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Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin
resistance, with high morbidity and mortality worldwide. Due to the tightly
intertwined connection between the insulin resistance pathway and the PI3K/
AKT signaling pathway, regulating the PI3K/AKT pathway and its associated
targets is essential for hypoglycemia and the prevention of type 2 diabetes
mellitus. In recent years, metabolites isolated from traditional Chinese
medicine has received more attention and acceptance for its superior
bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo
and in vitro studies have revealed that the metabolites present in traditional
Chinesemedicine possess better bioactivities in regulating the balance of glucose
metabolism, ameliorating insulin resistance, and preventing type 2 diabetes
mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the
literature related to the metabolites of traditional Chinese medicine improving IR
and possessing therapeutic potential for type 2 diabetes mellitus by targeting the
PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the
metabolites of traditional Chinese medicine in type 2 diabetes mellitus and
elaborating on the significant role of the PI3K/AKT signaling pathway in type
2 diabetes mellitus. In order to provide reference for clinical prevention and
treatment of type 2 diabetes mellitus.
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1 Introduction

Nowadays, type 2 diabetes (T2DM) is one of the most severe and frequent chronic
diseases of the modern era. It has become the third primary non-communicable disease
after tumors and cardiovascular diseases, threatening human life and health on a wide scale.
According to the statistics released by the International Diabetes Federation, more than 10%
of the world’s population became diabetic in 2021 (Sun et al., 2022). Moreover, the
prevalence rate is expected to be more than 12% by 2045, which means that more than
one in ten people worldwide are suffering from the double blow of diabetes to human health
and economic burden, threatening the health of human life and quality of life, of which
more than 90% of the patients are type 2 diabetes (Sun et al., 2022). However focusing on
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hyperglycemia that defines T2DM is mainly secondary to
inadequate action of the primary glucose-lowering hormone
insulin. Further, understanding insulin resistance and the
mechanisms of insulin action is critical for the continued
development of effective therapeutic strategies to combat T2DM,
which is a major challenge for the medical community (Petersen and
Shulman, 2018).

Insulin resistance (IR) is the pathological basis of T2DM and
the core part of its pathogenesis, which plays a vital role in both
the occurrence and development of T2DM. Generally, IR refers to
the inability of insulin-target organs/tissues (e.g., skeletal muscle,
adipose tissue, and liver) to produce a normal coordinated
glucose-lowering response due to reduced responsiveness and
sensitivity to insulin under the influence of a variety of factors,
including inhibition of endogenous glucose production,
inhibition of lipolysis, cellular uptake of available plasma
glucose, and glycogen synthesis, resulting in the onset and
worsening of glucose tolerance abnormalities and diabetes
mellitus (Petersen and Shulman, 2018).

Clinically, IR is characterized by the inability of insulin to
exert an effect proportional to blood concentration to maintain
normoglycemia. At the cellular level, IR is defined as the lack of
insulin signaling intensity associated with multiple mitogenic
cellular functions from downstream receptors to final substrates
(Camer et al., 2014). It also implies a corresponding inhibitory
effect on the phosphorylation of insulin receptor substrate (IRS)
and its triggered cascade of activation of the PI3K/AKT signaling
pathway upon binding of insulin to the insulin receptor (Savova

et al., 2023). Furthermore, the insulin-mediated PI3K/AKT
pathway is crucial for regulating glucose homeostasis in the
insulin signaling system, closely related to glucose-lipid
metabolism and insulin resistance (Malik et al., 2019).
Therefore, improving insulin resistance by modifying the
PI3K/AKT pathway is a crucial therapeutic strategy for
hypoglycemia in T2DM.

Currently, the primary drugs used in the clinical treatment of
T2DM include biguanides, thiazolidinediones, and sulfonylureas
(Zhang et al., 2019). Considering the limitations of the existing
hypoglycemic drugs that need to be taken for long-term and have
plenty of side effects, it is particularly urgent to continuously explore
and develop practical, low-toxicity or non-toxic
hypoglycemic drugs.

In the theory of traditional Chinese medicine (TCM),
diabetes and thirst-quenching disease belong to the same
category, and the first record of diabetes was found in the
Yellow Emperor’s Classic of Internal Medicine, also known as
“Huangdi Neijing” (Zhang et al., 2021). Since ancient times, the
threat of diabetes to the life and health of human beings has
gradually been growing. Moreover, the research on treating
diabetes utilizing traditional Chinese medicine and Chinese
medicine approaches has never ceased (Yingrui et al., 2022).
From the perspective of TCM, “consuming thirst syndrome”
manifests as a deficiency of both Qi and Yin, and the
corresponding treatment is to replenish Qi and nourish Yin
(Li et al., 2004). Since centuries ago, Chinese people have been
decocting Chinese medicine to treat diabetes based on benefiting
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Qi and nourishing Yin (Liu et al., 2022). For example, traditional
Chinese medicine such as astragalus, ginseng, schizandra, and
dendrobium are often found in Chinese herbal formulas for the
treatment of T2DM, and they are commonly known to nourish
yin and replenish qi (Tang et al., 2017; Chu et al., 2019; Shao et al.,
2020). Moreover, Tianqi capsule, Jinlida granule, Shenqi jiang
tang capsule, Qiyao xiaoke capsule, Shenqi jiang tang granule,
which are proprietary Chinese medicines, are used for the
treatment of T2DM and its related diseases (Shao et al., 2020).
But, TCM is characterized by multiple courses of treatment, slow
onset of action, and poor patient adherence (Nurcahyanti et al.,
2021). Further, there are hundreds of metabolites in extracts, and
the specific metabolites with beneficial effects and their targets of
action are unknown (Xiong et al., 2010). Therefore, more and
more researchers are deeply interested in the intervention of the
TCM metabolites to improve insulin resistance and
hyperglycemia. Subsequently, researchers have identified
multiple bioactive metabolites isolated from TCM that have
positive effects on improving insulin resistance and
hypoglycemia, and these bioactive metabolites exhibit a
promising therapeutic outlook owing to their biocompatibility
and fewer adverse effects (Li et al., 2022). Among the multitude of
metabolites present in TCM, the identification of specific active
metabolites that can regulate the balance of glucose metabolism
and improve insulin resistance is essential for controlling the
incidence and progression of T2DM and its complications (Xiong
et al., 2020).

Therefore, we conducted a literature search on the keywords
“Insulin resistance,” “Type 2 diabetes,” “PI3K/AKT signaling
pathway,” “Traditional Chinese medicine” and “Metabolites.”
The following inclusion criteria were used in the selection of
articles: 1) articles using in vitro or/and in vivo T2DM or T2DM-
related disease models, and modeling methods with a blank
control group and a positive control group to determine the
success of the modeling; 2) articles in which the study was on a
metabolite of TCM were identified as a metabolite reported in the
literature or obtained by extraction and isolation from a TCM; 3)
articles on the regulation of PI3K/AKT signaling pathway in the
context of type 2 diabetes mellitus; 4) articles written in English
and published within the last 15 years. Nowadays, researchers are
concerned about the advantages and potential of TCM
metabolites in the prevention and treatment of chronic
diseases, and there are numerous studies showing the positive
effects of the metabolites of TCM in improving insulin resistance
and hyperglycemia as well as elucidating their hypoglycemic
mechanisms, but there is no review summarizing these studies.
This review is aimed to provide a comprehensive perspective of
the metabolites of TCM improving IR and possessing therapeutic
potential for hyperglycemia in T2DM by targeting the PI3K/AKT
signaling pathway. Further, it is expected to provide a theoretical
basis and reference for future clinical studies.

2 PI3K/AKT signaling pathway

Phosphoinositide 3-kinase (PI3K) is a target of the insulin
receptor substrate (IRS) and an intracellular phosphoinositol
kinase with serine/threonine kinase activity (Xu et al., 2014).

Meanwhile, it plays a prominent role in insulin signaling. PI3K
can express three types of PI3KⅠ, PI3KⅡ, and PI3KⅢ in human cells
(Jahandideh andWu, 2022). Class I PI3Ks are divided into classes IA
and IB PI3Ks (Meng et al., 2021). Heterodimers composed of
catalytic subunit P110 and regulatory subunit P85 belong to class
IA PI3K, which are involved in insulin signal transduction and have
indispensable significance in maintaining glucose homeostasis
(Yang et al., 2020).

As a serine/threonine kinase, AKT (protein kinase B) is one of
the main effectors of the downstream signal network of PI3K
(Huang et al., 2018). AKT is widely expressed in various body
tissues, regulating many processes, including metabolism,
proliferation, cell survival, growth, and angiogenesis (Liu et al.,
2023). Due to its ability to regulate most of the PI3K-mediated
metabolic activity of insulin by phosphorylating serine and/or
threonine from downstream substrates, including other kinases,
transcription factors, and signaling proteins, it is known as the
central regulator of insulin action (Shao et al., 2020). Moreover,
there are three subtypes of AKT expressed in mammalian cells,
namely, AKT1/PKBα, AKT2/PKBβ, and AKT3/PKBγ, and each of
these subtypes exerts different physiological effects (Hay, 2011).
Among them, AKT1 is widely expressed in various body tissues
(Hajiaghaalipour et al., 2015). AKT2 is selectively expressed in
insulin-sensitive tissues such as muscle, fat, and liver, and plays a
pivotal role in cell growth, proliferation, and glucose homeostasis
(Huang et al., 2018). Meanwhile, AKT3 is highly expressed in the
brain and testis (Sun et al., 2018). Furthermore, researches have
found that all three subtypes of AKT are all expressed in pancreatic β
cells (Zheng et al., 2016). Other studies have found that interrupting
AKT2may lead to severe insulin resistance, diabetes, and fat atrophy
(Dewanjee et al., 2022). Further, AKT2 gene knockout mice exhibit
glucose intolerance and systemic insulin resistance (Alshehade et al.,
2022). Among the three subtypes, AKT2 appears to be the primary
functional subtype of insulin response, which is closely relevant to IR
(Fruman et al., 2017).

PI3K/AKT signaling pathway plays an indispensable role in
insulin signal transduction and glucose metabolism regulation and
participates in the entire process of T2DM occurrence and
development (Lin et al., 2022). PI3K is the leading component of
this pathway while AKT is a crucial downstream signal, representing
the crucial regulatory node of this pathway (Barone et al., 2021).
Insulin is the only hormone in the body to lower blood sugar and its
physiological effect begins with the binding of insulin and insulin
receptors (Norton et al., 2022). Upon insulin binding to the α-
subunit of the insulin receptor, the β-subunit transitions to an
activated state, causing its tyrosine residues to self-phosphorylate.
Meanwhile, the activated insulin receptor recognizes and binds to
the insulin receptor substrate 1 (IRS1), and the phosphorylation and
activation of IRS1 can then be recognized and bound by downstream
signals (Nurcahyanti et al., 2021). Activated IRS-1 can recognize and
bind to PI3K through its regulatory subunit p85 and activate the
catalytic activity of p110 and the catalytic subunit of PI3K and
catalyze the conversion of phosphatidylinositol 4,5-bisphosphate
(PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) at the
cellular membrane (Jahandideh and Wu, 2022). Further, PIP3,
when generated and reached a specific concentration, recruits
phosohoinositide-dependent kinase 1 (PDK1) and AKT to the
vicinity of the plasma membrane and then recruits them through
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Pleckstrin homologous structures. After PIP3 is generated and
reaches a specific concentration, it can recruit PDK1 and AKT to
the vicinity of the plasma membrane and bind to it through the
Pleckstrin homology domain, resulting in the aggregation of AKT at
the plasma membrane and activation of AKT (Fruman et al., 2017).
Moreover, the activation process of AKT consists of PDK1 directly
or indirectly phosphorylating the Thr308 and Ser473 sites of AKT.
Meanwhile, the activated AKT is released from the plasma
membrane into the cytoplasm or nucleus to elicit a cascade of
responses in the signal transduction pathway (Inam et al., 2018;
Alshehade et al., 2022).

Activation of the PI3K/AKT signaling pathway can induce
multiple downstream factors, including other kinases,
transcription factors, and signal proteins (Bhattamisra et al.,
2021). Among the numerous physiological effects that can be
generated, T2DM-related effects on glucose metabolism include
promoting glucose uptake and glycogen synthesis, and inhibiting
gluconeogenesis. AKT can promote the transport of glucose-
specific transporters GLUTs to the cell membrane, thereby
allowing glucose in the blood to be transported into tissue
cells, increasing glucose uptake (Dewanjee et al., 2022). After
glucose is transported from extracellular to intracellular tissues, it
is phosphorylated in tissues by glucokinase to form glucose-6-
phosphate, which continues to undergo conversion to glycolysis
or glycogen synthesis (Zhang et al., 2018). Therefore, the PI3K/
AKT pathway plays a crucial role in insulin-stimulated glucose
transport (Shao et al., 2020).

AKT can inhibit the activity of glycogen synthase kinase-3
(GSK3β) by phosphorylating its Ser9, thereby dephosphorylating
and activating glycogen synthase (GS) to regulate insulin signal
transduction and increase glycogen synthesis. Glycogen, as a
reservoir of glucose, is mainly present in the skeletal muscle
and liver of mammals, where it buffers changes in circulating
glucose levels by phosphorylating excess glucose and
polymerizing it to synthesize glycogen (Norton et al., 2022).
Additionally, AKT can reduce the expression of two vital
glycogenic enzymes, phosphoenolpyruvate carboxykinase
(PEPCK) and glucose 6-phosphatase (G6Pase) by inhibiting
the activity of forkhead transcription factor family member
(FoxO1) (Wang et al., 2015). Moreover, FoxO1 is located in
the nucleus and trans-activates two gluconeogenesis without
insulin. Under insulin stimulation, the activated AKT then
phosphorylates FoxO1, inducing FoxO1 translocation to the
cytoplasm, thereby reducing its transcriptional activity,
reducing the expression of its decisive target genes PEPCK
and G6Pase, and inhibiting gluconeogenesis to reduce glucose
levels (Hajiaghaalipour et al., 2015). Therefore, abnormalities in
any PI3K/AKT signaling pathway and downstream factors can
affect insulin signal transduction and promote the occurrence of
IR and T2DM. On the contrary, the upregulation of PI3K and
AKT molecules caused by insulin and other factors can initiate
the transmission of the entire PI3K/AKT signal pathway, acting
on a variety of substrate receptor molecules such as GLUT-4,
GSK3, and FoxO1 through a series of signal transduction, playing
a prominent role in increasing glucose uptake, inhibiting liver
glycogen synthesis, reducing gluconeogenesis, and improving IR.
Therefore, the PI3K/AKT signaling pathway is the primary
mechanism for developing insulin resistance.

3 Mechanism of PI3K/AKT signaling
pathway in hypoglycemic effect

The PI3K/AKT signaling pathway is intimately linked to insulin
resistance, and any defects in the pathway along downstream
molecules may contribute to insulin resistance, in addition, the
activated PI3K/AKT pathway is primarily involved in the glucose
metabolism function of insulin via three notable routes (Zhang et al.,
2019). Peripheral control of glucose homeostasis is shown
in Figure 1.

1) Glucose uptake: The cellular uptake of glucose is an
essential physiological process associated with glucose
homeostasis and glucose translocation from the
extracellular space to the cell cytoplasm, and is
responsible for fourteen members of the glucose
transporter protein family (GLUT) (Yan, 2017). Available
evidence from multiple research in the area of diabetes
suggests that GLUT4 mediates insulin-dependent glucose
uptake and that the PI3K/AKT pathway regulates the
movement of GLUT4 between the plasma membrane and
intracellular vesicles in an insulin-dependent manner, and
thus GLUT4 dysfunction could induce insulin resistance
(Chang et al., 2023). Thus, in skeletal muscles and mature
adipocytes, the activated PI3K/AKT pathway promotes
GLUT4 membrane translocation to uptake glucose for
storage or utilization (Savova et al., 2023).

2) Glycogen synthesis: In skeletal muscle and liver, excess glucose
is taken up into the cell for storage in the form of synthesized
glycogen, thereby increasing the disposal of glucose
(Carnagarin et al., 2015). Glycogen synthase kinase-3 (GSK-
3), a serine/threonine kinase, is well recognized as a key
regulator involved in the regulation of glycogen synthesis
and has been suggested as a potential target for the
treatment of diabetes (Teli and Gajjar, 2023).
Phosphorylation of Ser9 of GSK3β in a PI3K/AKT-
dependent manner decreases its activity towards GS,
resulting in the promotion of dephosphorylation of
glycogen synthase, ultimately leading to an increase in
glycogen synthesis to promote glucose metabolism (Seo
et al., 2008; Agius, 2015; Beurel et al., 2015).

3) Gluconeogenesis: Glycemic control is achieved by suppressing
hepatic gluconeogenesis, which is one of the strategies for the
treatment of diabetes (Jitrapakdee, 2012; Nirmalan and
Nirmalan, 2023). Gluconeogenesis is largely controlled by
the transcriptional regulation of key rate-limiting enzymes,
and PEPCK and G6Pase serve as key rate-limiting enzymes,
and the regulation of their expression is affected by the
phosphorylation of the transcription factor FoxO1
(Onyango, 2022). FoxO1 is activated by dephosphorylation
and translocates into the nucleus, leading to increased
transcriptional induction of G6Pase and PEPCK as well as
hepatic glucose production, whereas when activation of the
PI3K/AKT pathway phosphorylates FoxO1, it induces the
translocation of FoxO1 to the cytoplasm, thereby decreasing
its transcriptional activity, reducing the expression of PEPCK
and G6Pase, and inhibiting gluconeogenesis so as to lower
blood glucose levels (Jitrapakdee, 2012; Zhang et al., 2018).
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4 Metabolites of traditional Chinese
medicine regulate the PI3K/AKT
signaling pathway for
hypoglycemic effect

Metabolites isolated from TCM are active substances with
various practical activities due to their specific molecular formula
and spatial structure (Zhou et al., 2021). Recent studies have clarified
that numerous metabolites of TCM addressing complex and
comprehensive targets have the potential for hypoglycemic effect
in T2DM by regulating the PI3K/AKT signaling pathway
(Nurcahyanti et al., 2021). Further, relevant phytochemicals
include flavonoids, polyphenols, alkaloids, terpenoids, quinones,
saponins and others. These metabolites of TCM may provide
promising candidates for improving insulin resistance in the
treatment of T2DM, and the effects of the metabolites of TCM
on T2DM via the PI3K/AKT signaling pathway are summarized
in Table 1.

4.1 Flavonoids

Being commonly found in Chinese herbal medicine,
flavonoids are a group of ubiquitous compounds of in nature
that have proven to have medicinal value (Sok Yen et al., 2021).
Due to their wide range of beneficial activities, such as
antioxidant, anti-inflammatory, anti-viral, anti-atherosclerotic,
anti-diabetic and anti-tumor, flavonoids have great potential in
clinical application and clinical development (Zhou et al., 2023).

In recent years, flavonoids extracted from dietary sources and
medicinal plants have been widely used in treating and
preventing various diseases, and the hypoglycemic potential
activities of flavonoids are being explored (Ahad et al., 2014).
Moreover, various in vitro and in vivo experiments have
demonstrated the efficacy of flavonoids in improving insulin
resistance and preventing T2DM (Zhou et al., 2023), such as
baicalein, chrysin, diosmetin, tricin, HM-chromanone,
puerarin, α-Methyl artoflavanocoumarin, loureirin B, fisetin,
kaempferol, quercetin, apigenin, poncirin and naringenin.
The chemical structures of fourteen flavonoids are shown
in Figure 2.

4.1.1 Baicalein
Baicalein (5, 6, 7-trihydroxyflavone), one of the

representative active metabolites of the medicinal plant
Scutellaria baicalensis Georgi (known as huáng qín), is a
naturally occurring hypoglycemic agent that can directly
promote insulin secretion and preserve pancreatic islet mass
(Fu et al., 2014). Besides, orally given baicalein (400 mg/kg/
day) to C57BL/6 mice induced by a high-fat diet, the disorders
of dyslipidemia, fatty liver, diabetes and insulin resistance in mice
were effectively normalized after oral medication and all of these
improvements were mediated by inhibition of the MAPKs
pathway and activation of the IRS1/PI3K/AKT pathway
involving multiple intracellular signaling pathways (Pu et al.,
2012). Meanwhile, baicalein can also promote glucose
consumption and glycogen synthesis and inhibit
gluconeogenesis to improve glucose metabolism and the

FIGURE 1
Peripheral control of glucose homeostasis.
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TABLE 1 The effect of metabolites of TCM for hypoglycemic effect in T2DM via the PI3K/AKT signaling pathway.

Type Name Study design Vivo/
Vitro

Dosage of
administration

Targets Mechanism References

Flavonoids Baicalein Male C57BL/6 J mice
fed HFD

in vivo 400 mg/kg Baicalein for
3 weeks

p-IRS1↑ p-AKT↑
p-AMPKα↑ p-ACC↑

Improving dyslipidemia and
insulin resistance

Pu et al. (2012)

HepG2 cells + glucose
+ DXMS

in vitro 12.5, 25 μM Baicalein
for 24 h

p-IRS1/2↑ PI3K↑ p-AKT↑
p-GSK3β↑ GLUT4↑

Promoting glucose
consumption and glycogen
synthesis

Miao et al. (2023)

HepG2 cells + glucose
+ insulin

in vitro 1, 10 μM Baicalein for 24 h p-IRS1↑ p-PI3K↑ p-AKT↑
GLUT2↑ G6Pase↓ PEPCK↓

Promoting glucose uptake
and glycolysis, inhibiting
gluconeogenesis

Yang et al. (2019)

Chrysin Male C57BL/6 J mice
fed HFD + STZ

in vivo 15, 30 mg/kg Chrysin for
5 weeks

p-AMPKThr172↑
p-IRS1Tyr612↑
p-AKTSer473↑ GSK3βSer9↑
p-GSSer641↓

Modulating glucose and
lipid metabolism

Zhou et al. (2021)

HepG2 cells + glucose
+ PA

in vitro 10, 15 μM chrysin for 24 h

Diosmetin KK-Ay diabetic mice
fed HFD

in vivo 20, 60 mg/kg Diosmetin for
4 weeks

p-IRS1↑ PI3Kβ↑ PI3Kα↑
p-AKT↑ p-GSK3β↓ GS↑
GLUT4↑ p-AS160↑

Ameliorating glucose
metabolism

Gong et al. (2021)

Tricin Male C57BL/6 mice in vivo 16, 64, 160 mg/kg Tricin for
7 days

p-IRS1↑ p-PI3KTyr199↑
p-AKTThr308↑
p-AS160Thr642↑

Increasing glucose uptake Kim et al. (2017)

C2C12 Myotubes +
insulin

in vitro 5, 10, 20 µM Tricin for 24 h

HM-Chromanone Male C57BL/KsJ-db/db
mice

in vivo 30 mg/kg HM-
Chromanone for 6 weeks

p-IRS1Tyr612↑ PI3K↑
p-AKTSer473↑ PM-
GLUT4↑

Reduceing hyperglycemia
and ameliorating
dyslipidemia

Yoo et al. (2023)

L6 cells + PA in vitro 10, 25, 50 µM HM-
Chromanone for 24 h

p-IRS1Tyr612↑
p-IRS1Ser307↓ PI3K↑
p-AKT↑ p-AS160↑ PM-
GLUT4↑ p-GSK3α/
β↑ p-GS↓

Stimulating glucose uptake
and glycogen synthesis, and
improving insulin resistance

Park et al. (2019)

L6 cells + PA in vitro 10, 20 µM HM-
Chromanone for 24 h

p-IRS1Tyr612↑ PI3K↑
p-AKT↑ p-AMPK↑
p-AS160↑ p-GSK3α/β↑
p-GS↓ PM-GLUT4↑

Stimulating glucose uptake
and glycogen synthesis

Park et al. (2021)

HepG2 cells +33 mM
glucose

in vitro 10, 20, 50 µM HM-
Chromanone for 24 h

p-IRS1Tyr612↑
p-IRS1Ser307↓ p-AKT↑
GSK3βSer9↑ p-GSSer641↓
G6Pase↓ PEPCK↓

Suppressing glucose
production and stimulating
glycogen synthesis

Park and Han,
(2022)

HepG2 cells + insulin in vitro 15, 30, 60 µM HM-
Chromanone for 24 h

p-IRS1 Tyr612↑ p-IRS1
Ser307↓ PI3K↑ p-AKT↑
p-FoxO1↑ PEPCK↓G6Pase↓

Suppressing hepatic glucose
production

Park and Han,
(2022)

3T3-L1 adipocytes +
DXMS + insulin

in vitro 10, 20 µM HM-
Chromanone for 24 h

p-IRS1↑ PI3K↑ p-AKT↑
p-AMPK↑ p-ACC↑ PM-
GLUT4↑

Enhancing glucose uptake
and insulin sensitivity

Park et al. (2019)

Puerarin Male Wistar rats fed
HFD + STZ

in vivo 300 mg/kg puerarin for
4 weeks

p-AKT↑ PI3K↑ p-FoxO1↑
G6Pase↓ PEPCK↓

Suppressing
gluconeogenesis

Liu et al. (2021)

HepG2 cells + PA in vitro 10, 100, 1000 μM puerarin

Male C57BL/6 mice
+ STZ

in vivo 100 mg/kg puerarin for
4 days

p-AKT↑ BCL2↑ Protecting pancreatic b-cell
function and survival via
direct effects on b-cells

Li et al. (2014)

MIN6 cells + CoCl2 in vitro 0.1, 1, 10 mM puerarin
for 8 h

HepG2 cells + insulin in vitro 1, 10, 100 μM puerarin p-AKT1↑ p-GSK-3β↑ improving glucose and lipid
metabolism disorders

Liu et al. (2021)

α-Methyl
artoflavanocoumarin
(MAFC)

HepG2 cells + insulin in vitro 12.5, 25, 50 µM MAFC
for 24 h

PTP1B↓ p-IRS1Ser307↓
p-PI3KTyr508↑
p-AKTSer473↑
p-ERK1Tyr204↑

Increasing glucose uptake Jung et al. (2017)

(Continued on following page)
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TABLE 1 (Continued) The effect of metabolites of TCM for hypoglycemic effect in T2DM via the PI3K/AKT signaling pathway.

Type Name Study design Vivo/
Vitro

Dosage of
administration

Targets Mechanism References

Loureirin B Male C57BL/6 J mice
fed HFD + STZ

in vivo 45 mg/kg Loureirin B for
4 weeks

IRS1↑ PI3K↑ p-AKT↑
FoxO1↓ PEPCK↓ GLUT4↑

Increasing insulin
sensitivity, and regulating
glucose uptake and
production

Ding et al. (2021)

HepG2 cells + glucose
+ DXMS

in vitro 0.1, 1, 10 μM Loureirin B

Fisetin Male C57BL/6 mice
fed HFD

in vivo 20, 40 mg/kg Fisetin for
16 weeks

p-IRS1↑ p-AKT↑ p-GSK3β↑
p-FoxO1↑

Improving insulin resistance
and inflammatory response

Ge et al. (2019)

HepG2 cells + insulin in vitro 25, 50 μM Fisetin for 24 h p-IRS1↑ p-AKT↑ Improving hepatic insulin
resistance

Li et al. (2023)

Kaempferol Male C57BL/6 J mice
fed HFD

in vivo 50 mg/kg Kaempferol for
6 weeks

p-AKT↑ Ameliorating hepatic
gluconeogenesis

Alkhalidy et al.
(2018)

Male C57BL/6 J mice
fed HFD

in vivo 50 mg/kg Kaempferol for
5 days

p-AKT↑ p-AMPK↑ Improving glucose uptake Moore et al. (2023)

Primary human SkM
cells

in vitro 10 μM Kaempferol for 24 h

HepG2 cells in vitro 0.1, 1, 10 μM Kaempferol
for 24 h

p-AKT↑ p-GSK3β↑ Improving glucose
consumption

Fang et al. (2021)

Quercetin Male Wistar rats + STZ in vivo 50 mg/kg Quercetin for
2 months

p-IRS1↑ p-PI3K↑ p-AKT1↑
GLUT4↑

Improving glucose
homeostasis in the brain

Sandeep and
Nandhini, (2017)

Male C57BL/6 J mice
fed HFD

in vivo 50 mg/kg Quercetin for
10 weeks

p-IRS1↑ p-AKT1↑ GLUT4↑
p-FoxO1↑ PEPCK↓G6Pase↓

Suppressing
gluconeogenesis

Liu et al. (2022)

HepG2 cells + PA in vitro 10 μM Quercetin for 24 h

HepG2 cells + PA in vitro 5, 10 μMQuercetin for 24 h p-IRS2↑ PI3Kp85↑
p-AKT1↑ p-FoxO1↑

Improving hepatic insulin
resistance

Cheng et al. (2021)

Apigenin HepG2 cells + glucose
+ DXMS

in vitro 6.25, 12.5 μM Apigenin
for 16 h

IRS1/2↑ PI3K↑ p-AKT↑
p-GSK3β↑ GLUT4↑

Increasing insulin sensitivity
and glucose uptake

Miao et al. (2023)

Poncirin C2C12 cells + insulin in vitro 5, 1o μM Poncirin for 16 h p-IRS1↑ p-PI3K↑ p-AKT1↑
p-GSK3β↑ GLUT4↑

Improving insulin
sensitivity and suppressing
glycation-induced protein
oxidation

Yousof Ali et al.
(2020)

Naringenin Male Wistar rats + STZ in vivo 50 mg/kg Naringenin for
2 months

p-IRS1↑ p-PI3K↑ p-AKT1↑
GLUT4↑

Improving glucose
homeostasis in the brain

Sandeep and
Nandhini, (2017)

Polyphenols Resveratrol Male Wistar rats fed
standard rodent diet
+ STZ

in vivo 10 mg/kg Resveratrol for
4 weeks

insulin Rβ↑ IRS-1↑ eNOS↑
PI3K↑ p-AKT↑

Improving both hepatic
inflammation and insulin
resistance

Sadi et al. (2015)

Male C57BL/6N mice
fed HFD

in vivo 30 mg/kg Resveratrol for
2 weeks

p-IRS-1↑ p-PI3K↑ p-AKT↑
p-PDK1↑ p-GSK-3↑

Restored the
phosphorylation levels of
proteins involved in the
insulin signaling pathway

Hong et al. (2014)

Male Wistar rats + STZ in vivo 0.05, 0.1, 0.5, 3.0, 6.0,
10.0 mg/kg Resveratrol for
7 days

p-AKTSer473↑ GLUT4↑
PEPCK↓

Increasing insulin secretion
and enhancing glucose
uptake

Chi et al. (2007)

Male KKAy mice in vivo 2, 4 g/kg Resveratrol for
12 weeks

p-AMPKα↑ p-IRS1↑
p-AKT↑ Sirt1↑

Improving the insulin
sensitivity

Chen et al. (2012)

Male Sprague-Dawley
rats fed HCF

in vivo 1 mg/kg Resveratrol for
15 days

p-InsR↑ p-AKT↑ GLUT4↑ Enhancing muscular
glucose uptake

Deng et al. (2008)

Male C57BL/6J mice
fed HFD

in vivo 100 mg/kg Resveratrol for
6 weeks

p-PI3K↑ p-AKT↑ FoxO1↓
G6Pase↓

Reducing the Glucose
Concentration and
inhibiting glycoisogen

Shu et al. (2020)

HepG2 cells + PA in vitro 25 μM Resveratrol for 24 h

Male ob/ob mice
fed HFD

in vivo 10 mg/kg Resveratrol for
10 weeks

PI3K↑ p-AKT↑ p-FoxO1↑
PEPCK↓ G6Pase↓ Sirt1↑
PGC-1α↑

Enhancing glucose
production and restraining
dapagliflozin-induced renal
gluconeogenesis

Sun et al. (2021)

HK-2 cells in vitro 10 μM Resveratrol for 12 h

Pterostilbene Male Sprague-Dawley
rats fed HFD + STZ

in vivo 20, 40, 80 mg/kg
Pterostilbene for 8 weeks

PPARγ↑ PI3K↑ p-AKT↑
GLUT4↑ IRS-1↑

Controling serum glucose,
improving insulin lipid
profile and insulin
sensitivity

Sun et al. (2019)
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TABLE 1 (Continued) The effect of metabolites of TCM for hypoglycemic effect in T2DM via the PI3K/AKT signaling pathway.

Type Name Study design Vivo/
Vitro

Dosage of
administration

Targets Mechanism References

HepG2 cells + PA in vitro 5, 10 μM Pterostilbene
for 24 h

p-IRS-1ser307↑
p-AKTser473↑
p-GSK3βser9↑ p-FoxO1↑
PEPCK↓ G6Pase↓

Reducing lipid
accumulation and
alleviating inflammatory
response

Malik et al. (2019)

Curcumin Male C57BL/6J mice
fed HFS

in vivo 4 g/kg curcumim for
16 weeks

PI3Kp110/p85↑ p-AKT↑ Improving insulin
clearance, mediating the
insulin pathway signaling

Kim et al. (2019)

Male Sprague-Dawley
rats fed HFD + STZ

in vivo 100, 300 mg/kg curcumim
for 8 weeks

p-PI3K↑ p-AKT↑ Improving liver function
and ameliorating the tissue
structure of the liver and
pancreas

Xia et al. (2020)

HepG2 cells +50 mM
D-glucose

in vitro 10 μM curcumim for 24 h p-AKT↑ p-PI3K↑ p-GSK3β↑ Improving insulin
sensitivity, enhancing
glucose uptake

Li et al. (2020)

MIN6 β-cells + PA in vitro 10 μM curcumim for 1 h p-AKT↑ p-FoxO1↑ Improving glucose-induced
insulin secretory function

Hao et al. (2015)

Gallic acid Male Sprague-Dawley
rats fed HFD

in vivo 10, 30 mg/kg Gallic acid for
4 weeks

IRS-1↑ PI3K↑ AKT↑
GLUT-2↑

Improving glucose uptake
and decreasing
hyperglycemia

Huang et al. (2016)

Male Wistar rats fed
HFD + STZ

in vivo 20 mg/kg Gallic acid for
10 days

PPARγ↑ PI3K↑ p-AKT↑
GLUT4↑

Enhancing insulin
dependent glucose uptake
and improving
hyperlipemia

Gandhi et al. (2014)

HepG2 cells + FFA in vitro 50 μM Gallic acid for 24 h p-IRS-1↑ p-PI3K↑ p-AKT↑
p-FoxO1↑

Increasing glucose
consumption

Lee and Lee, (2021)

Alkaloids Tetramethylpyrazine Male Wistar rats fed
HFD + STZ

in vivo 100, 150, 200 mg/kg TMP
for 28 days

p-PI3Kp85↑ p-AKT↑
GLUT4↑

Reducing insulin resistance Rai et al. (2019)

Hirsutine Male C57BL/6J mice
fed HFD

in vivo 5, 10, 20 mg/kg Hirsutine
for 8 weeks

p-AKT↑ p-PDK1↑
p-GSK3β↑ p-AMPK↑
G6Pase↓ PEPCK↓ PGC-1α↓
FoxO1↓

Enhancing glucose
consumption, glycogen
synthesis, and suppressing
gluconeogenesis

Hu et al. (2022)

HepG2 cells +
D-glucose + insulin

in vitro 0.01, 0.1, 1 μM Hirsutine
for 24 h

H9c2 cells + D-glucose
+ insulin

in vitro

1-Deoxynojirimycin Male ob/ob mice in vivo 40, 80 mg/kg 1-
Deoxynojirimycin for
4 weeks

p-PI3Kp85↑ p-AKTser473↑
p-IRS1tyr612↑
p-IRβtyr1361↑ GLUT4↑

Improving insulin
sensitivity and enhancing
glucose uptake

Liu et al. (2015)

Male ob/ob mice in vivo 40 mg/kg 1-
Deoxynojirimycin for
35 days

PPARγ↑ PGC-1α↑ GLUT4↑
IRS-1↑ p-PI3K↑ p-AKT↑
p-GSK3β↑ p-GS↑

Enhancing glucose
consumption, glycogen
synthesis, and suppressing
gluconeogenesis

Kang et al. (2022)

3T3-L1 adipocytes +
DXMS + insulin

in vitro 0.1, 0.5, 1, 5, 10 μM 1-
Deoxynojirimycin for 24 h

IR↑ IRS-1↑ PI3K↑ AKT↑
AMPK↑ GLUT4↑

Enhancing glucose uptake Li et al. (2019)

Terpenoids Mogroside V Male Wistar rats fed
HFD + STZ

in vivo 30, 75, 150 mg/kg
Mogroside V for 5 weeks

IRS-1↑ PI3KP110/P85↑
p-AKT↑ GLUT2↑ GS↑
p-GSK3β↑

Improving insulin
sensitivity, glucose
homeostasis and liver
damage

Liu et al. (2019)

HepG2 cells + PA in vitro 1, 5, 10 μM Mogroside V
for 24 h

Siamenoside I HepG2 cells + PA in vitro 1, 5, 10 μM Siamenoside I
for 24 h

IRS-1↑ PI3KP110/P85↑
p-AKT↑ GLUT2↑ GS↑
p-GSK3β↑

Improving insulin
sensitivity, glucose
homeostasis and liver
damage

Liu et al. (2019)

Mogroside III HepG2 cells + PA in vitro 1, 5, 10 μM MogrosideIII
for 24 h

IRS-1↑ PI3KP110/P85↑
p-AKT↑ GLUT2↑ GS↑
p-GSK3β↑

Improving insulin
sensitivity, glucose
homeostasis and liver
damage

Liu et al. (2019)

Mogroside IV HepG2 cells + PA in vitro 1, 5, 10 μM Mogroside IV
for 24 h

IRS-1↑ PI3KP110/P85↑
p-AKT↑ GLUT2↑ GS↑
p-GSK3β↑

Improving insulin
sensitivity, glucose
homeostasis and liver
damage

Liu et al. (2019)
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TABLE 1 (Continued) The effect of metabolites of TCM for hypoglycemic effect in T2DM via the PI3K/AKT signaling pathway.

Type Name Study design Vivo/
Vitro

Dosage of
administration

Targets Mechanism References

Catalpol Male C57BL/6N mice
fed HFD + STZ

in vivo 100, 200 mg/kg Catalpol for
4 weeks

IRS-1↑ PI3KR1↑ AKT2↑
AMPK↑ p-AMPK↑GLUT4↑
PGC-1α↑ SIRT1↑ PPAR-γ↑

Improving insulin
sensitivity and
mitochondrial respiration

Yap et al. (2020)

Male db/db mice in vivo 200 mg/kg Catalpol for
8 weeks

p-IRS1Ser307↑ PI3K↑
p-AKTSer473↑ GLUT4↑

Improving insulin
sensitivity, and enhancing
myogenesis ans glucose
uptake

Xu et al. (2018)

C2C12 cells +50 mM
D-glucose

in vitro 10, 30, 100 μM Catalpol
for 24 h

C57BL/6J mice fed
HFD + STZ

in vivo 100, 200 mg/kg Catalpol for
4 weeks

p-IRS1Ser307↑
p-AKTSer473↑
p-GSK3ser9β↑ G6Pase↓
PEPCK↓ p-GSser641↓
p-FoxO1ser256↑

Ameliorating hepatic
insulin resistance

Yan et al. (2018)

HepG2 cells +18 mM
glucosamine

in vitro 20, 40, 80 μM Catalpol
for 24 h

Oleanolic Acid Male db/db mice in vivo 250 mg/kg Oleanolic Acid
for 28 days

p-AKT↑ p-PI3K↑ p-AMPK↑
p-ACC↑ G6pase↓ PEPCK1↓
GLUT2↓

Reducing gluconeogenesis,
glycogenolysis and hepatic
glucose production

Wang et al. (2015)

Male Wistar rats fed
fructose

in vivo 5, 25 mg/kg Oleanolic Acid
for 10 weeks

p-IRS-1↑ PI3K↑ p-AKT↑ Attenuating adipose tissue
insulin resistance

Li et al. (2014)

C57BL/6J mice fed
HFD + STZ

in vivo 100 mg/kg Oleanolic Acid
for 2 weeks

p-AKTSer473↑
p-FoxO1ser256↑ G6Pase↓
PEPCK↓

Improving glucose
homeostasis and reducing
gluconeogenesis

Zeng et al. (2012)

Asiatic Acid Male Wistar rats + STZ in vivo 20 mg/kg Asiatic Acid for
45 days

IR↑ IRS-1/2↑ PI3K↑ AKT↑
GLUT4↑

Increasing insulin secretion
and glucose uptake into
skeletal muscle

Ramachandran and
Saravanan, (2013)

Male db/db mice
fed HFD

in vivo 50 mg/kg Asiatic Acid for
4 weeks

IRS-1↑ PI3K↑ AKT1↑ GSK-
3β↓ G6pase↓

Improving glycogen
synthesis

Sun et al. (2017)

Glycyrrhetinic acid HepG2 cells + PA in vitro 20, 35, 50 μM
Glycyrrhetinic acid for 24 h

PI3K↑ p-AKT↑ GSK3β↑ Regulating the insulin
resistance

Wang et al. (2023)

HepG2 cells +
insulin/FFA

in vitro 5, 10 μM Glycyrrhetinic
acid for 24 h

p-IRS1↓ p-AKT↑ p-GSK3β↑
GLUT4↑

Improving glucose uptake
and reversing insulin
resistance

Zhang et al. (2019)

Maslinic acid Preadipocytes in vitro 0.5, 1 μM Maslinic acid
for 24 h

PI3K↑ AKT↑ Inhibiting adipocyte
differentiation and lipid
accumulation

Savova et al. (2021)

HepG2 cells in vitro 0.1, 1, 10 μM Maslinic acid
for 24 h

p-AKT↑ GSK3β↑ Modulating glycogen
metabolism

Liu et al. (2014)

Quinones Aloin Male mice fed HFSD
+ STZ

in vivo 90 mg/kg Aloin for 4 weeks IRS1↑ PI3K↑ AKT↑ JNK↑ Enhancing glucose tolerance
and glucose consumption

Zhong et al. (2022)

HepG2 cells + DEX in vitro 1, 10, 50, 100, 200 μMAloin
for 24 h

Embelin Male Wistar rats fed
HFD + STZ

in vivo 50 mg/kg Embelin for
30 days

PPARγ↑ PI3K↑ p-AKT↑
GLUT4↑

Improving insulin
sensitivity, protecting β-cell
from damage and
maintaining glucose
homeostasis

Gandhi et al. (2013)

Emodin KK-Ay diabetic mice
fed HFD

in vivo 12.5, 50 mg/kg Emodin for
8 weeks

p-IRS1↑ p-PI3K↑ p-AKT↑
GLUT2↑ GLUT4↑ PPARγ↑

Enhancing insulin
sensitivity and resistance

Xuezheng et al.
(2018)

Saponins Astragaloside IV 3T3-L1 adipocytes +
PA + glucose

in vitro 10, 50, 100, 200 μM
Astragaloside IV for 24 h

PI3K↑ p-AKT↑ GLUT4↑ Improving insulin resistance
and inflammation in
adipocytes

Zhang et al. (2022)

Ginsenoside Rb2 DIO mice in vivo 50 mg/kg Ginsenoside
Rb2 for 10 days

IRβ↑ IRS1↑ PI3Kp85↑
p-AKTser473↑

Improving insulin
sensitivity and reducing fat
mass

Dai et al. (2018)

3T3-L1 adipocytes +
DXMS + insulin

in vitro 25 μM Ginsenoside Rb2 for
30 min

Ginsenoside Rg5 Male db/db mice in vivo 90 mg/kg Ginsenoside
Rg5 for 8 weeks

p-IRS1tyr↑ p-IRS1ser↓
p-PI3K↑ p-AKT↑ GSK-
3β↑ GS↓

Promoting glycogen
synthesis, improving
glycolipid metabolism and
insulin secretion

Wei et al. (2020)
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mechanism of the anti-diabetic effect in IR-induced HepG2 cells
related to activation of IRS1/PI3K/AKT signaling pathways and
the expression of proteins downstream of the pathway (Yang
et al., 2019; Miao et al., 2023). The above results show that
baicalein might have a promising potential in preventing and
treating diabetes and need more exploration in clinical
application.

4.1.2 Chrysin
Chrysin (5, 7-di-OH-flavone), a flavone, is a promising

phytochemical discovered in a variety of TCM which has been
reported emphasizing benefits in numerous metabolic malfunctions
such as anti-diabetic effects, anti-cancer and anti-inflammatory role
(Samarghandian et al., 2017; Naz et al., 2019). Depending on its
adjuvant therapy effects for glucose and lipid metabolism disorders
such as IR, oxidative stress, inflammation, and liver injury in both
IR-HepG2 cells and HFD/STZ-induced C57BL/6J mice, they found
that Chrysin intervention could modify glycogen synthesis and fatty
acid oxidation and suppress gluconeogenesis and fatty acid synthesis
by regulating the AMPK/PI3K/AKT signaling pathway (Zhou
et al., 2021).

4.1.3 Diosmetin
Diosmetin (3′, 5, 7-trihydroxy-4′-methoxyflavone), a naturally

occurring flavonoid, has a superior diabetic alleviating effect due to
its targeting of α-glucosidase and the PTP-1B signaling pathways
(Chen et al., 2019). The treatment of mice with low and high doses of
diosmetin remarkably ameliorated glucose metabolism in KK-Ay
diabetic mice and regulated the expression of glucose metabolism
and insulin resistance related signaling proteins in the liver and
skeletal muscle. Hence, they suggested that it ameliorated glucose
metabolism and insulin resistance via up-regulating IRS/PI3K/AKT
signaling pathway to promote glycogen synthesis and
GLUT4 translocation (Gong et al., 2021).

4.1.4 Tricin
As a cereal flavone, Tricin (5, 7, 4′-trihydroxy-3′, 5′-

dimethoxyflavone) is widely distributed in the husks of various
cereal crops and multiple TCM. tricin possesses an anti-adipogeneic
effect, which was reported and suggested for the first time that tricin
exhibits a significant inhibitory activity toward adipogenesis and
lipogenesis by blocking the AKT/mTOR/S6K signaling pathway
(Lee et al., 2015; Lee et al., 2016). However, in a dissimilar way,

TABLE 1 (Continued) The effect of metabolites of TCM for hypoglycemic effect in T2DM via the PI3K/AKT signaling pathway.

Type Name Study design Vivo/
Vitro

Dosage of
administration

Targets Mechanism References

Others Beta-sitosterol Adult Male Albino rats
fed HFD

in vivo 20 mg/kg Beta-sitosterol for
30 days

IR↑ p-IRS1tyr632↑
p-IRS1ser632↓
p-AKTser473↑ p-AKT
thr308↑ GLUT4↑

Improving insulin resistance Babu et al. (2020)

L6 cells + glucose in vitro 1 μg/mL, 100 ng/mL Beta-
sitosterol for 6, 8, 12 h

p-IRS-1↑ PI3Kp85↑ p-AKT↑
PKC↑ GLUT4↑

Stimulating glucose
transport

Sujatha et al. (2010)

Preadipocytes + DXMS
+ insulin

in vitro 0.1, 1, 10, 100, 1,000,
10,000 μM Beta-sitosterol
for 24 h

PI3K↑ AKT↑ GLUT4↑ Regulating glucose uptake,
adipogenesis, and lipolysis
in adipocytes

Chai et al. (2011)

Taurine Male SD rats fed HFD
+ STZ

in vivo 400, 600 mg/mL Taurine for
7 weeks

PI3K↑ AKT↑ GLUT4↑ Stimulating glucose
consumption and
ameliorating oxidative stress

Chen et al. (2021)

HepG2 cells + PA in vitro 10, 100, 500 μg/mL Taurine
for 24 h

1,7-Diphenyl-4E-en-3-
heptanone (DPH5)

HepG2 cells + glucose in vitro 10, 20, 40 μM
DPH5 for 24 h

p-PI3Kp85↑ p-AKT↑
GLUT4↑ p-GSK3β↑ GCK↑
PK↑ PEPCK↓ G6Pase↓

Promoting glucose uptake
and glucose consumption,
regulating glucose
metabolism and enhancing
insulin sensitivity

Zhang et al. (2022)

(R)-5-hydroxy-1,7-
diphenyl-3-heptanone
(DPHC)

Male C57BL/KsJ db/db
mice

in vivo 80, 140 mg/mL DPHC for
8 weeks

IRS1↑ p-PI3K↑ p-AKT↑
GLUT4↑

Regulating blood glucose
level and glucose tolerance,
improving glucose
metabolism

Zhang et al. (2021)

HepG2 cells + glucose in vitro 10, 20, 40 μM DPHC
for 24 h

Esculin Male C57BL/6J mice
fed HFD

in vivo 40, 80 mg/kg Esculin for
4 weeks

IRS1↑ p-PI3K↑ p-AKT↑
GLUT4↑

Improving adipose tissue
remodeling and increasing
glucose uptake

Yang et al. (2024)

3T3-L1 adipocytes
+ PA

in vitro 50, 100 μM Esculin for 24 h

Male ICR mice +
DXMS

in vivo 40 mg/kg Esculin for
21 days

p-AKT↑ p-AMPK↑
GLUT4↑

Promoting glucose uptake
and improving insulin
resistance

Mo et al. (2019)

C2C12 Myotubes +
DXMS

in vitro 25, 50, 100 μM Esculin
for 24 h

Male ICR mice + STZ in vivo 200 mg/kg Esculin for
14 days

IR↑ p-AKT↑ p-GSK3β↑ Increasing glucose uptake
and improving insulin
sensitivity

Kang et al. (2014)

C2C12 Myotubes +
insulin

in vitro 50 μM Esculin for 24 h
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tricin could enhance GLUT4 translocation and glucose uptake by
activating the insulin-dependent PI3K/AKT/AS160 signaling
pathway in C2C12 myotubes and the oral administration of
Tricin significantly lowered blood glucose levels in glucose-loaded
C57BL/6 mice (Kim et al., 2017). These findings indicate that tricin
has promising prospects to act as a functional agent for
glycemic control.

4.1.5 HM-chromanone
(E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone

(HM-chromanone), a sapanin homoisoflavonoid that derived from
Portulaca oleracea L., has an extensively potential in promoting insulin
secretion and anti-diabetes effect of a substance isolated from TCM. In
vivo, HM-chromanone can reduce hyperglycemia and ameliorate
dyslipidemia in C57BL/Ksj-db/db mice, the effect of 30 mg/kg HM-
chromanone for 6 weeks on levels of HbA1c, plasma insulin, HOMA-
IR and serum lipid significantly normalized. Furthermore, the ability of
HM-chromanone supplementation to promote the activation of insulin
signaling pathways and lead to glucose uptake into skeletal muscle cells
was also clarified (Yoo et al., 2023). In vitro, HM-Chromanone was
found to improve glucose uptake, glycogen synthesis and other cellular
functions related to glucose metabolism in L6 skeletal muscle cells, 3T3-
L1 adipocytes and HepG2 cells by activating the PI3K/AKT signaling
pathway or acting in conjunction with the AMPK signaling pathway
(Park et al., 2019; Park et al., 2021; Park and Han, 2022; Park and Han,
2022). Therefore, it shows a more positive effect in all three primary
target insulin groups to improve insulin resistance and its potential to
prevent and treat diabetes.

4.1.6 Puerarin
Puerarin, themajor isoflavone glycoside isolated from the traditional

ChinesemedicineRadix puerariae, is widely used to treat diabetes and its
complications. Mediated by the PI3K/AKT pathway, it is potent and
directly protects β-cell survival and insulin secretion (Li et al., 2014).
Moreover, the effect of 100mg/kg puerarin for 4 days on C57BL/6 male
mice with pancreatic β-cell toxic STZ significantly lowered blood
glucose, reduced the incidence of diabetes, and directly protected the
function and survival of pancreatic β-cell. Activating the PI3K/AKT
pathway, considerably upregulated the p-AKT and Bcl-2 expression, and
AKT phosphorylation was blocked when the LY 294002 inhibitor was
involved. The mechanism of its action against lipid and glucose
metabolism dysfunction was investigated after treatment with
300mg/kg puerarin for 4 weeks in T2DM rats, fasting insulin,
glycated hemoglobin, glucose tolerance and lipid profile were
significantly normalized recovery and the expression level of PI3K,
p-AKT, and p-FoxO1 was increased while PEPCK and G6Pase
decreased (Liu et al., 2021). Further, its effect of suppressing
gluconeogenesis and promoting glucose consumption by stimulating
the PI3K/AKT pathway is also clarified in insulin resistance HepG2 cells
(Shen et al., 2019; Liu et al., 2021).

4.1.7 α-Methyl artoflavanocoumarin
α-Methyl artoflavanocoumarin (MAFC), a flavanocoumarin, is

extracted from the heart part of Juniperus chinensis L.
(Cupressaceae) (Orhan et al., 2011). As a novel PTP1B inhibitor,
it inhibits PTP1B activity and upregulates the expression of PTP1B.
Additionally, it also found that MAFC could significantly increase

FIGURE 2
The chemical structures of fourteen flavonoids.
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glucose uptake and dose-dependently enhance the protein levels of
IRS-1, phosphorylated PI3K, and AKT, thus activating the IRS-1/
PI3K/AKT signaling pathway in IR-HepG2 cells (Jung et al., 2017).

4.1.8 Loureirin B
Loureirin B, a dihydrochalcone analog, extracted from Sanguis

Draconis, which promotes insulin secretion and hypoglycemia
(Fang et al., 2022). According to the research on loureirin B,
4 weeks of treatment with 45 mg/kg loureirin B in the HFD/STZ-
induced T2DM mice model restored normalization of the liver
index, insulin sensitivity, serum lipid content and liver glycogen
content, and loureirin B at a concentration of 10–5 to 10–7 mol/L in
IR-HepG2 cells affected the IRS1/PI3K/AKT/FoxO1 signaling
pathway and regulated the expression of several essential genes
and proteins in the pathway, thereby increasing glucose uptake and
consumption, accelerating the conversion of glucose to glycogen,
inhibiting hepatic gluconeogenesis, enhancing hepatic glycogen
content and reducing insulin resistance (Ding et al., 2021).

4.1.9 Fisetin
Fisetin, a flavonoid, is widely presented in natural plants. As an

α-glucosidase inhibitor, it was identified to be a promising candidate
for the treatment of T2DM (Shen et al., 2021). Fisetin
supplementation could ameliorate hyperlipidemia and insulin
resistance through regulating the IRS1Tyr608/AKT/GSK3β/
FoxO1 signaling pathway, the expression of phosphorylated
IRS1Tyr608, AKT, FoxO1 and GSK3β was markedly decreased by
the intervention of fisetin in the kidneys of HFD-fed mice (Ge et al.,
2019). Further, in vitro experiments have shown that fisetin
increased the EGFR expression through IRS activating PI3K/AKT
signaling pathway to alleviate hepatic IR (Li et al., 2023).

4.1.10 Kaempferol
Kaempferol is a important dietary flavonoid that has been

identified in many TCM (Fang et al., 2019). Kaempferol exhibits
anti-diabetic effect in regulating hepatic gluconeogenesis and
ameliorating fasting hyperglycemia and glucose intolerance
through increasing AKT phosphorylation, oral administration of
kaempferol improved insulin sensitivity and insulin resistance in
HFD-fed mice (Alkhalidy et al., 2018). Moreover, kaempferol
increased AKT phosphorylation in human SkM cells and in
muscle of obese mice to stimulate glucose uptake and insulin
resistance (Moore et al., 2023). Furthermore, kaempferol
metabolites induce AKT and GSK3β phosphorylation and
improve glucose metabolism (Fang et al., 2021).

4.1.11 Quercetin
Quercetin is a naturally occurring flavonoid, ubiquitously

present in fruits and vegetables (Fang et al., 2019; Dhanya, 2022).
Quercetin has been shown to altering glucose homeostasis via
glucose transporters and insulin signalling molecules, acts as
potentiates IRS1, PI3K and AKT1 phosphorylation in brain of
STZ-induced diabetic rats (Sandeep and Nandhini, 2017). In
addition, a study showed that HFD-induced mice and PA-
induced HepG2 cells treated with quercetin saw a enhancement
alleviation of insulin resistance via the IRS-1/AKT/FoxO1 pathway,
and stimulated expressions of p-IRS1, p-AKT and GLUT4 in liver
(Cheng et al., 2021; Liu et al., 2022).

4.1.12 Apigenin
Apigenin, a flavonoid, is widely distributed in folk medicines for

diabetes treatment (Qin et al., 2016; Kashyap et al., 2021). Apigenin
significantly increases glucose consumption and glycogen synthesis,
suppresses the production of ROS and AGEs, and improves insulin
resistance in IR-HepG2 cells, and elevated the level of protein
expression of IRS-1, IRS-2, PI3K, and p-AKT is observed in IR-
HepG2 cells (Miao et al., 2023). Therefore, the activation of the IRS-
1/IRS-2/PI3K/AKT signaling pathway and regulation of its targets,
including GLUT4 and GSK-3β, may play important roles in
preventing diabetes (Fang et al., 2019; Miao et al., 2023).

4.1.13 Poncirin
Poncirin, a natural flavonoid glycoside derivative present in the

fruits of Poncirus trifoliata, possesses multiple biological activities
(Li et al., 2022). Naringenin significantly increased glucose uptake
and GLUT4 expression level via activating the IRS-1/PI3K/AKT/
GSK-3 signaling pathway, and decreased the expression of PTP1B in
IR-C2C12 skeletal muscle cells (Yousof Ali et al., 2020). Enhanced
the phosphorylation of IRS-1, PI3K, GSK3β and AKT, and thus
stimulated the glucose uptake and insulin sensitivity.

4.1.14 Naringenin
Naringenin, a citrus flavonoid, has the ability to increase insulin

secretion in the primary rat islets, protect β cell function and reverse
glucose dysregulation in diabetic rats (Lin et al., 2023). Likewise,
naringenin reduces lipid accumulation and insulin resistance
through promoting AMPK phosphorylation level in liver of
diabetic mice (Cai et al., 2023). Further, naringenin
administration significantly altering glucose homeostasis, as well
as significantly restored GLUT1 and GLUT3 expression, and
increased the phosphorylated forms of IRS1, PI3K and AKT in a
rat model of T2DM (Sandeep and Nandhini, 2017).

4.2 Polyphenols

Polyphenols are a group of chemicals formed by the
combination of at least one aromatic ring with one or more
hydroxyl functional groups attached to it, which are considered
secondary metabolites and abundantly found in fruits, vegetables,
and medicinal plants (Mirza-Aghazadeh-Attari et al., 2020).
Meanwhile, Polyphenols were known to be instrumental in each
of the vital processes of glucose metabolism. It prefers to arrest
intestinal glucose absorption, increase pancreatic insulin secretion,
enhance the capacity of muscle and adipocytes to utilize glucose and
hinder glucose secretion by the liver (Shahwan et al., 2022),
including resveratrol, pterostilbene, curcumin and gallic acid. The
chemical structures of four polyphenols are shown in Figure 3.

4.2.1 Resveratrol
Found in Polygonum cuspidatum, Resveratrol (3, 5, 4′-

trihydroxystilbene, RSV) is a type of non-flavonoid polyphenolic
with phytoalexin properties, which is particularly high in resveratrol
and can be used as a TCM (Zhao et al., 2019). A series of studies have
verified a broad spectrum activity of resveratrol in association with
diabetes and its complications (Szkudelska and Szkudelski, 2010). In
a metabolic action study in humans, it was shown that oral
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administration of 10 mg of RSV for 4 weeks significantly reduced
insulin resistance and improved insulin sensitivity in humans and
resulted in more efficient transduction of insulin signaling through
the AKT pathway (Brasnyo et al., 2011). What counts is that
researchers found that RSV restores the phosphorylation levels of
AKT and PI3K in the liver of insulin resistance mice, which are
involved in the insulin signaling pathway and were decreased by a
high-fat diet (Hong et al., 2014; Sadi et al., 2015; Shu et al., 2020).
Furthermore, RSV could also increase insulin secretion and produce
a hypoglycemic effect in STZ-induced rats, KKAy mice, and HCF-
fed rats via PI3K/AKT signaling pathway to enhance glucose uptake
into skeletal muscles (Chi et al., 2007; Deng et al., 2008; Chen et al.,
2012). In addition, the combination therapy of dapagliflozin with
RSV has better glucose-lowering effects than the single SGLT2i
therapy in T2D treatment, and the therapeutic effects of enhancing
glucose production and inhibiting gluconeogenesis were also
produced by modulating the PI3K/AKT pathway (Sun et al., 2021).

4.2.2 Pterostilbene
Pterostilbene (trans-3, 5-dimethoxy-4′-hydroxystilbene; PTE), a

polyphenol and a naturally occurring dimethylated analog, can be
obtained from grapes and blueberries and be found in several TCM.
Pterostilbene exhibits anti-diabetic effects both by normalizing the
significant enzymes of glucose metabolism and regulating the
insulin resistance signaling pathway (Pari and Satheesh, 2006).
Furthermore, it can also reverse insulin resistance by decreasing
the oxidative stress effect (Elango et al., 2016). The treatment of
STZ-induced diabetic rats with pterostilbene at different
concentrations (20, 40, and 80 mg/kg) for 8 weeks normalized the
body weight, FBG, OGTT, serum lipid profile, and insulin levels in a
dose-dependent manner (Sun et al., 2019). Moreover, the expression
of PPARγwas increased, and the expression of PI3K and p-AKT was
upregulated in adipose tissue of diabetic rats after treatments. The
above results show that the mechanism of the anti-diabetic effect of
pterostilbene in high-fat diet and STZ-induced diabetic rats may be
related to the PI3K/AKT signaling pathway. A similar therapeutic
effect of reversing insulin resistance was also demonstrated in
HepG2 cells induced by palmitic acid in vitro. Meanwhile,
pterostilbene can also regulate triglyceride accumulation and FFA
metabolism and reduce oxidative damage to lipids via regulating the
PI3K/AKT signaling pathway and the expression of genes coding for
gluconeogenic enzymes (Malik et al., 2019).

4.2.3 Curcumin
Curcumin (1, 7-bis (4-hydroxy-3-methoxyphenyl)-1, 6-

heptadiene-3, 5-dione), a natural phenol found in Curcuma longa
plants, has been shown to prevent hyperglycemia and
hyperlipidemia as well as liver damage (Xia et al., 2020). Data
indicated that administration of dietary curcumin reinstates PI3K
and AKT levels in the liver of diet-induced obese mice and T2MD
rats (Kim et al., 2019; Xia et al., 2020), ameliorates the tissue
structure of the liver and pancreas and decreases blood glucose
and lipid levels. It ameliorated insulin sensitivity via strengthening
the PI3K/AKT/GSK3β signal pathway in high-glucose-induced IR
HepG2 cells (Li et al., 2020). Additionally, the mechanistic basis of
curcumin is a potential therapeutic strategy for the protection of
pancreatic β-cells in T2DM, and it shows that curcumin protected
MIN6 β-cells from palmitate-induced apoptosis by modulating the

PI3K/AKT/FoxO1 signaling pathway and the mitochondrial
survival pathway (Hao et al., 2015).

4.2.4 Gallic acid
Gallic acid (3, 4, 5-trihydroxybenzoic acid), a naturally occurring

phenolic acid, has been shown to possess anti-hyperglycemic and
anti-diabetic activities in STZ-induced diabetic rats (Punithavathi
et al., 2011; Punithavathi et al., 2011). In vivo, Gallic acid can
improve insulin resistance in the liver, adipose, and skeletal
muscle tissues of diabetic rats through translocation and
activation of GLUT4 in the PI3K/AKT signaling pathway, and
slightly upregulated the mRNA and protein expression levels of
PPARγ (Gandhi et al., 2014). Its effects on hepatic glucose
metabolism via regulating the PI3K/AKT pathway in HFD-
induced diabetic rats were also confirmed (Huang et al., 2016).
In vitro, the anti-diabetic effect of Gallic acid was found to protect
against free fatty acid (FFA)-induced IR through the miR-1271/IRS-
1/PI3K/AKT/FoxO1 pathway at dose of 50 μmol/L (Lee and
Lee, 2021).

4.3 Alkaloid

Alkaloids are significant and excellent phytoconstituents found
in medicinal plants and represent the beginning of the interesting
potential for new approaches to the treatment of diabetes, and
multiple in vitro and in vivo experiments have proven the
relatively bright potential of alkaloids in the treatment of diabetes
and its complications (Behl et al., 2022). Alkaloids such as
tetramethylpyrazine, hirsutine, and 1-Deoxynojirimycin can
regulate the balance between glycolipid metabolic and moderate
insulin resistance. The chemical structures of three alkaloids are
shown in Figure 4.

4.3.1 Tetramethylpyrazine
Tetramethylpyrazine (TMP), also known as ligustrazine, is an

alkaloid extracted from the plant Ligusticum chuanxiong with
biological efficacy in improving glucose homeostasis and systemic
insulin sensitivity (Xiang et al., 2020). Its anti-diabetic affection
produced by reducing insulin resistance suppressing oxidative
stress in HFD-STZ-induced T2D rats and STZ-NCT-induced
T2D rats and suggested that the dose-dependent hypoglycemic
activity and potential molecular mechanisms of the oral
administration of TMP assessed by calculating the expression
levels of phosphorylated PI3K and AKT proteins and mRNA in
skeletal muscle, heart and adipose tissue of T2D rats (Rai et al.,
2019; Rai et al., 2019). Therefore, it can be concluded that TMP
improves insulin resistance and produces anti-diabetic activity by
activating the PI3K/AKT signaling pathway.

4.3.2 Hirsutine
Hirsutine is a potent drug-like indole alkaloid extracted from the

Uncaria rhynchophylla. Hirsutine beneficially regulates glucose
homeostasis, improving hepatic and cardiac IR in HFD-induced
diabetic mice (Jiang et al., 2023). The ability of pharmacological anti-
diabetic to promote glucose consumption and glycogen synthesis
and to inhibit gluconeogenesis was also demonstrated adjuvantly in
the IR model of HepG2 and H9c2 cells using high glucose and high
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insulin induction, and the mechanism of action was achieved
through activation of PI3K/AKT/GSK3β signaling pathway (Hu
et al., 2022).

4.3.3 1-Deoxynojirimycin
1-Deoxynojirimycin, as an inhibitor of intestinal ɑ-glucosidase,

the primary alkaloid isolated from mulberry leaves (Morus alba L.),
has been reported as the critical practical bioactive material basis.
Depending on previous research, the administration of purified 1-
Deoxynojirimycin appeared to have antioxidant and anti-
inflammatory roles in STZ-induced diabetic rats. It explains at
least part of the mechanism by which it ameliorates blood
glucose (Huang et al., 2014). Its therapeutic effect on
hyperglycemia was evidenced by the reduction of blood glucose,
serum insulin levels and HOMA-IR index while improving glucose
tolerance and insulin sensitivity in skeletal muscle of db/db mice via
activating insulin signaling PI3K/AKT pathway (Liu et al., 2015).
Meanwhile, its mechanism of glucose homeostasis regulation effect
in differentiated 3T3-L1 adipocytes by up-regulating the genes/
proteins and mRNA expression of PI3K/AKT and AMPK
signaling pathways from ADIPO to GLUT4 and from IR to
GlUT4 (Li et al., 2019). Additionally, 1-Deoxynojirimycin
supplementation appeared to improve muscle insulin resistance
by modulating the IRS-1/PI3K/AKT pathway in the skeletal
muscle of db/db mice (Kang et al., 2022).

4.4 Terpenoids

Terpenoids are widely distributed in nature among the most
diverse phytochemicals, possessing a wide range of biological
activities. Such compounds have been shown to modulate
glycolipid metabolism and improve insulin resistance in terms of
anti-diabetic activity (Szakiel et al., 2012). Terpenoids include
siamenoside I, mogroside III, mogroside IV, mogroside V,
catalpol, oleanolic acid, asiatic acid, glycyrrhetinic acid and
maslinic acid. The chemical structures of nine terpenoids are
presented in Figure 5.

4.4.1 Mogroside
Siraitia grosvenorii, as a medicine food homology plant,

possesses both nutritional and medicinal values. The fruit of S.
grosvenorii is naturally enriched with sweetener compounds such as
Mogroside III, Mogroside IV, Mogroside V, and Siamenoside I
belong to triterpenoid constituents (Thakur et al., 2023). Researchers
evaluated the hypoglycemic effect of four mogrosides, namely,
Mogroside III, Mogroside IV, Mogroside V, and Siamenoside I.
They reversed insulin resistance in IR-HepG2 cells by activating the
PI3K signaling pathway, which can play a role in the regulation of
glucose metabolism. Moreover, Mogroside V is the most significant
curative effect compared with others. It has been found to alleviate
glucose levels and insulin sensitivity in T2DM rats by regulating the
PI3K/AKT signaling pathway (Liu et al., 2019).

4.4.2 Catalpol
Catalpol, an iridoid glycoside with pharmacological benefits for

the prevention of diabetes and diabetic complications, is mainly
found in the roots of Radix Rehmanniae (Bai et al., 2019). The

therapeutic effects of catalpol in controlling glycemic parameters in
HFD/STZ-induced diabetic mice and its potential molecular
mechanisms indicate that mRNA levels of IRS-1, PI3K, AKT2,
and GLUT-4 in skeletal muscle were significantly improved by
treatment (Yap et al., 2020). Meanwhile, catalpol improves
insulin sensitivity and increases glucose uptake by enhancing
MyoD/MyoG-mediated myogenesis. Moreover, in accordance
with the research of in vitro and in vivo the mechanism of
catalpol hypoglycemia in skeletal muscle involves modulation of
the PI3K/AKT signaling pathway (Xu et al., 2018). Furthermore, the
mechanism by which catalpol alleviates hepatic insulin resistance by
regulating the expression of the PI3K/AKT pathway and its
downstream glucose metabolism-related proteins has been
demonstrated in T2D mice and IR-HepG2 cells models (Yan
et al., 2018).

4.4.3 Oleanolic acid
Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid), a glycogen

phosphorylase (GP) inhibitor, is a naturally occurring pentacyclic
triterpene widely found in a range of foods and TCM and has
enormous potential in hypoglycemic effects. Oleanolic acid could
improve blood glucose and insulin homeostasis by enhancing the
phosphorylation of ATK and AMPK in the liver of db/db diabetic
mice and significantly improve hepatic gluconeogenesis and hepatic
pathological changes (Wang et al., 2015). Further, additional
research data manifest that the sustained modification of glucose
homeostasis by oleanolic acid is due, at least in part, to the repression
of AKT/FoxO1 axis-mediated gluconeogenesis in liver (Zeng et al.,
2012). Meanwhile, oleanolic acid attenuated adipose tissue insulin
resistance induced by fructose over-consumption in rats via IRS-1/
PI3K/AKT signaling pathway (Li et al., 2014).

4.4.4 Asiatic acid
Asiatic acid is a natural pentacyclic triterpenoid derived from

Centella Asiatica (L.) Urban and exhibited potent hepatoprotective
biological function. Oral administration of asiatic acid to STZ-
induced diabetic rats restored the key carbohydrate-metabolizing
and lipid metabolic enzymes and lipid peroxidation products to
nearly normal levels. Reliable research data found it positively
lowered blood sugar, lipid, and lipid peroxidation
(Ramachandran and Saravanan, 2013; Ramachandran and
Saravanan, 2013; Ramachandran and Saravanan, 2015).
Additionally, it also found that its hypoglycemic effect may
activate the PI3K/AKT signaling pathway to significantly improve
glucose uptake and insulin resistance in skeletal muscle tissue of
STZ-induced diabetic rats and improve glucose homeostasis
(Ramachandran and Saravanan, 2015). Its anti-diabetic effects
have also been demonstrated in T2DM (db/db) mouse models,
and it promoted glycogen synthesis by activating PI3K/AKT/GSK-
3β signaling pathway in liver tissue (Sun et al., 2017).

4.4.5 Glycyrrhetinic acid
Glycyrrhetinic acid, a triterpenoid, is one of the main bioactive

components in licorice (Tan et al., 2022). Glycyrrhetinic acid
prevented hyperglycemia and hyperlipidemia in STZ-induced
diabetic rats and improved to normalcy (Kalaiarasi et al., 2009).
In addition, glycyrrhetinic acid elicits its anti-diabetic activity
mainly through regulating the PI3K/AKT/GSK-3β signaling
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pathway (Yang et al., 2020; Tan et al., 2022; Meng et al., 2023).
Moreover, glycyrrhetinic acid was found to decrease the activation
of the phosphorylation of IRS1ser307 and increased the
phosphorylation of AKTser473 and GSK-3βser9 in IR-HepG2
cells, thus improving insulin-response pathway and glucose
consumption levels (Zhang et al., 2019; Wang et al., 2023).

4.4.6 Maslinic acid
Maslinic acid is a pentacyclic triterpene acid that possesses a

variety of biological activities, and has been shown to regulate
glycogen metabolism in HFD-induced diabetic mice as a
glycogen phosphorylase inhibitor (Liu et al., 2014; Yan et al.,
2023). In addition, maslinic acid intervention on IR-HepG2 cells
elevated the phosphorylation levels of AKT and GSK-3β, and PI3K
inhibitor blocked the phosphorylation of AKTSer473, thus proving its
potential to regulate glycogen metabolism (Liu et al., 2014). Further,
identified that maslinic acid has potent anti-adipogenic effects to
target adipocyte function and prevent obesity, and target activation
of PI3K/AKT signaling pathway (Savova et al., 2021).

4.5 Quinones

Quinones are a class of aromatic dicarbonyl that are widely
found in nature and possess a wide range of biological activities, of
which anthraquinone is the largest naturally occurring quinone,
such as aloin, embelin and emodin (Yang et al., 2020). The chemical
structures of three quinones are shown in Figure 6.

4.5.1 Aloin
Aloin, isolated from the leaf secretion of Aloe vera (L.) Burm. f.,

belonging to anthraquinone compounds (Jiang et al., 2018). Both in
vivo and in vitro studies of aloin have shown its hypoglycemic effects
(Zhang et al., 2020), with in vivo studies demonstrating that aloin
improves glucose tolerance and fasting serum insulin activity in T2D
mice and has hepatoprotective effect, which is mediated by
activation of the IRS1/PI3K/AKT pathway (Cui et al., 2014), and
in vitro studies demonstrating that aloin markedly improves glucose
consumption and stimulates the activity of key enzymes of glucose
metabolism in IR-HepG2 cells (Zhong et al., 2022).

4.5.2 Embelin
Embelin (2, 5-dihydroxy-3-undecyl-1, 4-benzoquinone), a

naturally occurring alkyl-substituted hydroxyl benzoquinone,
isolated from Embelia ribes Burm, which has been extensively

evaluated for its anti-diabetic activity (Durg et al., 2017). Embelin
treatment of HFD-STZ-induced T2DM rats shows that it
regulates glucose uptake by regulating GLUT4 transposition
and activation in epididymal adipose tissue mediated by
insulin-dependent PI3K/AKT pathway, manifesting that it
plays a positive role in improving adipose tissue insulin
sensitivity, enhancing blood glucose control, protecting β cells
from damage and maintaining adipose tissue glucose
homeostasis in animal models (Gandhi et al., 2013).

4.5.3 Emodin
Emodin, an anthraquinone, was characterized being an active

agent in lowering blood lipids and modulating glucose utilization
(Yu et al., 2023). It was demonstrated that emodin improves
hepatic glucose utilization, muscle and fat glucose uptake by
targeting the IRS/PI3K/AKT/FoxO1 pathway, resulting in
enhancing insulin sensitivity and resistance, the protein
expression of IRS1, PI3K, and p-AKT ser473 in hepatic,
muscle, and adipose tissue of diabetic mice was upregulated
(Xuezheng et al., 2018).

4.6 Saponins

Saponins, surface-active glycosides widely found in TCM,
usually consist of a structure linking both a glycoside and a
hydrophobic glycosidic ligand (saponin element), which in nature
can be triterpenoids or steroids in nature (Elekofehinti, 2015). Their
anti-diabetic properties have been demonstrated by their reported
activities of regulating glucose-lipid metabolic homeostasis,
promoting insulin secretion and enhancing insulin sensitivity as
shown in vivo and in vitromodels of insulin resistance. Astragaloside
IV, ginsenoside Rb2 and ginsenoside Rg5 are examples of saponins.
The chemical structures of three saponins are shown in Figure 7.

4.6.1 Astragaloside IV
Astragaloside IV, a glycoside of cyclobutane-type triterpene

obtained from Astragalus membranaceus, has the effect of
preventing diabetes by inducing a decrease in blood glucose
concentration and an increase in plasma insulin levels (Yu et al.,
2006). It can reduce blood glucose levels in HFD-STZ-induced
diabetic mice, glycogen phosphorylase (GP) and glucose-6-
phosphatase (G6Pase), two glucose-regulated enzymes, were
inhibited to improve glucose metabolism in the liver (Lv et al.,
2010). Additionally, it inhibits lipolysis and reduces hepatic glucose

FIGURE 3
The chemical structures of four polyphenols.
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production in HFD-fed mice through AKT-dependent PDE3b
expression (Du et al., 2018). Its mechanism of action is reducing
insulin resistance in adipocytes by regulating CTRP3 and PI3K/AKT
signaling (Zhang et al., 2022).

4.6.2 Ginsenosides
Ginsenosides, obtained from ginseng, have been demonstrated

to possess anti-diabetic activity, such as Ginsenoside Rb2,
Ginsenoside Rg5, etc. Ginsenoside Rg5 may be a potential

FIGURE 4
The chemical structures of three alkaloids.

FIGURE 5
The chemical structures of nine terpenoids.
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natural product in the treatment of T2DM for the first time, which
can remarkably improve glucose and lipid metabolism, increase
insulin secretion, and protect damaged tissues in T2Dmice. Further,
it improves liver insulin resistance in db/db mice and alleviates
T2DM by regulating IRS1/PI3K/AKT/GSK3β signaling pathway
(Wei et al., 2020). Ginsenoside Rb2 can jointly improve insulin
resistance of 3T3-L1 adipocytes and DIO mice by regulating various
pathways such as PI3K/AKT, MAPK and NF-κB, showing various
therapeutic effects such as upregulation of inflammatory factors,
reduction of fat accumulation and improvement of glucose
metabolism (Dai et al., 2018).

4.7 Others

There are some other metabolites of TCM, including beta-
sitosterol, taurine, 1, 7-Diphenyl-4E-en-3-heptanone (DPH5),
(R)-5-hydroxy-1, 7-diphenyl-3-heptanone (DPHC) and esculin,
are also used to treat T2DM. The chemical structures are
presented in Figure 8.

4.7.1 Beta-sitosterol
Previous studies have found that the serum insulin level in

patients with type 2 diabetes is negatively correlated with the plasma
non-cholesterol sterols concentration, which suggests that
supplementation of phytosterols may have beneficial effects on
lowering blood glucose levels and preventing T2DM (Šmahelová
et al., 2005). Beta-sitosterol is one of the most common phytosterols,
widely distributed in many plants and often found in herbal
formulations to treat hypercholesterolemia, coronary artery
disease, and prostatic hyperplasia (Ponnulakshmi et al., 2019).
Studies have shown that it can protect the expression of insulin
signaling molecules in adipose tissue and skeletal muscle of rats with
T2DM induced by a high-fat diet and sucrose and improve blood
glucose metabolism by enhancing the expression level of insulin
receptor (IR) and GLUT4 and regulating the IRS-1/AKT mediated
signaling pathway (Babu et al., 2020). It was suggested that beta-
sitosterol has anti-diabetic potential. Furthermore, it affected
glucose transport and lipid mobilization in primary preadipocytes
from male rats by activating and regulating the PI3K/AKT signaling
pathway and GLUT4 expression level (Chai et al., 2011). The anti-
diabetic potential in a skeletal muscle model established using
L6 myotube cells and found that it promoted glucose transport
and glucose uptake in L6 myotube cells by activating IRS-1/PI3K/
AKT signaling pathway and improving GLUT4 expression level
(Sujatha et al., 2010). The above results manifest that insulin-like
property is one of the mechanisms of improving insulin resistance
in vitro.

4.7.2 Taurine
Taurine, obtained from Bos taurus domesticus Gmelin, is a

sulfur-containing amino acid (Rashid et al., 2013). It can regulate a
variety of the body’s normal physiological activities, such as
participating in the beta cell function, regulating insulin signaling
pathways and glucolipid metabolism of the liver (Das et al., 2012;
Batista et al., 2013; Tang et al., 2019; Zhao et al., 2019). Taurine could
improve insulin resistance by activating the PI3K/AKT/
GLUT4 pathway in HFD/STZ-induced T2DM rats and PA-

induced IR-HepG2 and the regulatory effects of taurine on the
insulin signaling pathway in the liver, the target organ of insulin.
Moreover, its potential to prevent T2DM was evaluated in vitro and
in vivo (Chen et al., 2021).

4.7.3 Diarylheptanoid
1,7-Diphenyl-4E-en-3-heptanone (DPH5) and (R)-5-hydroxy-1,7-

diphenyl-3-heptanone (DPHC) are diarylheptanoid present in the
rhizome of Alpinia officinarum Hance (Xin et al., 2017; Abubakar
et al., 2018). These metabolites are considered the most active bioactive
metabolites extracted from this plant and have favorable hypoglycemic
effects. DPH5 could promote glucose uptake and consumption of IR-
HepG2 cells, accelerate glucose utilization, and improve insulin
resistance and insulin sensitivity by regulating PI3K/AKT-GSK3β
signaling pathway and increasing the expression of GLUT4 and
GSK3β proteins (Zhang et al., 2022). Additionally, DPHC could
regulate glucose metabolism and hypoglycemic activity well in both
db/dbmousemodels and in vitro high-glucose induced IR-HepG2 cells,
and its mechanism improves insulin resistance by regulating IRS1/
PI3K/AKT/GLUT4 signaling pathway, showing potential for T2DM
treatment (Zhang et al., 2021).

4.7.4 Esculin
Esculin, a plant derived natural coumarin extracted from Cortex

fraxini, is considered to exert multiple anti-diabetic properties (Naseem
et al., 2023). Esculin amelioration of unhealthy AT remodeling was also
proven for the first time as a novel therapeutic strategy for obesity-
induced IR. Intervention with esculin could enhance insulin sensitivity
and improve adipose tissue remodeling in obese IR C57BL/6J mice
(Ghosh et al., 2022). In PA-treated adipocytes, esculin could promoted
glucose uptake through increasing the enhancement of
GLUT4 translocation and the expression of p-PI3K p85Tyr467,
p-AKTSer473, and p-IRS1Ser307 (Yang et al., 2024). In addition, esculin
restored blood glucose level and glucose tolerance in STZ-induced
diabetic mice and dexamethasone-induced diabetic mice, and enhance
the phosphorylation of AKT in C2C12myotubes, indicating a potential
for the improvement of insulin resistance (Kang et al., 2014; Mo
et al., 2019).

5 Future directions and perspective

5.1 The role of the PI3K/AKT signaling
pathway for hypoglycemic effect in T2DM

As a chronic metabolic disease, the pathogenesis of T2DM has
not yet been fully elucidated. The available therapeutic drugs can
only alleviate the symptoms of the disease, failing to achieve a
completely curative effect, and tend to be accompanied by a
multitude of adverse effects. According to extensive research, the
PI3K/AKT signaling pathway holds a significant advantage for
hypoglycemic effect in T2DM, as it can effectively ameliorate
insulin resistance in peripheral target organs of insulin. To some
extent, it compensates for the shortcomings of the commonly used
anti-diabetes drug, metformin (an AMPK agonist), in clinical
treatments. However, it is worth noting that the role of the
PI3K/AKT signaling pathway is quite extensive, having
connections with numerous diseases, This review found that
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extensive preclinical studies have demonstrated that activation of the
PI3K/AKT signaling pathway can significantly improve various
abnormal indicators of T2DM in vivo and in vivo, and regulating
glucose and lipid metabolism levels in insulin target organs and
target cells, to some extent, improving insulin resistance and
exerting hypoglycemic effects. Although there is no recent
progress in clinical studies on the metabolites of TCM as the
signaling pathway modulators, the performance of the
metabolites of TCM in basic research provides a valuable
theoretical basis for entering clinical studies in the future.
However, it is worth noting that the PI3K/AKT signaling
pathway has quite a wide range of roles and has been associated
with numerous diseases, and thus further insight is needed as to
whether activation of this pathway directly benefits T2DM without
triggering other effects. Moreover, regulating the expression of the
PI3K/AKT pathway and its downstream effector proteins is far from
sufficient, and the precise targets and mechanisms of diabetes
treatment need to be further elucidated in detail.

Moreover, as the TCM exert an immeasurable potential in the
treatment of chronic diseases and due to the characteristics of many
TCM as homologous with food and medicine, the metabolites of
TCM also tend to have lower and fewer side effects and exhibit
higher clinical efficacy, attracting considerable attention from
relevant academic researchers. Upon these studies, we found that
these active metabolites could not only improve glycogen synthesis
and glucose uptake, but also inhibit gluconeogenesis through the
PI3K/AKT signaling pathway, so that they could improve insulin
resistance and exert hypoglycemic effects. In addition, a lot of
metabolites of TCM could regulate glucose metabolism and play
a comprehensive regulatory role in treatment of T2DM. Therefore,
we strongly believe that the TCM are on the verge of breaking new
ground in the treatment of T2DM.

5.2 Characters of metabolites of traditional
Chinese medicine in regulating PI3K/AKT
signaling pathway

1) Flavonoids, polyphenols and terpenoids

On the basis of compound categorization, researchers have studied
the metabolites of flavonoids, polyphenols and terpenoids in

metabolites of TCM more extensively compared to alkaloids,
quinones and saponins. The effects of flavonoids, polyphenols and
terpenoids on regulating the expression levels of glycogen synthesis,
gluconeogenesis and glucose uptake-related proteins mediated by the
PI3K/AKT signaling pathway were explored more deeply and roundly.

Flavonoid demonstrate significant activity and simpler structures,
giving them a slight advantage in terms of druglikeness and
bioavailability. It is also possible to further modify and optimize
their structures and develop new dosage forms to improve the
pharmacokinetic properties of these metabolites of TCM so that
more efficient drugs with fewer toxic side effects can be designed.

2) Quinones and saponins

Quinones and saponins have been shown to activate the PI3K/AKT
signaling pathway in the preclinical stage, and p-PI3K and p-AKT
showed an increase in protein and/or mRNA expression levels upon
drug action, but the effects on the downstream proteins of the pathway
have been less studied, and need to be further explored in depth.

3) Alkaloids

It is noteworthy that probably the researchers took into account
that alkaloids often contain toxicity, so the number of alkaloid with
hypoglycemic properties in our collection was relatively small.
However, they showed different degrees of enhancement on the
PI3K/AKT signaling pathway and its downstream-mediated effector
proteins, and all of them demonstrated high improvement of insulin
resistance and hypoglycemic bioactivities in vivo and in vivo studies.
Therefore, alkaloids metabolites of TCM have great development
prospect in treatment of T2DM.

Furthermore, in preclinical studies, metabolites of TCM have
exhibited considerable potential activity. However, given the
complex structures of some metabolites, their corresponding
druglikeness, bioavailability and toxicity require further scrutiny,
as do their synthetic processes examples, including terpenoids,
quinones and saponins.

Relevant illustrations of the conversion of the potentially
metabolites of TCM from preclinical to clinical studies
demonstrate the hypoglycemic activity of stevioside and
rebaudioside A extracted from Stevia rebaudiana Bertoni in
human subjects (Mohammed et al., 2022). For instance, in an

FIGURE 6
The chemical structures of three quinones.
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acute, paired cross-over study, supplementation of the test meal with
1 g of stevioside resulted in a reduction in postprandial blood
glucose, with stevioside reducing the incremental area under the
glucose-response curve by 18% compared to the control group
(Gregersen et al., 2004; Barriocanal et al., 2008). Furthermore, the
chronic intake of 1,000 mg/d of rebaudioside A was well-tolerated
without hypoglycemia or alteration of blood pressure in patients
with type 2 diabetes mellitus (Maki et al., 2008). Additionally,
supplementation with the natural polyphenol resveratrol 150 mg/
day for 30 days inhibited postprandial glucagon responses in
patients with obesity and did not affect postprandial incretin
hormone responses (Knop et al., 2013). Despite the abundance of
metabolites of TCM that have demonstrated better activity in
preclinical studies, their corresponding clinical studies are
relatively scarce. Moreover, direct studies on the effects of

metabolites of TCM on the PI3K/AKT pathway in T2DM are
not available so far, but a large number of basic studies provide a
solid foundation for future clinical studies. Nonetheless, the clinical
application of TCM as modulators of the PI3K/AKT pathway in the
context of T2DM still needs to be further developed and explored.

6 Conclusion

In conclusion, the metabolites of TCM operates on both in vivo
and in vitro models, activating the PI3K/AKT signaling pathway,
enhancing glycogen synthesis and glucose uptake, and inhibiting
gluconeogenesis in insulin-targeted organs, thus ameliorating
insulin resistance and exerting hypoglycemic effects. Research on
metabolites of traditional Chinese medicine for treating T2DM

FIGURE 7
The chemical structures of three saponins.

FIGURE 8
The chemical structures of five others.
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predominantly remain at the primary stage, however, these studies
lay a robust foundation for future clinical investigations.
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