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Introduction: The objective of this study is to systematically evaluate the effect of
ligustrazine on animal models of ischemic stroke and investigate its mechanism
of action.

Materials and Methods: The intervention of ligustrazine in ischemic diseases
research on stroke model animals was searched in the Chinese National
Knowledge Infrastructure (CNKI), Wanfang Database (Wanfang), VIP Database
(VIP), Chinese Biomedical Literature Database (CBM), Cochrane Library, PubMed,
Web of Science, and Embase databases. The quality of the included literature was
evaluated using the Cochrane risk of bias tool. The evaluation included measures
such as neurological deficit score (NDS), percentage of cerebral infarction
volume, brain water content, inflammation-related factors, oxidative stress-
related indicators, apoptosis indicators (caspase-3), and blood-brain barrier
(BBB) permeability (Claudin-5).

Results: A total of 32 studies were included in the analysis. The results indicated
that ligustrazine significantly improved the neurological function scores of
ischemic stroke animals compared to the control group (SMD = −1.84, 95% CI
−2.14 to −1.55, P < 0.00001). It also reduced the percentage of cerebral infarction
(SMD = −2.97, 95% CI −3.58 to −2.36, P < 0.00001) and brain water content (SMD
= −2.37, 95% CI −3.63 to −1.12, P = 0.0002). In addition, ligustrazine can
significantly improve various inflammatory factors such as TNF-α (SMD =
−7.53, 95% CI −11.34 to −3.72, P = 0.0001), IL-1β (SMD = −2.65, 95% CI −3.87
to −1.44, P < 0.0001), and IL-6 (SMD = −5.55, 95% CI −9.32 to −1.78, P = 0.004).
It also positively affects oxidative stress-related indicators including SOD
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(SMD=4.60, 95%CI 2.10 to 7.10,P=0.0003),NOS (SMD=−1.52, 95%CI−2.98 to−0.06,
P = 0.04), MDA (SMD = −5.31, 95% CI −8.48 to −2.14, P = 0.001), and NO (SMD= −5.33,
95% CI −8.82 to −1.84, P = 0.003). Furthermore, it shows positive effects on the
apoptosis indicator caspase-3 (SMD=−5.21, 95%CI−7.47 to−2.94,P<0.00001) and the
expression level of the sex-related proteinClaudin-5, which influences BBBpermeability
(SMD = 7.38, 95% CI 3.95 to 10.82, P < 0.0001).

Conclusion: Ligustrazine has been shown to have a protective effect in animal
models of cerebral ischemic injury. Its mechanism of action is believed to be
associated with the reduction of inflammation and oxidative stress, the inhibition of
apoptosis, and the repair of BBB permeability. However, further high-quality animal
experiments are required to validate these findings.
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1 Background

Stroke is the second leading cause of death and the third leading
cause of disability in the world (Lozano et al., 2012; Murray et al., 2012).
In 2016, there were 13.7 million new stroke events worldwide, with 87%
of them being ischemic strokes. During the same year, 2.7 million
people died from stroke. Cerebral ischemic stroke (CIS) imposes a
significant health and economic burden on the world, particularly on
low- and middle-income countries (Collaborators, 2019; Saini et al.,
2021). CIS is typically caused by embolism or thrombotic artery
occlusion, resulting in reduced cerebral blood flow and various
forms of brain damage, including tissue and structural damage, as
well as neuronal death and defects (Xing and Bai, 2020; Zhao et al.,
2022). Recombinant tissue plasminogen activator (tPA) is currently the
only CIS therapy approved by the U.S. Food and Drug Administration.
However, this therapy has a limited timewindow of 4.5 h and carries the
potential risk of hemorrhagic transformation, resulting in only 10% of
stroke patients benefiting from it (Bansal et al., 2013; Tao et al., 2020).
Recent advancements in the research of stroke neuroprotective drugs
have identified promising candidates such as human urinary
kininogenase (HUK), statins, edaravone, 3K3A-activating protein C
(APC), and vinpocetine. These drugs target multiple pathophysiological
pathways involved in stroke-related brain injury, with a primary focus

on inflammation and oxidative stress. (Paul and Candelario-Jalil, 2021).
While these studies provide optimism for CIS treatment, further
research is needed to fully address the complexities of this
condition. Moreover, there is an urgent need to enhance the current
treatment’s effectiveness in addressing motor dysfunction and
neurological damage caused by CIS. Therefore, it is crucial to
explore new complementary and alternative therapies to overcome
the limitations of existing treatments in stroke management.

Ligustrazine, an alkaloidmonomer derived from the dried rhizome
of Ligusticum striatum DC [Apiaceae] (Figure 1). Ligusticum striatum
DCwas first documented in Shennong’s MateriaMedica, a compilation
of Chinese herbal medicine information dating back to 2800 BC (Li
et al., 2021). According to traditional Chinese medicine, CIS is
attributed to wind, fire, phlegm, blood stasis, and deficiency, with L.
striatum DC to improve clinical symptoms of CIS by enhancing qi and
blood circulation, activating blood flow, and resolving blood stasis.
Modern scientific studies have shown that L. striatum DC can be
effective in stroke treatment, with its mechanism of action linked to the
regulation of the TNF/IL-17 signaling pathway (Zhang et al., 2023).
Ligustrazine, an active compound in L. striatum DC, plays a key role in
these therapeutic effects. Preclinical studies have demonstrated that
ligustrazine has the potential to mitigate CIS injury through various
mechanisms, including alleviating inflammatory response, resisting

FIGURE 1
Vegetal products of Ligusticum striatum DC and chemical structure of Ligustrazine. (A) Vegetal products of Ligusticum striatum DC. (B) Chemical
structure of Ligustrazine.
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apoptosis, protecting the BBB, combating oxidative stress, inhibiting
calcium overload and glutamate excitotoxicity, and enhancing synaptic
plasticity (Figure 2). Specifically, ligustrazine has been shown to
regulate inflammation-related factors by inhibiting the
immunoreactivity of ED-1, DNA fragmentation, caspase-3
activation, and Cyt c release. Additionally, it inhibits the activation
of the JAK/STAT signaling pathway and matrix metalloproteinase-9
(MMP-9) expression to reduce BBB permeability. Ligustrazine also
reduces the concentration of ROS and malondialdehyde (MDA) while
upregulating the activity of superoxide to relieve oxidative stress.
Furthermore, it intervenes in the course of ischemia-reperfusion by
reducing Ca2+ overload and trough amino acid excitotoxicity, as well as
improving synaptic ultrastructure to enhance synaptic plasticity (Liu
et al., 2022).

While numerous studies have delved into the neuroprotective
effects and potential mechanisms of ligustrazine in CIS models,
most have primarily focused on specific pathways or a limited set
of efficacy indicators. A comprehensive and quantitative analysis
of the various mechanisms of action of ligustrazine in CIS has yet
to be reported. Although some studies have conducted systematic
reviews and meta-analyses of clinical trials on ligustrazine for
treating CIS (Shao et al., 2021), it remains essential to quantify
and evaluate its mechanism of action through preclinical meta-
analysis. This study aims to systematically evaluate and quantify
the intervention effect of ligustrazine on CIS across multiple
mechanisms and efficacy indicators. By synthesizing existing
data, the study seeks to uncover the therapeutic potential and
multifaceted action mechanism of ligustrazine in CIS, offering
insights for future clinical research.

2 Materials and methods

2.1 Search strategy

Two researchers conducted independent searches on several
databases including CNKI, Wanfang, VIP, CBM, Cochrane
Library, PubMed, Web of Science, and Embase. The studies
focused on the intervention of ligustrazine in animal models of
CIS. The search period ranged from the establishment of the
databases to January 2024. Additionally, the researchers traced
the references of included articles and visited the International
Clinical Trials Registry of the National Institutes of Health and the
Chinese Clinical Trials Registry to supplement the acquisition of
relevant literature. Any disagreements were resolved by involving a
third researcher. The search terms used were: “brain infarction” or
“brain ischemia” or “cerebral ischemia reperfusion injury” or
“cerebral thrombosis” or “cerebral embolism” or “ischemic
stroke” or “middle cerebral artery occlusion” or “MCAO” and
“tetramethylpyrazine” or “ligustrazine".

2.2 Inclusion criteria and outcome indicators

2.2.1 Outcome indicators
1) Primary outcome measures: Neurological deficit

score (NDS).
2) Secondary outcome measures:
a. Percentage of infarct volume
b. Brain water content

FIGURE 2
Mechanism diagram of ligustrazine intervention in CIS.
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c. Inflammation related factors, including tumor necrosis
factor-α (TNF-α), interleukin -1β (IL-1β) and
interleukin −6 (IL-6).

d. Oxidative stress-related indicators, including Superoxide
Dismutase (SOD), Nitric Oxide Synthase (NOS), MDA and
Nitric Oxide (NO).

e. Apoptosis marker caspase-3.
f. BBB -related protein Claudin-5.

2.2.2 Inclusion criteria
1)Study Type: This study focuses on animal experiments

conducted on rats or mice using permanent CIS or ischemic
stroke/reperfusion models. 2) Interventional measures:
experimental group was treated with ligustrazine without
restriction, control group was treated with placebo only,
placebo included saline, PBS, etc., 3) Language: There are no
language restrictions for this study.

2.2.3 Exclusion criteria
1) Animal experiments in permanent CIS or ischemic stroke/

reperfusion models other than rats or mice. 2) Drug
combination therapy. 3) Review, conference, case report,
dissertation, clinical trial research. 4) Duplicated studies are
excluded according to time. 5) Failure to reach the result index
or to extract effective indicators. 6) Clinical studies or in vitro
experiments.

2.3 Literature screening and data extraction

Two reviewers independently screened the literature, extracted
data, and cross-checked. In the event of disagreements, a third party
was consulted for assistance in making a judgment. If any data were
missing, the authors were contacted to provide additional
information. During the literature screening process, the title and
abstract were initially read, and after excluding obviously irrelevant
literature, the full text was further examined to determine its
inclusion. The data extraction process mainly involved capturing
the basic characteristics of the study, such as the study name,
publication date, animal species, animal weight, and animal
model. It also included specific details such as intervention
measures, control measures, intervention time, drug dosage, and
other relevant information used in the study. Key elements for
evaluating the risk of bias were also considered, along with the
outcome indicators involved in the study. For studies reporting data
only in the form of images, we used the GetData Graph Digitizer
software to extract the data from the images.

2.4 Quality evaluation of the
included studies

In this study, two researchers conducted a systematic review of the
included studies using the Cochrane risk of bias assessment tool

FIGURE 3
PRISMA flow chart for literature screening.
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(Cumpston et al., 2019). The evaluation focused on several key aspects,
including selection bias (whether the random sequence generation was
adequately described and whether allocation concealment was
implemented), implementation bias (whether the subjects and
experimenters were blinded), measurement bias (whether the outcome
assessors were blinded), follow-up bias (whether the outcome data was
complete), reporting bias, and other potential biases.

2.5 Statistical methods

Statistical analysis of the data was conducted using Review
Manager 5.4 software, and sensitivity analysis was performed
using Stata16. This study utilizes relative risk (RR) and 95%
confidence interval (CI) as indicators for dichotomous variables,
while Standardized mean difference (SMD) and 95% CI are used for
continuous variables. Heterogeneity between studies was analyzed
using the χ2 test. If I2 ≤ 50%, it indicates small heterogeneity between
studies, and the fixed effects model is applied. On the other hand, if
I2 ≥ 50%, it suggests large heterogeneity between studies, and a
random effects model is utilized. Subgroup analysis or sensitivity
analysis is employed when necessary. The presence of publication
bias was assessed by analyzing outcome indicators from studies with
a minimum of 10. A statistically significant difference is considered
when p < 0.05.

2.6 Publication bias

Publication bias was assessed using a funnel plot and calculated
with STATA 16 using Begg’s test.

3 Results

3.1 Literature screening process and results

A total of 3,398 relevant documents were retrieved. After
applying the inclusion and exclusion criteria, 32 studies (Liao
et al., 2004; Kao et al., 2006; Chang et al., 2007; Li et al., 2008;
Qi et al., 2008; Ren et al., 2008; Zhang et al., 2008; Jia et al., 2009; Zhu
et al., 2009; Hu et al., 2010a; Hu et al., 2010b; Chen et al., 2010; Fang
et al., 2010; Ma and Chen, 2010; Xiao et al., 2010; Yang and Ren,
2011; Zhang et al., 2011; Kao et al., 2013; Li et al., 2013; Han et al.,
2014; Tian et al., 2014; Tan et al., 2015; Liu, 2016; Li et al., 2017;
Gong et al., 2019; Zhu et al., 2020; Ge et al., 2021; Li et al., 2022; Liang
et al., 2022; Chang et al., 2023; Feng et al., 2023; Gao et al., 2023) were
included. The detailed literature search and screening process is
illustrated in Figure 3.

3.2 Basic characteristics of included
literature

A total of 32 studies were included in this study. Among these,
three studies used Wistar rats (Chang et al., 2007; Li et al., 2008;
Zhang et al., 2011) weighing 250–320 g, two studies used Kunming
mice (Hu et al., 2010a; Hu et al., 2010b) weighing 30–40 g, and one

study used C57BL/6 mice (Li et al., 2022), but the weight of the mice
was not reported. The remaining 26 studies utilized SD rats weighing
220–350 g. Five studies employed the MCAO model, while
27 studies used the MCAO/reperfusion model. Intraperitoneal
injection was used in 29 studies, tail vein injection in two studies
(Ma and Chen, 2010; Zhu et al., 2020), and oral gavage in one study
(Qi et al., 2008). The basic characteristics of the 32 included
documents are presented in Table 1, and information on the
preparations used in the study can be found in
supplementary documents.

3.3 Risk of bias

A total of 12 studies did not provide a description of random
random-sequence generation, indicating a high risk of selection
bias. None of the studies mentioned allocation concealment,
resulting in unclear judgments for both performance bias and
detection bias. Since the animal’s baseline characteristics and
data have been fully reported, both attrition bias and reporting
bias are considered to have low risks. The authors of four studies
(Hu et al., 2010a; Hu et al., 2010b; Ma and Chen, 2010; Li et al.,
2013) had published similar papers during the same period,
indicating a high risk. However, due to multiple factors
influencing the risk of bias, the remaining 28 studies were
judged to have an unclear risk. The specific bias situation is
illustrated in Figure 4.

3.4 Analysis results

3.4.1 NDS
A total of 18 studies (Li et al., 2008; Qi et al., 2008; Ren et al.,

2008; Jia et al., 2009; Zhu et al., 2009; Fang et al., 2010; Yang and
Ren, 2011; Zhang et al., 2011; Kao et al., 2013; Han et al., 2014;
Tian et al., 2014; Tan et al., 2015; Liu, 2016; Li et al., 2017; Gong
et al., 2019; Li et al., 2022; Liang et al., 2022; Gao et al., 2023)
reported NDS. The heterogeneity test showed a significance of p =
0.02, with an I2 value of 44%. Therefore, a fixed effects model was
adopted. The results indicated that ligustrazine could reduce the
NDS after CIS (SMD = −1.84, 95% CI -2.14 to −1.55, p < 0.00001,
Figure 5A). To enhance the reliability of the results, a subgroup
analysis was conducted based on the animal modeling method
and animal species, which demonstrated the robustness of the
findings (Figures 5B, C).

3.4.2 Percentage of infarct volume
A total of nine studies (Kao et al., 2006; Fang et al., 2010; Kao

et al., 2013; Tan et al., 2015; Liu, 2016; Li et al., 2017; Gong et al.,
2019; Li et al., 2022; Chang et al., 2023) reported the percentage of
infarct volume. The heterogeneity test showed p = 0.09 and I2 =
41%. Therefore, a fixed effects model was adopted. The results
demonstrated that ligustrazine significantly reduced the
percentage of cerebral infarct volume in CIS (SMD = −2.97,
95% CI -3.58 to −2.36, p < 0.00001, Figure 6A). To enhance the
reliability of the findings, subgroup analysis was conducted based
on the animal modeling method and animal species, which
confirmed the robustness of the results (Figures 6B, C).
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TABLE 1 Basic characteristics of included studies.

Characteristics of studies included in the meta-analysis

Study
ID

Animal
characteristics

Animal
model

Ligustrazine
dosage
(mg/kg)

Method of
administration

Interventions Course Outcome

T S

Chang
(2007)

Male Wistar rats
(250–300 g)

MCAO/
reperfusion
model

20 Intraperitoneal
injection

Ligustrazine Vehicle 20 min before animal
modeling

d, k

Chang
(2023)

Male SD rats MCAO
model

20 Intraperitoneal
injection

Ligustrazine Vehicle Administration
30 min before and
60 min after animal
modeling

b, e

Chen
(2010)

Male SD rats
(280–320 g)

MCAO/
reperfusion
model

NA Intraperitoneal
injection

Ligustrazine Vehicle NA g, i

Fang
(2010)

Male SD rats
(280–320 g)

MCAO/
reperfusion
model

80 Intraperitoneal
injection

Ligustrazine Vehicle After animal
modeling

b

Feng
(2023)

Male SD rats
(300 ± 20 g)

MCAO
model

20 Intraperitoneal
injection

Ligustrazine Vehicle 4 h after MCAO f

Gao (2023) Male SD rats
(220–280 g)

MCAO/
reperfusion
model

50 Intraperitoneal
injection

Ligustrazine Vehicle Injection immediately
after ischemia
reperfusion

a

Ge (2021) Male SD rats
(250–300 g)

MCAO/
reperfusion
model

50 Intraperitoneal
injection

Ligustrazine Vehicle Injection 24 h after
molding

d, f, g, i, j

Gong
(2019)

SD rats (240–280 g) MCAO/
reperfusion
model

40 Intraperitoneal
injection

Ligustrazine Vehicle 12 h after animal
modeling

a, b, c

Han (2014) Male SD rats
(290 ± 10 g)

MCAO/
reperfusion
model

50 Intraperitoneal
injection

Ligustrazine Vehicle Injection immediately
after reperfusion

b

Hu (2010a) Kunming mice
(30–40 g)

MCAO/
reperfusion
model

40 Intraperitoneal
injection

Ligustrazine Vehicle After 3 days of
continuous injections

h, j

Hu (2010b) Kunming mice
(30–40 g)

MCAO/
reperfusion
model

40 Intraperitoneal
injection

Ligustrazine Vehicle After 3 days of
continuous injections

h, j

Jia (2009) Male SD rats
(300–350 g)

MCAO/
reperfusion
model

20 Intraperitoneal
injection

Ligustrazine Vehicle Intervention
administered 1, 2,
4 and 6 h after
reperfusion

a

Kao (2013) Male SD rats
(300–350 g)

MCAO
model

20 Intraperitoneal
injection

Ligustrazine Vehicle Intervention 30 min
before and 60 min
after MCAO

a, b

Kao (2006) Male SD rats
(300–350 g)

MCAO
model

40 Intraperitoneal
injection

Ligustrazine Vehicle Intervention 30 min
before and 60 min
after MCAO

b

Li (2008) Wistar rats
(250–320 g)

MCAO/
reperfusion
model

50 Intraperitoneal
injection

Ligustrazine Vehicle 30 min after
reperfusion

a

Li (2013) Male SD rats
(250–300 g)

MCAO/
reperfusion
model

40 Intraperitoneal
injection

Ligustrazine Vehicle 2 h after surgery
administration
intervention

l

Li (2017) Male SD rats
(280 ± 20 g)

MCAO/
reperfusion
model

20 Intraperitoneal
injection

Ligustrazine Vehicle Post-reperfusion drug
administration
intervention

a, b, c, d, e, f

(Continued on following page)
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3.4.3 Brain water content
A total of six studies (Liao et al., 2004; Xiao et al., 2010; Tan et al.,

2015; Li et al., 2017; Gong et al., 2019; Zhu et al., 2020) examined
brain water content. To account for high heterogeneity (p = 0.003,

I2 = 73%), a random effects model was applied. The findings indicate
that ligustrazine can reduce brain water content in patients with CIS
(SMD = −2.37, 95% CI -3.63 to −1.12, p = 0.0002, Figure 7A). To
enhance the reliability of the results and identify the source of

TABLE 1 (Continued) Basic characteristics of included studies.

Characteristics of studies included in the meta-analysis

Study
ID

Animal
characteristics

Animal
model

Ligustrazine
dosage
(mg/kg)

Method of
administration

Interventions Course Outcome

T S

Li (2022) Male C57BL/6 MCAO/
reperfusion
model

20 Intraperitoneal
injection

Ligustrazine Vehicle 15 min
administration
intervention

a, b, e

Liang
(2022)

Male SD rats
(200–250 g)

MCAO/
reperfusion
model

72 Intraperitoneal
injection

Ligustrazine Vehicle 7 days continuous
administration
intervention

a, k

Liao (2004) Male SD rats
(300–350 g)

MCAO/
reperfusion
model

40 Intraperitoneal
injection

Ligustrazine Vehicle 60 min before MCAO
administration
intervention

c

Liu (2016) Male SD rats
(240–270 g)

MCAO/
reperfusion
model

30 Intraperitoneal
injection

Ligustrazine Vehicle Two days before
molding, once a day.
0.5 h before molding,
4h and 8 h after
molding

a, b, g, i

Ma (2010) Male SD rats
(325 ± 25 g)

MCAO/
reperfusion
model

120 Tail vein injection Ligustrazine Vehicle 10 min before
modeling intervention

e

Qi (2008) Male SD rats
(250–300 g)

MCAO/
reperfusion
model

40 Oral gavage Ligustrazine Vehicle After successful
animal modeling

a

Ren (2008) Male SD rats
(280 ± 20 g)

MCAO/
reperfusion
model

40 Intraperitoneal
injection

Ligustrazine Vehicle 12 h before and 12 h
after animal modeling

a

Tan (2015) Male SD rats
(250–270 g)

MCAO/
reperfusion
model

20 Intraperitoneal
injection

Ligustrazine Vehicle 15 min before animal
modeling

a, b, c

Tian
(2014)

Male SD rats
(220–250 g)

MCAO/
reperfusion
model

30 Intraperitoneal
injection

Ligustrazine Vehicle Once a day for 7 days a

Xiao (2010) Male SD rats
(180–200 g)

MCAO
model

40 Intraperitoneal
injection

Ligustrazine Vehicle MCAO 2 h later c

Yang
(2011)

Male SD rats
(280 ± 20 g)

MCAO/
reperfusion
model

35 Intraperitoneal
injection

Ligustrazine Vehicle Before and 12 h after
surgery

a

Zhang
(2008)

Male SD rats
(280 ± 20 g)

MCAO/
reperfusion
model

80 Intraperitoneal
injection

Ligustrazine Vehicle Once daily for 3 days
before surgery and
daily after surgery

g, h

Zhang
(2011)

Wistar (280–320 g) MCAO/
reperfusion
model

10 Intraperitoneal
injection

Ligustrazine Vehicle After successful
animal modeling

a, g

Zhu (2009) Male SD rats
(300–350 g)

MCAO/
reperfusion
model

20 Intraperitoneal
injection

Ligustrazine Vehicle 1, 2, 4, 6 h after
reperfusion

a

Zhu (2020) Male SD rats
(220–250 g)

MCAO/
reperfusion
model

10 Tail vein injection Ligustrazine Vehicle 30 min before animal
modeling

c, d

T, treatment group; C, control group; NA, not available; a: NDS; b: percentage of infarct volume; c: brain water content; d: TNF - α; e: IL-1β: f: IL-6; g: SOD; h: NOS; i: MDA; j: NO; k: caspase-3; l:

Claudin-5.
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heterogeneity, we performed a subgroup analysis based on the
animal modeling method. The results demonstrated the
robustness of the findings (Figure 7B). However, the animal
modeling method did not contribute to the observed
heterogeneity according to the subgroup analysis (Figure 7B).

3.4.4 Inflammation related factors
A total of four studies (Chang et al., 2007; Li et al., 2017; Zhu

et al., 2020; Ge et al., 2021) reported TNF-α levels. Due to high
heterogeneity (p = 0.002, I2 = 79%), a random effects model was
used. The findings indicated that ligustrazine was effective in
reducing TNF-α indicators in animals with CIS (SMD = −7.53,
95% CI -11.34 to −3.72, p = 0.0001, Figure 8A).

A total of four studies (Ma and Chen, 2010; Li et al., 2017; Liang
et al., 2022; Chang et al., 2023) reported IL-1β levels. The
heterogeneity test indicated a p-value of 0.07 and an I2 value of
58%. Therefore, a random effects model was employed. The findings
demonstrated that ligustrazine had a significant impact in reducing
IL-1β indicators in animals with CIS (SMD = −2.65, 95% CI
-3.87 to −1.44, p < 0.0001, Figure 8B).

A total of three studies (Li et al., 2017; Ge et al., 2021; Feng
et al., 2023) reported IL-6 levels. Due to high heterogeneity (p =
0.01, I2 = 78%), a random effects model was used. The findings
indicated that ligustrazine could effectively reduce IL-6
indicators in animals with CIS (SMD = −5.55, 95% CI
-9.32 to −1.78, p = 0.004, Figure 8C).

3.4.5 Oxidative stress-related indicators
Five studies (Zhang et al., 2008; Chen et al., 2010; Zhang et al.,

2011; Liu, 2016; Ge et al., 2021) reported the measurement of
SOD, and due to significant heterogeneity (p < 0.00001, I2 = 87%),
a random effects model was employed. The findings
demonstrated that ligustrazine had the ability to decrease SOD
levels in animals with CIS (SMD = 4.60, 95% CI 2.10 to 7.10, p =
0.0003, Figure 9A).

Three studies (Zhang et al., 2008; Hu et al., 2010a; Hu et al.,
2010b) reported NOS. Due to high heterogeneity (p = 0.0002,
I2 = 88%), a random effects model was used. The results
indicated that ligustrazine could reduce NOS indicators in
animals with CIS (SMD = −1.52, 95% CI -2.98 to −0.06, p =
0.04, Figure 9B).

Three studies (Chen et al., 2010; Liu, 2016; Ge et al., 2021) reported
MDA levels, and due to significant heterogeneity (p = 0.002, I2 = 84%), a
random effects model was employed. The findings indicated that
ligustrazine demonstrated a reduction in MDA indicators among
animals with CIS (SMD = −5.31, 95% CI -8.48 to −2.14, p =
0.001, Figure 9C).

Three studies (Hu et al., 2010a; Hu et al., 2010b; Ge et al., 2021)
reported NO, and due to high heterogeneity (p < 0.00001, I2 = 94%),
a random effects model was employed. The findings indicated that
ligustrazine had the potential to decrease NO indicators in animals
with CIS (SMD = −5.33, 95% CI -8.82 to −1.84, p =
0.003, Figure 9D).

FIGURE 4
Risk of bias summary and Risk of bias graph (A) Risk of bias graph (B) Risk of bias summary.

Frontiers in Pharmacology frontiersin.org08

Wang et al. 10.3389/fphar.2024.1373663

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1373663


FIGURE 5
The forest plot of NDS. (A) The forest plot of NDS. (B) The forest plot of subgroup analysis based on the animal modeling method. (C) The forest plot
of subgroup analysis based on the animal species.
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3.4.6 Caspase-3
Two studies (Chang et al., 2007; Li et al., 2022) reported caspase-

3 levels, and the heterogeneity test showed no significant variation
(p = 0.67, I2 = 0%). Therefore, a fixed effects model was used. The
results indicated that ligustrazine had a significant effect in reducing
caspase-3 levels in animals with CIS (SMD = −5.21, 95% CI
-7.47 to −2.94, p < 0.00001, Figure 10).

3.4.7 Claudin-5
Three studies (Li et al., 2013; Tan et al., 2015; Gong et al., 2019)

examined Claudin-5, and after conducting a heterogeneity test (p =
0.007, I2 = 80%), a random effects model was applied. The findings
revealed that ligustrazine had the potential to decrease the Claudin-5

index in animals with CIS (SMD = 7.38, 95% CI 3.95 to 10.82, p <
0.0001, Figure 11).

3.5 Sensitivity analysis

3.5.1 Brain water content
Due to the significant heterogeneity observed in this study, a

sensitivity analysis was conducted. After excluding the study
conducted by Zhu 2020 (Zhu et al., 2020), the heterogeneity
decreased to 61%. These findings continue to support the notion
that ligustrazine can effectively reduce the water content of brain
tissue in animals with CIS. Further literature analysis revealed that

FIGURE 6
The forest plot of percentage of infarct volume. (A) The forest plot of percentage of infarct volume. (B) The forest plot of subgroup analysis based on
the animal modeling method. (C) The forest plot of subgroup analysis based on the animal species.
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only Zhu 2020 administered the treatment via tail vein injection,
whereas the remaining studies utilized intraperitoneal injection.
This observed heterogeneity is likely attributed to the differences
in the method of administration.

3.5.2 Inflammation related factors
TNF-α exhibits significant heterogeneity, prompting a sensitive

analysis. Upon excluding Ge 2021 (Ge et al., 2021), the heterogeneity
decreased to 50%. A comprehensive literature analysis identified a
total of four studies contributing to this indicator. Notably, Ge 2021
utilized a dosage of 50 mg/kg, while the remaining three studies
employed dosages of 20, 20, and 10 mg/kg respectively. Hence, it is
speculated that the heterogeneity is attributable to the varying
dosages of Ge 2021, resulting in divergent medication effects. As
for IL-6, which also displays substantial heterogeneity, a
heterogeneity analysis was conducted. After excluding Li 2017 (Li
et al., 2017), the heterogeneity decreased to 0%. Literature analysis
suggests that this heterogeneity may arise from differences in
administration time and two other studies.

3.5.3 Oxidative stress-related indicators
SOD exhibited high heterogeneity, thus a sensitivity analysis was

conducted. After excluding Zhang 2011 (Zhang et al., 2011), the

heterogeneity decreased to 0%. Literature analysis revealed that this
study employed Wistar rats, while the other four studies utilized SD
rats. Hence, the heterogeneity of SOD indicators may be attributed
to the different rat species.

NOS also demonstrated high heterogeneity, thus a sensitivity
analysis was conducted. After excluding Hu 2020a (Hu et al., 2010a),
the heterogeneity decreased to 55%. Since only three studies were
included, it is speculated that the heterogeneity is linked to the
limited number of experimental animals. However, the research
results still support the notion that ligustrazine can regulate
oxidative stress through NOS indicators, thereby protecting
animals with CIS.

MDA displayed high heterogeneity, prompting a sensitivity
analysis, which resulted in a heterogeneity decrease to 0% after
excluding Ge 2021 (Ge et al., 2021). Literature analysis suggested
that the heterogeneity may be due to varying dosages.

The heterogeneity of NO is also high, thus a sensitivity analysis
was performed. Despite excluding studies one by one, the
heterogeneity remained high. It is speculated that this is due to
the small number of experimental animals. Nevertheless, the
research results still support the idea that ligustrazine can
regulate oxidative stress through NO indicators, effectively
protecting animals with CIS.

FIGURE 7
The forest plot of percentage of brain water content. (A) The forest plot of percentage of brain water content. (B) The forest plot of subgroup analysis
based on the animal modeling method.
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3.5.4 Claudin-5
Claudin-5 exhibits high heterogeneity, thus necessitating a

sensitivity analysis. Upon excluding the study conducted by Li
2013 (Li et al., 2013), the heterogeneity decreased to 0%. Further
examination of the literature revealed that this reduction could be
attributed to the limited sample size of experimental animals.
Nevertheless, the research findings continue to support the
notion that Ligustrazine can safeguard animals with CIS by
modulating oxidative stress through Claudin-5 indicators.

3.6 Publication bias

Given that the NDS had more than 10 articles among the
outcome indicators, publication bias was evaluated. The findings
indicated that there was no significant publication bias in the NDS
(z = −1.63, p = 0.103, Figure 12); however, it is important to exercise
caution when interpreting these results.

4 Discussion

CIS is a clinical syndrome caused by cerebral vascular disease,
resulting in a disruption of cerebral blood supply, tissue necrosis due

to brain tissue hypoxia and glucose deficiency, and neurological
impairment (Chen et al., 2021). Current guidelines recommend
thrombolysis and endovascular therapy (Kapil et al., 2017).
However, thrombolytic treatment can result in rapid
reoxygenation during reperfusion, leading to the generation of
reactive oxygen species and subsequent oxidative stress reaction
and inflammatory storm, which can be detrimental to the brain.
Moreover, due to strict time constraints and various
contraindications, many patients are unable to benefit from this
treatment. As a result, complementary and alternative therapies are
gaining increasing attention from clinical practitioners.
Ligustrazine, a new calcium channel antagonist, has shown
promise in the treatment of ischemic cerebrovascular disease and
coronary atherosclerotic disease (Zhao et al., 2016).

Over the past 2 decades, there has been a growing body of
evidence demonstrating the positive effects of ligustrazine on CIS in
both in vivo and in vitro studies (Zhu et al., 2021). The mechanism of
action of ligustrazine involves several beneficial processes, such as
activating free radical scavenging (Yang et al., 2017; Zhang et al.,
2018a), reducing BBB destruction (Tan et al., 2015; Gong et al.,
2019), inhibiting inflammation (Zhou et al., 2019; Chang et al.,
2023), maintaining mitochondrial function (Zhang et al., 2018b),
preventing apoptosis (Chang et al., 2007), and promoting
oligodendrogenesis and gliogenesis (Zhang et al., 2018a). To date,

FIGURE 8
The forest plot of percentage of Inflammation related factors. (A) The forest plot of percentage of TNF-α. (B) The forest plot of percentage of IL-1β.
(C) The forest plot of percentage of IL-6.
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no studies have conducted a systematic review and meta-analysis on
the mechanism of action of ligustrazine. In this study, we aimed to
provide a comprehensive evaluation of various studies on the
treatment of CIS using ligustrazine. Ultimately, we included
32 studies to elucidate the effectiveness and mechanism of action

of this treatment. Studies have demonstrated that following an
ischemic stroke, there is a likelihood of significant brain edema
and the occurrence of large-area infarcts. Additionally, neurons may
undergo extensive necrosis and apoptosis, leading to severe damage
to the cell structure (Jurcau and Simion, 2021; Fu et al., 2023). This

FIGURE 9
The forest plot of percentage of Oxidative stress-related indicators. (A) The forest plot of percentage of SOD. (B) The forest plot of percentage of
NOS. (C) The forest plot of percentage of MDA. (D) The forest plot of percentage of NO.

FIGURE 10
The forest plot of percentage of caspase-3.
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study conducted a statistical analysis of the included studies and
found that ligustrazine exhibits a significant improvement in
cerebral edema, reduction in cerebral infarction area, and
amelioration of neurological damage. Furthermore, the statistical
analysis of outcome indicators in the included studies revealed that
ligustrazine can effectively enhance inflammatory factor-related
indicators (TNF-α, IL-1β, and IL-6), oxidative stress-related
indicators (SOD, NOS, MDA, and NO), apoptosis indicator
caspase-3, and BBB permeability-related protein Claudin-5.

Inflammation plays a crucial role in the pathophysiology of ischemic
stroke. Specifically, inflammatory cytokines IL -1, IL -6, and TNF have
been identified as key regulators of the immune response following
ischemic stroke (Lambertsen et al., 2019; Clausen et al., 2020). In the
hyperacute window after ischemia, resident microglia are recruited from
the site of cellular injury due to the action of various cytokines such as
TNF-α, IL-6, and IL-1β. This localized inflammation then triggers
systemic inflammation, resulting in the breakdown of the BBB, brain
edema, and neuronal death (Jin et al., 2010; Naik et al., 2023). The
findings of this study demonstrate that ligustrazine can effectively
modulate TNF - α, IL-6, and IL-1β levels in animals with ischemic
stroke, thereby improving the damage caused by the stroke.

During ischemia reperfusion, the level of NO initially increased,
then decreased, and then increased again. In pathological
conditions, there was a significant increase in inducible NOS

(INOS), which led to excessive production of NO. This excessive
NO production caused damage to nerve tissue, resulting in a
neurotoxic effect (Fan et al., 2022) Cerebral ischemia reperfusion
injury leads to the production of a large amount of oxygen free
radicals, which in turn cause peroxidation reactions and changes in
the basic characteristics of cell membranes. This process results in
the production of MDA in large quantities. SOD, as a main enzyme
responsible for scavenging oxygen free radicals, plays a crucial role
in protecting cells against oxidative damage (Korenić et al., 2014;
Deng et al., 2022). In this study, mice in the ligustrazine intervention
group showed a significant decrease in oxidative stress index levels of
NO, NOS, and MDA, as well as a significant increase in the
antioxidant index SOD level. These findings suggest that
ligustrazine effectively regulates the oxidative balance in brain
tissue injury, thereby reducing damage caused by oxygen free
radicals and protecting nerve cells.

Apoptosis, a process of programmed cell death, is activated
during cerebral ischemia (Love, 2003). Caspase-3, a member of the
cysteine protease family, plays a crucial role in mediating apoptosis
(Uzdensky, 2019). The destruction of the BBB is a significant
pathophysiological process in acute ischemic stroke, which can result
in destructive malignant brain edema and hemorrhagic transformation
(Qiu et al., 2021). Previous research has demonstrated that ligustrazine
has the ability to penetrate the BBB and distribute across various brain

FIGURE 11
The forest plot of percentage of Claudin-5.

FIGURE 12
Publication bias plots. (A) Funnel plot of the NDS. (B) Begg’s plot of the NDS.
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regions (Tsai and Liang, 2001). However, its biological half-life when
taken orally is limited to 0.5–2 h. Utilizing ligustrazine - loaded
liposomes (Xia et al., 2016), transdermal administration drugs (Qi
et al., 2002), intranasal administration (Feng et al., 2009), and
intraocular administration (Mao et al., 2019) can enhance the
efficiency of ligustrazine in crossing the BBB and reaching the brain.
Moreover, ligustrazine exhibits protective effects against CIS damage by
reducing BBB permeability (Tan et al., 2015; Jin et al., 2021), possibly
through the inhibition of the JAK/STAT signaling pathway (Gong et al.,
2019) and the reduction of MMP-9 levels (Jin et al., 2021). Claudin-5, a
specific protein found in the tight junctions of brain microvascular
endothelial cells, has been identified as an inducer of BBB formation
(Ueno, 2007). The analysis conducted in this study reveals that
ligustrazine can reduce the expression of Caspase-3 and increase
Claudin-5 levels. These findings suggest that ligustrazine may protect
against cerebral ischemic injury by reducing apoptosis and
repairing the BBB.

We conducted a meta-analysis of animal studies investigating the
effects of ligustrazine intervention in CIS for the first time. We
summarized and classified the indicators included in the study,
finding that the mechanism of ligustrazine is closely related to
inflammatory response, oxidative stress, apoptosis, and BBB
permeability. This provides valuable insights for future studies in
this area. However, there are several limitations in our study that
should be acknowledged. Firstly, most of the included articles did not
mention blinding of participants and results, which increases the risk of
bias. Secondly, the secondary outcome indicators in our study showed
heterogeneity. Although we identified the source of heterogeneity
through sensitivity analysis, the limited data available may have led
to inaccurate results. Thirdly, some indicators had small sample sizes,
which increases the risk of bias. Fourthly, the safety of ligustrazine could
not be evaluated in our study as most included studies did not record
adverse reactions in animal models. Lastly, the extraction of outcome
measures from images using GetData Graph Digitizer software may
introduce inaccuracies. These limitations should be considered when
interpreting the findings of our study.

A meta-analysis of clinical trials examining the combination of
ligustrazine injection with western medicine for acute cerebral
infarction showed better efficacy when compared to using
western medicine alone (Shao et al., 2021). These findings align
with the results of our study. While ligustrazine may cause damage
to the gastrointestinal, peripheral nervous, or central nervous
systems, most adverse effects are self-limiting and the compound
is generally considered safe (Lin et al., 2022). However, due to the
limited depth of research on the toxicology and side effects of
ligustrazine, it is crucial to strictly adhere to the recommended
indications and consider the patient’s drug allergy history.
Researchers should prioritize investigating the toxicology and
side effects of ligustrazine in patients with CIS to enhance its
therapeutic potential for human use.

5 Conclusion

Our study suggests that ligustrazine has a protective effect on animal
models of CIS. The mechanism behind this effect may be attributed to
the reduction of inflammation and oxidative stress, inhibition of
apoptosis, and repair of BBB permeability. However, discrepancies

between animal models of CIS and the physiological and pathological
processes in humans pose challenges in translating preclinical findings to
clinical applications. Future preclinical investigations on ligustrazine for
CIS treatment should adhere rigorously to predefined protocols to
mitigate bias in subsequent studies.
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