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Introduction: Gastric cancer is one of the most prevalent types of cancer
worldwide. The World Health Organization (WHO), the International Agency
for Research on Cancer (IARC), and the Global Cancer Statistics (GLOBOCAN)
reported an age standardized global incidence rate of 9.2 per 100,000 individuals
for gastric cancer in 2022, with a mortality rate of 6.1. Despite considerable
progress in precision oncology through the efforts of international consortia,
understanding the genomic features and their influence on the effectiveness of
anti-cancer treatments across diverse ethnic groups remains essential.

Methods: Our study aimed to address this need by conducting integrated in silico
analyses to identify actionable genomic alterations in gastric cancer driver genes,
assess their impact using deleteriousness scores, and determine allele frequencies
across nine global populations: European Finnish, European non-Finnish, Latino, East
Asian, South Asian, African, Middle Eastern, Ashkenazi Jewish, and Amish.
Furthermore, our goal was to prioritize targeted therapeutic strategies based on
pharmacogenomics clinical guidelines, in silico drug prescriptions, and clinical
trial data.

Results:Our comprehensive analysis examined 275,634 variants within 60 gastric
cancer driver genes from 730,947 exome sequences and 76,215 whole-genome
sequences fromunrelated individuals, identifying 13,542 annotated and predicted
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oncogenic variants. We prioritized the most prevalent and deleterious oncogenic
variants for subsequent pharmacogenomics testing. Additionally, we discovered
actionable genomic alterations in the ARID1A, ATM, BCOR, ERBB2, ERBB3,
CDKN2A, KIT, PIK3CA, PTEN, NTRK3, TP53, and CDKN2A genes that could
enhance the efficacy of anti-cancer therapies, as suggested by in silico drug
prescription analyses, reviews of current pharmacogenomics clinical guidelines,
and evaluations of phase III and IV clinical trials targeting gastric cancer
driver proteins.

Discussion: These findings underline the urgency of consolidating efforts to devise
effective prevention measures, invest in genomic profiling for underrepresented
populations, and ensure the inclusion of ethnicminorities in future clinical trials and
cancer research in developed countries.

KEYWORDS

gastric cancer, precision oncology, ethnic groups, genomic alterations, therapeutic
strategies

Introduction

Gastric cancer is a heterogeneous disease originating in the
mucus-producing cells lining the stomach interior (Ajani et al.,
2017). It involves a wide range of biological components, including
hormonal imbalances, ethnic backgrounds, environmental factors,
epigenetics, genetic mutations, alterations in protein expression, and
modifications in signaling pathways (Hanahan, 2022). According to
the World Health Organization (WHO), the International Agency
for Research on Cancer (IARC), and the Global Cancer Statistics
(GLOBOCAN), the global age-standardized incidence rate for
gastric cancer in 2022 was 9.2 per 100,000 individuals, with a
mortality rate of 6.1 (Sung et al., 2021).

Since the Human Genome Project began in 1990 until the
completion of the human genome sequence in 2022, genomics has
played a crucial role in both foundational and translational research
(Green et al., 2020; Nurk et al., 2022). Advances in high-throughput
technologies, particularly in large-scale DNA sequencing, have
improved our understanding of the molecular mechanisms
underlying gastric cancer. This progress has been instrumental in
identifying cancer driver genes (Kandoth et al., 2013; Lawrence
et al., 2014), germline mutations (Lu et al., 2015), cancer driver
variants in both coding and non-coding regions (Sjöblom et al.,
2006; Tamborero et al., 2013; Porta-Pardo et al., 2017; Rheinbay
et al., 2020), druggable proteins (Rubio-Perez et al., 2015), drug
resistance mechanisms (Vasan et al., 2019), pharmacogenomics
(PGx) clinical guidelines (Quinones et al., 2014; López-Cortés et al.,
2020c; 2017; Varela et al., 2021), and the development of artificial
intelligence algorithms (López-Cortés et al., 2020a; Jumper et al., 2021).

Genetic variants are critical in driving oncogenesis in gastric cancer,
leading to the activation of oncogenes or the inactivation of tumor
suppressor genes through mechanisms such as gene regulation
disruption, creation of fusion genes with oncogenic properties, and
alterations in the genomic architecture that globally affect gene
expression (Tan and Yeoh, 2015; Yao et al., 2015).

In recent years, it has become evident that patients with the
same cancer type do not uniformly respond to standard
treatments (Raguz and Yagüe, 2008; Mansoori et al., 2017).
Precision oncology addresses this variability by providing
personalized treatment options, including appropriate

medications and dosages, considering individual patient needs,
their ethnicity, and treatment timing (Garraway et al., 2013;
Quinones et al., 2014; Pérez-Villa et al., 2023). Therefore,
identifying actionable genomic alterations is a primary goal of
cancer research, particularly in the driver gene landscape of
gastric cancer, to devise effective therapeutic strategies and
PGx clinical guidelines (ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium, 2020).

Tailoring drug development to individual multi-omics profiles
can enhance drug efficacy and reduce adverse reactions (López-
Cortés et al., 2020c; Pérez-Villa et al., 2023; Ramos-Medina et al.,
2024). Despite significant advances in precision oncology through
international consortium efforts like The Cancer Genome Atlas
(TCGA) and Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) (Spratt et al., 2016; Guerrero
et al., 2018), the underrepresentation of diverse ethnic
backgrounds in many cancer research studies has led to a
significant bias toward Caucasians in cancer genomic databases
(Guerrero et al., 2018). This bias poses a considerable obstacle to the
advancement of PGx and precision oncology, especially in
developing regions (Salas-Hernández et al., 2023). To bridge this
gap, the primary objective of our study was to conduct an integrated
in silico analysis to identify actionable genomic alterations in gastric
cancer, evaluate their impact through deleteriousness scores and
allele frequencies across nine global populations, and prioritize
targeted therapeutic strategies. By integrating these findings with
PGx clinical guidelines (Barbarino et al., 2018), in silico drug
prescriptions (Tamborero et al., 2018), and clinical trial data
(Ochoa et al., 2021), we aim to broaden the scope of precision
oncology, ensuring it benefits a more diverse population by
encouraging the development of effective and personalized
therapeutic interventions.

Materials and methods

Study type

We conducted an integrative in silico analysis to understand the
genomic landscape of gastric cancer across diverse ethnic
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populations, examine current pharmacogenomics guidelines in
clinical practice, analyze in silico drug prescriptions of
therapeutic actionable genomic alterations, and evaluate the
drugs involved in early-stage and late-stage clinical trials.

Incidence and mortality of gastric cancer

The Global Cancer Observatory (https://gco.iarc.fr/) provides a
complete assessment of the global burden of cancer. By using the
latest version of GLOBOCAN 2022, we identified and ranked the
countries worldwide with the highest estimated age-standardized
incidence and mortality rates for gastric cancer (Sung et al., 2021).

Gastric cancer driver genes

The intOGen framework (https://www.intogen.org) is a
bioinformatics resource that can identify cancer genes and
determine how they work in different types of tumors (Martínez-
Jiménez et al., 2020). This tool uses seven methods to identify cancer
driver genes based on point mutations, namely, dNdScv
(Martincorena et al., 2017), CBaSE (Weghorn and Sunyaev,
2017), MutPanning (Dietlein et al., 2020), OncodriveCLUSTL
(Arnedo-Pac et al., 2019), HotMAPS (Tokheim et al., 2016),
smRegions (Martínez-Jiménez et al., 2020), and OncodriveFML
(Mularoni et al., 2016). Therefore, we retrieved 60 gastric cancer
driver genes and identified their involvement as oncogenes (Sondka
et al., 2018), tumor suppressor genes (Sondka et al., 2018), kinase
genes (Manning et al., 2002; Eid et al., 2017), DNA-repair genes
(Wood et al., 2001; Lange et al., 2011), RNA-binding proteins
(Hentze et al., 2018), cell cycle genes (Bar-Joseph et al., 2008),
metastatic genes (Zheng et al., 2018), and cancer immunotherapy
genes (Patel et al., 2017).

Identification of the oncogenic variome

The process of identifying the oncogenic variome involved two
main steps. First, we extracted 275,634 single-nucleotide and insertion/
deletion variants from the Genome Aggregation Database (gnomAD
v4.0) (https://gnomad.broadinstitute.org/), which belonged to 60 gastric
cancer driver genes (Collins et al., 2020; Karczewski et al., 2020; Nurk
et al., 2022). We used the complete sequence of a human genome
(GRCh38/hg38) as the reference genome (Collins et al., 2020;
Karczewski et al., 2020; Nurk et al., 2022). In the second step, we
used two methods, OncodriveMUT and boostDM, integrated into the
Cancer Genome Interpreter (CGI) platform (https://www.
cancergenomeinterpreter.org) to evaluate the tumorigenic potential
of the 275,634 extracted genomic variants (Tamborero et al., 2018;
Muiños et al., 2021). OncodriveMUT is a rule-based approach that
considers various genomic features such as regions depleted by germline
variants, gene mechanism of action, gene signals of positive selection,
and clusters of somatic mutations, whereas boostDM is a machine
learning-based methodology that uses in silico saturation mutagenesis
of cancer genes to assess the oncogenic potential of mutations in human
tissues. Both methods allowed us to categorize driver variants into
annotated (known), predicted, and passenger mutations based on the

Catalog of Validated Oncogenic Mutations (Tamborero et al., 2018;
Muiños et al., 2021).

Deleteriousness score of the
oncogenic variome

Combined Annotation-Dependent Depletion (CADD) version
1.7 (https://cadd.gs.washington.edu/) serves as a machine learning-
based tool that scores and classifies genetic variants to support the
assessment of clinical observations. As one of the pioneering
methods for the genome-wide prioritization of variants across
various molecular functions, CADD was developed using more
than 60 genomic features. It is capable of assessing the impact of
both single-nucleotide variants and insertions/deletions (Kircher
et al., 2014; Schubach et al., 2024). This tool uses a method that
contrasts natural selection with simulated mutations, enabling the
integration of multiple annotations into a single metric. Designed
for compatibility with the GRCh38/hg38 human reference genome,
CADD facilitates comprehensive genetic analysis (Rentzsch et al.,
2019). In this context, we used CADD to assess the deleteriousness
of annotated and predicted cancer-causing gene mutations,
specifically in gastric cancer driver genes. The deleteriousness of
the oncogenic variome was categorized as very high (30–50), high
(25–30), medium (15–25), low (10–15), and very low (0–10).

Functional enrichment analysis

The process of enrichment analysis provides scientists with a
carefully selected explanation of sets of genes or proteins obtained
from large-scale experiments in omics (López-Cortés et al., 2020b;
2022; 2021). In this study, a functional enrichment analysis was
conducted on genes/proteins that drive gastric cancer and carry
annotated or predicted oncogenic variants. The analysis was
performed using g:Profiler version e101_eg48_p14_baf17f0
(https://biit.cs.ut.ee/gprofiler/gost) (Raudvere et al., 2019) to
identify significant annotations (Benjamini–Hochberg false
discovery rate (FDR) q < 0.001) related to biological processes in
Gene Ontology (GO) (The Gene Ontology Consortium, 2021),
signaling pathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa and Goto, 2000), signaling
pathways in Reactome (Fabregat et al., 2016), pathways in
WikiPathways (Slenter et al., 2018), and Human Phenotype
Ontology (HPO) (Köhler et al., 2021). Finally, signaling pathways
that were significant and relevant to gastric cancer were manually
curated and presented using a Manhattan plot.

Allele frequencies in human populations

gnomAD is a collection of genomic sequencing data from
various projects conducted globally (Karczewski et al., 2020). The
v4.0 dataset focuses on GRCh38/hg38 and includes 730,947 exome
sequences and 76,215 whole-genome sequences from unrelated
individuals with different ancestral backgrounds. This study
evaluated the allele frequencies of the annotated and predicted
gastric cancer oncogenic variome in 9 populations, namely,
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African (n = 37,545), Amish (n = 456), Latino (n = 30,019),
Ashkenazi Jewish (n = 14,804), East Asian (n = 22,448),
European Finnish (n = 32,026), European non-Finnish (n =
590,031), Middle Eastern (n = 3,031), and South Asian (n =
45,546) (Collins et al., 2020; Karczewski et al., 2020).

Current pharmacogenomics guidelines in
clinical practice

The Pharmacogenomics Knowledge Base (PharmGKB) (https://
www.pharmgkb.org/) is a database focused on pharmacogenomics. It
contains important information about the relationship between genes
and drugs, as well as specific guidelines for applying pharmacogenomics
in clinical practice (Whirl-Carrillo et al., 2012; Barbarino et al., 2018).
The database collects information from various sources, including the
National Comprehensive Cancer Network (NCCN), the European
Society for Medical Oncology (ESMO), the Clinical
Pharmacogenetics Implementation Consortium (CPIC) (Relling and
Klein, 2011; Relling et al., 2020), the Canadian Pharmacogenomics
Network for Drug Safety (Ross et al., 2010), and the Royal Dutch
Association for the Advancement of Pharmacy (Swen et al., 2011). In
this context, we retrieved clinical annotations, gene–drug pairs, and
genomic variants associated with gastric cancer pharmacogenomics
guidelines.

Therapeutic actionable genomic alterations
and in silico drug prescription

Another CGI approach is in silico drug prescription. This
involves identifying therapeutic actionable genomic alterations for
drug response in tumors and organizing them based on their clinical
importance level (Muiños et al., 2021). The method relies on two
databases, the Cancer Biomarker database and the Cancer
Bioactivities database, to explore the connection between the
oncogenic variome and drug response (Dienstmann et al., 2015;
Tamborero et al., 2018). Our study aimed to analyze the druggability
of gastric cancer driver proteins carrying annotated and predicted
oncogenic variants. This in silico analysis helped us identify the most
appropriate treatment strategies based on precision oncology.

Drugs involved in early-stage and late-stage
clinical trials

TheOpen Targets Platform, last updated inMarch 2024 (https://
www.targetvalidation.org), provides access to and visualization of
potential therapeutic targets and drugs involved in gastric cancer
clinical trials (Carvalho-Silva et al., 2019; Ochoa et al., 2021).
Additionally, the Drug Repurposing Hub (https://www.
broadinstitute.org/drug-repurposing-hub) serves as a
bioinformatics resource to identify the mechanisms of action of
drugs approved by the US Food and Drug Administration (FDA)
(Corsello et al., 2017). To further elucidate the involvement of drugs
in clinical trials, we used a Sankey plot, enabling a clearer distinction
between drugs associated with early-stage (phases I and II) and late-
stage (phases III and IV) clinical trials.

Results

Incidence and mortality of gastric cancer

According to the WHO, IARC, and GLOBOCAN 2022, the top
10 countries worldwide with the highest estimated age-standardized
incidence rates of gastric cancer per 100,000 inhabitants were Mongolia
(35.5), Japan (27.6), South Korea (27.0), Tajikistan (19.4), Iran (19.4),
Azerbaijan (16.6), Kyrgyzstan (16.5), Bhutan (15.9), and Belarus (15.3)
(Figure 1A; Supplementary Table S1); meanwhile, the top 10 countries
worldwide with the highest estimated age-standardized mortality rate
were Mongolia (31.5), Tajikistan (16.7), Iran (15.4), Bhutan (14.2),
Kyrgyzstan (14.0), Mali (13.5), Azerbaijan (12.8), North Korea (11.4),
Belarus (11.3), and Sao Tome and Principe (11.1) (Figure 1B;
Supplementary Table S2) (Sung et al., 2021).

Gastric cancer driver genes

We retrieved 60 gastric cancer driver genes from the intOGen
framework (Martínez-Jiménez et al., 2020), of which 33 (55%) were
tumor suppressor genes (Sondka et al., 2018), 33 (55%) were
metastatic genes (Zheng et al., 2018), 15 (25%) were oncogenes
(Sondka et al., 2018), 11 (18%) were kinase genes (Manning et al.,
2002; Eid et al., 2017), 5 (8%) encoded RNA-binding proteins
(Hentze et al., 2018), 4 (7%) were cancer immunotherapy genes
(Patel et al., 2017), 2 (3%) were DNA-repair genes (Wood et al.,
2001; Lange et al., 2011), and 2 (3%) were cell cycle genes (Bar-
Joseph et al., 2008) (Supplementary Table S3).

Identification of the gastric oncogenic
variome and its deleteriousness scores

Figure 2A presents the results of the OncodriveMUT and boostDM
analyses used to identify the oncogenic variome of 60 gastric cancer
driver genes by using the GRCh38/hg38 human reference genome.
After analyzing 275,634 variants, we identified 13,542 oncogenic
variants, of which 243 (2%) were annotated and 13,299 (98%) were
predicted. The consequence type analysis revealed that 12,380 (91%)
were missense variants, 758 (6%) were stop-gained variants, 154 (1%)
were splice-donor variants, 153 (1%) were splice-acceptor variants, 77
(0.5%) were splice region variants, and 20 (0.5%) were start-lost variants
(Supplementary Table S4). Regarding the deleteriousness score, 1,887
(14%) oncogenic variants had very high CADD scores, 7,321 (54%)
oncogenic variants had high CADD scores, and 4,246 (31%) had
medium CADD scores. Figure 2B displays the violin plots and
ranking of CADD scores of the annotated and predicted oncogenic
variome related to gastric cancer driver genes. The mean CADD score
of the annotated oncogenic variants was 30.6, and the annotated
oncogenic variant with the highest CADD score was ATM
rs587779813 (score = 55). The mean CADD score of the predicted
oncogenic variants was 26.8, and the predicted oncogenic variant with
the highest CADD score was FAT4 rs774644392 (score = 61). The
details of the ranking of the 13,542 oncogenic variants are given in
Supplementary Table S5. Finally, Figure 2C provides details on the
number of annotated and predicted oncogenic variants per gastric
cancer driver gene. Genes with the highest number of oncogenic
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variants were FAT3 (n = 2,019), FAT1 (n = 1,610), and ATM
(n = 1,502).

Functional enrichment analysis

Figure 3A displays a heatmap of the 34 gastric cancer driver
genes carrying annotated and predicted oncogenic variants involved
in several tumorigenic processes. We identified 21 tumor suppressor
genes, 19 metastatic genes, 9 oncogenes, 10 kinome genes, 3 genes
encoding RNA-binding proteins, 3 cancer immunotherapy genes,
2 DNA-repair genes, and 1 cell cycle gene. Figure 3B shows a
Manhattan plot of the functional enrichment analysis performed on
the 34 gastric cancer driver genes with annotated and predicted
oncogenic variants by using g:Profiler software (Raudvere et al.,
2019). We identified 463 GO biological processes (The Gene
Ontology Consortium, 2021), 39 KEGG signaling pathways
(Kanehisa and Goto, 2000), 24 Reactome signaling pathways
(Fabregat et al., 2016), 36 WikiPathways (Slenter et al., 2018),
and 229 HP ontologies (Köhler et al., 2021). Subsequently, some

of the most significant (Benjamini–Hochberg FDR q < 0.001)
annotations related to gastric cancer were cell surface receptor
(GO:0007166), apoptotic (GO:0097190), p53 (KEGG:04115),
ErbB (KEGG:04012), Hippo (KEGG:04390), Wnt (KEGG:04310),
sphingolipid (KEGG:04071), Rap1 (KEGG:04015), FoxO (KEGG:
04068), PI3K-Akt (KEGG:04151), CKAP4 (WP:WP5322), and IL-
18 (WP:WP4754) signaling pathways. Lastly, the stomach cancer
annotation was significant as a Human Phenotype Ontology (HPO:
0012126) (Figure 3C; Supplementary Table S6).

Deleteriousness scores and allele
frequencies across human populations

Figure 4 shows scatter plots identifying oncogenic variants with
the highest allele frequencies and the most deleterious CADD scores
for each human population. The European Finnish and European
non-Finnish populations had the highest mean CADD scores (26.9),
followed by South Asian (26.6), Latino (26.3), East Asian (26.3),
African (26.2), Middle Eastern (25.9), Amish (25.1), and Ashkenazi

FIGURE 1
Epidemiology of stomach cancer in 2022. (A) Heatmap and ranking of the estimated age-standardized incidence rate of stomach cancer per
100,000 inhabitants worldwide. (B) Heatmap and ranking of the estimated age-standardized mortality rate of stomach cancer per 100,000 inhabitants
worldwide. ASR: age-standardized rate.
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Jewish (25.0) populations. Worldwide, the top five oncogenic
variants with the highest allele frequencies were ERBB2
rs1058808 (0.64196), ERBB2 rs1136201 (0.22083), ATM
rs1800054 (0.01102), FAT1 rs111886222 (0.00922), and BCLAF1
rs77469096 (0.00749). The ERBB2 rs1058808 and ERBB2
rs1136201 oncogenic variants displayed the highest allele
frequencies in the European Finnish (0.67745; 0.29819),
European non-Finnish (0.67423; 0.24314), Latino (0.55676;
0.16603), East Asian (0.43731; 0.12632), South Asian (0.69270;
0.15676), African (0.22469; 0.03998), Middle Eastern (0.69702;
0.13086), Ashkenazi Jewish (0.68386; 0.14177), and Amish

(0.77083; 0.27093) populations. Lastly, Figure 4 and
Supplementary Table S5 provide a comprehensive ranking of
oncogenic variants with the highest allele frequencies and CADD
scores per human population.

Current pharmacogenomics guidelines in
clinical practice

The PharmGKB compiles clinical guidelines, drug labels,
genotype–phenotype correlations, and actionable target–drug

FIGURE 2
Stomach cancer driver genes, oncogenic variants, and Combined Annotation-Dependent Depletion (CADD) deleteriousness scores. (A) Features of
stomach cancer driver genes, oncogenic variants, consequence type, and CADD deleteriousness scores. (B) Bean plots of CADD deleteriousness scores
of the gastric oncogenic variome and ranking of annotated and predicted oncogenic variants with the highest CADD deleteriousness scores. (C) Ranking
of the gastric cancer driver genes with the highest number of oncogenic variants and their mean CADD deleteriousness scores.
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associations (Whirl-Carrillo et al., 2012; Barbarino et al., 2018). In
relation to gastric cancer, it currently lists 12 clinical annotations
that involve 9 genes, 12 variants, and 6 drugs, which include
combination therapies. Fluorouracil is effective in patients
carrying the EGFR rs2293347, IGFBP3 rs2960436, and IGFBP3
rs2854744 variants. A combination of fluorouracil, platinum
compounds, and radiotherapy is effective for patients with the
ERCC1 rs2298881, XRCC4 rs2075685, and XRCC4
rs10040363 variants. Epirubicin, fluorouracil, and oxaliplatin have
demonstrated efficacy in patients with NQO1 rs1800566 and PON1
rs662 variants. Patients with the VEGFA rs25648 variant respond to
a combination of cisplatin, fluorouracil, and oxaliplatin. Cisplatin is
effective for patients with ERCC1 rs3212986 and ERCC1
rs11615 variants. Lastly, a regimen combining anthracyclines,

cyclophosphamide, doxorubicin, epirubicin, fluorouracil,
methotrexate, and oxaliplatin is effective for patients with the
NOS rs1799983 variant (Figure 5A; Supplementary Table S7).

In silico drug prescription based on
precision oncology

Figure 5B presents a Circos plot identifying potential biomarkers
for drug response in gastric cancer treatments according to the
Cancer Genome Interpreter and the Cancer Biomarker database
(Dienstmann et al., 2015; Tamborero et al., 2018). Patients with
ARID1A oncogenic mutations have responsive effects with ATR
inhibitors and olaparib; AMT oncogenic mutations and deletions

FIGURE 3
Functional enrichment analysis. (A) Heatmap of gastric cancer driver genes with oncogenic variants being part of oncogenes, tumor suppressor
genes, cell cycle genes, DNA-repair genes, kinome,metastatic genes, cancer immunotherapy genes, and genes encoding RNA-binding proteins. (B)Most
significant (Benjamini–Hochberg false discovery rate (FDR) q-value <0.001) Gene Ontology (GO) biological processes, Kyoto Encyclopedia of Genes and
Genomes (KEGG) signaling pathways, WikiPathways, and Human Phenotype Ontology annotations where the gastric cancer driver genes with
oncogenic variants were involved. (C) Manhattan plot of the most significant GO biological processes, KEGG signaling pathways, Reactome signaling
pathways, WikiPathways, and Human Phenotype Ontology annotations.
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with olaparib; BCOR oncogenic mutations with enzastaurin; ERBB2
amplification with trastuzumab, afatinib, pertuzumab, a
combination of lapatinib and chemotherapy, and a combination
of pembrolizumab, trastuzumab, and chemotherapy; ERBB2

mutations (G309E, S310F, S310Y, C311R, E321G, and C334S)
and ERBB2 inframe insertions (P780GSP, 781GSP, A775YVMA,
and G776YVMA) with neratinib; CDKN2A oncogenic mutations
and deletions with CDK4/6 inhibitors and ilorasertib; ERBB3

FIGURE 4
Gastric cancer oncogenic variants with the highest allele frequencies and CADD deleteriousness scores. Scatter plots and ranking of the annotated
and predicted oncogenic variants with the highest allele frequencies and CADD deleteriousness scores from the European Finnish, European non-
Finnish, Latino, East Asian, South Asian, African, Middle Eastern, Ashkenazi Jewish, and Amish populations.
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mutations (P262H, G284R, and Q809R) with ERBB3 inhibitors,
trastuzumab, pertuzumab, a combination of lapatinib and
chemotherapy, and a combination of the PI3K pathway inhibitor
and MEK inhibitors; KIT mutations (D816Y, D816F, and D816V)
with dasatinib; PIK3CA oncogenic mutations with PIK3CA
inhibitors; PTEN oncogenic mutations and deletions with

sirolimus, and a combination of Gsk2636771 and Azd8186;
NTRK3 fusion with entrectinib; TP53 mutations (R248Q and
R175H) with HSP90 inhibitors; and lastly, CDKN2A oncogenic
mutations and deletions with a combination of abemaciclib,
palbociclib, and ribociclib (Supplementary Table S8)
(Dienstmann et al., 2015; Tamborero et al., 2018).

FIGURE 5
Landscape of therapeutic strategies based on precision oncology. (A) Current clinical pharmacogenomic guidelines for gastric cancer. (B) Circos
plot showing in silico drug prescriptions of responsive effects targeting gastric cancer actionable genomic alterations. (C) Sankey plot of early-stage and
late-stage clinical trials for gastric cancer connecting therapeutic targets, drugs, and mechanisms of action.
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Drugs involved in early-stage and latestage
clinical trials

The Open Targets Platform provides insights into the
ongoing phase I, II, III, and IV clinical trials focusing on
gastric cancer driver proteins (Carvalho-Silva et al., 2019;
Ochoa et al., 2021), while the Drug Repurposing Hub details
the mechanism of action of the FDA-approved drugs (Corsello
et al., 2017). Figure 5C depicts a Sankey plot, representing
27 clinical trial events encompassed by 2 druggable proteins
(ERBB2 and KIT), 18 drugs (comprising 84% small molecules
and 16% antibodies), and 4 mechanisms of action, namely, kinase
inhibitors (trastuzumab, pertuzumab, and pyrotinib), EGFR
inhibitors (lapatinib, varlitinib, tucatinib, poziotinib,
vandetanib, CUDC-101, and dovitinib), KIT inhibitors
(pazopanib, imatinib, regorafenib, sunitinib, telatinib, and
sorafenib), and VEGFR inhibitors (anlotinib and cediranib)
(Supplementary Table S9).

Discussion

In the realm of precision oncology for gastric cancer, the focus
on personalized therapeutic strategies, tailored to the unique
molecular profile of an individual’s tumor, represents a
significant shift in cancer treatment paradigms (Liu and Meltzer,
2017). Instead of a one-size-fits-all approach, precision oncology
highlights the necessity of a deep understanding of the tumor genetic
landscape, recognizing that each patient may exhibit unique targets
amenable to specific treatments (Le Tourneau et al., 2019). The use
of bioinformatics tools is essential in interpreting the vast amount of
data produced by omics technologies, thereby uncovering actionable
insights that can guide treatment decisions (Valencia and
Hidalgo, 2012).

The importance of precision oncology goes beyond simply
identifying molecular targets; it involves integrating these insights
into a comprehensive treatment strategy that takes into account the
tumor microenvironment, clinical history, genetic predisposition,
and lifestyle (Le Tourneau et al., 2019). This strategy facilitates a
more refined approach to gastric cancer treatment, transitioning
from conventional chemotherapy regimens to targeted therapies
that offer greater efficacy and fewer side effects.

However, the adoption of precision oncology encounters
significant obstacles, notably in developing countries. These
challenges encompass the formulation of extensive PGx clinical
guidelines to guide treatment decisions across a culturally and
genetically varied patient base. Moreover, there is a pressing need
for rigorous cost-effectiveness analysis, suitable regulatory
frameworks, and increased gene/drug trials (Quinones et al.,
2014; López-Cortés et al., 2017; Salas-Hernández et al., 2023).

Additionally, the lack of representation of minority populations
in genomic studies poses a considerable limitation to the universal
applicability of precision oncology. The majority of the genomic
data available today are derived from Caucasian populations, which
distorts our understanding of cancer genetics and constrains the
efficacy of targeted therapies across different ethnic groups
(Guerrero et al., 2018). Overcoming this discrepancy necessitates
a deliberate effort to include more diverse populations in genomic

research, alongside investments in genomic testing infrastructure in
underrepresented regions.

Our study contributes to this domain by pinpointing
actionable genomic alterations in gastric cancer, analyzing
allele frequencies across populations worldwide, and
optimizing therapeutic strategies in precision oncology. In this
context, we analyzed 275,634 single-nucleotide and insertion/
deletion variants across 60 recognized gastric cancer driver genes
from 730,947 exome sequences and 76,215 whole-genome
sequences from unrelated individuals, spanning a broad
spectrum of ethnic backgrounds, including African, Amish,
Latino, Ashkenazi Jewish, East Asian, European Finnish,
European non-Finnish, Middle Eastern, and South Asian. Such
a diverse dataset underscores our commitment to inclusivity in
genomic research. Our findings highlighted 13,542 oncogenic
variants, with a subset showing elevated deleteriousness scores.
Through a functional enrichment analysis of the 34 gastric cancer
driver genes carrying oncogenic variants, we found biological
significance to crucial molecular mechanisms involved in the
development of gastric cancer, including apoptotic, ERBB2-
ERBB3, p53, Hippo, Wnt, sphingolipid, Rap1, FoxO, PI3K-
Akt, CKAP4, IL-18, and gastrin signaling pathways (Lei
et al., 2022).

Understanding the impact of oncogenic variants across
different ethnic groups is crucial as these variants can
significantly influence the susceptibility to gastric cancer
(Cordova-Delgado et al., 2021; Gonzalez-Hormazabal et al.,
2021; Landeros et al., 2021). This knowledge is essential for
prioritizing therapeutic strategies and making informed
decisions concerning healthcare economics, public health
policies, and global preventive measures. To this end, we
calculated the allele frequencies of gastric cancer oncogenic
variants across each ethnic group, uncovering notable
differences and identifying several predominant oncogenic
variants worldwide. In our findings, the European non-Finnish
population had 9,568 oncogenic variants with allele frequencies
greater than 0; South Asians had 2,474; Africans had 2,028; Latinos
had 1,517; East Asians had 1,384; European Finnish had 635;
Middle Eastern populations had 381; Ashkenazi Jewish had 345;
and the Amish population had 15. Notably, the most widespread
oncogenic variants globally were ERBB2 rs1058808 (0.64196) and
ERBB2 rs1136201 (0.22083). Among specific ethnic groups, the
most prevalent in the European non-Finnish population was ATM
rs1800054 (0.01380), in South Asians was RNF43 rs142097313
(0.02032), in Africans was FAT1 rs73873662 (0.03560), in Latinos
was FAT4 rs191329848 (0.00512), in East Asians was RNF43
rs2285990 (0.07195), in European Finnish was MYH9
rs147122501 (0.03956), in the Middle Eastern population was
FAT1 rs1579301148 (0.01020), in Ashkenazi Jewish was MYH9
rs143269195 (0.03239), and in the Amish population was FAT3
rs370778887 (0.18640). These findings underscore the importance
of a comprehensive understanding of the effect of these variants to
develop preventive strategies for healthy populations and craft
effective therapeutic approaches for patients with gastric cancer
(Pirmohamed, 2023).

A primary goal in deciphering the cancer genome is
understanding the impact of oncogenic variants on the
effectiveness of anti-cancer treatments. By integrating our
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discoveries with PGx clinical guidelines (Barbarino et al., 2018), in
silico drug prescriptions (Tamborero et al., 2018), and data from
both early-stage and late-stage clinical trials (Ochoa et al., 2021), we
aim to broaden the scope of precision oncology across human
populations. This initiative seeks to enhance the detection of
oncogenic variants in individuals with gastric cancer and those
predisposed to it, thereby facilitating the creation of more
personalized treatment plans. In our thorough analysis, we
identified 11 key therapeutically actionable targets carrying
3,362 annotated and predicted oncogenic variants with the
highest deleteriousness scores and allele frequencies across
human populations. These targets exhibited variant distributions
across ethnic groups and were correlated with specific treatments.
Europeans of non-Finnish descent had 2,406 oncogenic variants,
South Asians had 560 variants, Africans had 492 variants, Latinos
had 368 variants, East Asians had 318 variants, and Europeans of
Finnish descent had 164 variants in the ATM, ERBB2, ERBB3,
ARID1A, PTEN, TP53, CDKN2A, NTRK3, PIK3CA, KIT, and
BCOR therapeutic targets. Ashkenazi Jews had 90 variants in
ATM, ERBB2, BCOR, PTEN, TP53, KIT, NTRK3, ERBB3,
CDKN2A, and BCOR. The Middle Eastern population had
89 variants in ATM, ERBB2, ERBB3, BCOR, CDKN2A, PTEN,
and NTRK3. Lastly, the Amish population had three variants in
the ERBB2 and NTRK3 therapeutic targets.

Regarding responsive treatments analyzed through in silico drug
prescriptions, ATR and PARP inhibitors, particularly olaparib,
target ARID1A oncogenic mutations and AMT oncogenic
mutations and deletions. Treatments for ERBB2 amplifications
include trastuzumab, afatinib, pertuzumab, a combination of
lapatinib and chemotherapy, and a combination of
pembrolizumab, trastuzumab, and chemotherapy. Neratinib is
effective for certain ERBB2 mutations (G309E, S310F, S310Y,
C311R, E321G, and C334S) and ERBB2 inframe insertions
(P780GSP, 781GSP, A775YVMA, and G776YVMA). CDK4/
6 inhibitors and ilorasterbin are used for CDKN2A mutations
and deletions. For specific ERBB3 mutations (P262H, G284R,
and Q809R), treatments include ERBB3 inhibitors, trastuzumab,
pertuzumab, combinations of lapatinib and chemotherapy, and
combinations of PI3K pathway inhibitors and MEK inhibitors.
Dasatinib targets specific KIT mutations (D816Y, D816F, and
D816V); PIK3CA inhibitors are used for PIK3CA oncogenic
mutations; sirolimus and a combination of Gsk2636771 and
Azd8186 target PTEN mutations and deletions; entrectinib targets
NTRK3 fusion; HSP90 inhibitors address certain TP53 mutations
(R248Q and R175H); and a combination of abemaciclib, palbociclib,
and ribociclib targets CDKN2A oncogenic mutations (Dienstmann
et al., 2015; Tamborero et al., 2018). Regarding clinical trials,
27 events are investigating 18 potential drugs targeting the
ERBB2 and KIT therapeutic targets. Trastuzumab and
pertuzumab kinase inhibitors are under evaluation in phase III
clinical trials targeting ERBB2 (NCT01774786 and
NCT01041404) (Van Cutsem et al., 2015; Tabernero et al., 2023).
Meanwhile, other EGFR inhibitors, KIT inhibitors, and VEGFR
inhibitors are being evaluated in phases I and II clinical trials. This
comprehensive approach, which integrates genomic data analysis
with targeted in silico drug prescriptions and clinical trial agents,
marks a significant advancement in precision oncology. It paves the
way for more effective and personalized treatment options for

patients with gastric cancer and underscores the potential for
preventive strategies in at-risk populations across different
ethnic groups.

Despite the significant advances made in precision oncology
for gastric cancer, several limitations persist. The
underrepresentation of minority populations in genomic
studies restricts the universal applicability of findings as most
genomic data are derived from Caucasian populations (Spratt
et al., 2016; Guerrero et al., 2018). This disparity distorts our
understanding of cancer genomics and limits the effectiveness of
targeted therapies across diverse ethnic groups. Furthermore, the
implementation of precision oncology, especially in developing
countries, faces obstacles such as the need for comprehensive
pharmacogenomics clinical guidelines, cost-effectiveness
analysis, suitable regulatory frameworks, and increased gene/
drug trails. These challenges highlight the urgent need for a more
inclusive approach to genomic research and the development of
tailored treatment strategies that consider the unique genetic
landscape of each patient with cancer.

Looking ahead, it is imperative to broaden the inclusion
of diverse populations in genomic studies, alongside
investments in genomic testing infrastructure in regions
currently underrepresented. Future research should focus on
the database of oncogenic variants across varied ethnicities to
forge more effective and personalized treatment options for
patients with gastric cancer. There lies a promising path in
leveraging in silico drug prescriptions and clinical trial data to
further refine treatment strategies. The incorporation of these
developments with PGx clinical guidelines is crucial for the
optimization of therapeutic approaches and the creation of
effective preventive strategies for at-risk populations across
different ethnic groups. Additionally, enhancing investments
in genetics research, particularly in developing regions, and
efforts to include ethnic minorities in clinical trials and cancer
research will be crucial (Paz-y-Miño et al., 2010; Paz-Y-Miño
et al., 2015; Paz-Y-Miño et al., 2016; López-Cortés et al., 2018).

In conclusion, our study marks a significant advancement in
applying precision oncology to gastric cancer, underscoring the
critical role of genetic diversity in enhancing therapeutic
strategies. Through the analysis of a wide range of oncogenic
variants across diverse populations, we established a foundation
for treatments that are bothmore equitable and effective. Integrating
our discoveries with PGx clinical guidelines, in silico drug
prescriptions, and clinical data heralds a new era of personalized
cancer care. Nevertheless, overcoming existing limitations and
adopting future perspectives require a unified global effort to
ensure that precision oncology serves patients globally (Iorio
et al., 2016; Pirmohamed, 2023). As we progress toward a more
inclusive and personalized approach to cancer treatment, the
transformative potential of precision oncology to improve patient
care and outcomes becomes increasingly evident.
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