutic benefits in treating tramadol addiction.
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Administration of melatonin significantly reduced the expression of
tramadol-induced CPP in rats. Furthermore, analysis of relevant
parameters, including the total activity, ambulatory count, resting
time, and distance traveled, revealed that melatonin did not
significantly affect these measures. Thus, the influence of
melatonin on tramadol-seeking behavior appears to be specific
and not attributable to changes in the overall activity or
locomotion. These findings support the potential use of
melatonin as an adjunct therapy for managing tramadol
addiction, although further research is necessary to assess its
efficacy in humans. This study highlights the importance of
investigating potential pharmacological interventions for drug
addiction treatment and offers valuable insights into the
neurobiological mechanisms of tramadol addiction.
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