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Introduction:High concentrations of nonesterified fatty acids (NEFA) is the key of
characteristic of fatty liver in dairy cows. Therefore, the aim of this study was to
investigate the effect of high concentration of NEFA on lipid metabolism in
hepatocytes through the lipidomic approach and molecular biology techniques.

Methods: Stimulate AML-12 cells with different concentrations of NEFA, observe
the cellular lipid accumulation, and select 0.6 mM NEFA stimulation
concentration for subsequent experiments. Collect cells for lipidomics analysis.

Results: High concentration of NEFA (0.6–2.4mM) significantly reduced the cell
viability in a concentration-dependentmanner, indicating that high concentrationsof
NEFA have lipotoxicity on hepatocytes. In addition, NEFA promoted triglycerides
(TAG) accumulation, increased the mRNA expression of the lipogenic molecules
SREBP1c and FASN, and decreased the mRNA expression of lipolytic molecules
CPT1A andHSL in hepatocytes. Mechanistically, high concentration of NEFA induced
lipid metabolism disorders in hepatocytes by regulating metabolic pathways such as
glycerol phospholipid metabolism, glycosyl phosphatidylinositol anchored
biosynthesis, triglyceride metabolism, sphingolipid metabolism, and inositol
phosphate metabolism.

Discussion: High concentration of NEFA is lipotoxic to cells, promoting lipid
accumulation. LPE (18:2), LPE (18:3), LPE (18:1) via glycerophospholipid
metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, glycerolipid
metabolism, sphingolipid metabolism, and inositol phosphate metabolism,
indicating their potential regulation role in the pathogenesis of fatty liver.
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1 Introduction

Fatty liver is a metabolic disorder that affects dairy cows during the periparturient
period, characterized by the accumulation of excess lipids in the liver due to an imbalance
between lipid intake and oxidation (Bobe et al., 2004). In the perinatal period, the dietary
intake of dairy cows is inadequate to meet the energy demands necessary for lactation,
leading to a negative energy balance (NEB) (Herdt, 2000). During NEB, TAG are mobilized
from adipose stores (Dole, 1956; Drackley et al., 1991) and then hydrolyzed into NEFA and
glycerol (Locher et al., 2011). The released NEFA can be utilized for energy production and
fat synthesis (Adewuyi et al., 2005). However, the hepatic uptake of NEFA during NEB
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exceeds its oxidative capacity, resulting in hepatic lipid
accumulation and the development of fatty liver (Roberts et al.,
1981; Reynolds et al., 2003; Martens, 2023).

In recent years, multiple studies have demonstrated the
involvement of the sterol regulatory element-binding
transcription factor (SREBF-1c) in modulating triglyceride and
cholesterol levels (Guo et al., 2014; Vargas-Alarcon et al., 2019).
SREBF-1c regulates the expression of genes involved in the
biosynthesis of fatty acids, phospholipids, and triglycerides
(Shimano et al., 1997). SREBP-1c is a transcription factor
important in the regulation of lipogenic genes (Yang et al., 2001),
and its downstream target FASN is a key enzyme in de novo fatty
acid synthesis (Horton et al., 2002; Rodríguez-Cruz et al., 2012; Chen
et al., 2018). Hormone-sensitive lipase (HSL) is the major rate-
determining enzyme in fat cell lipolysis (Fredrikson et al., 1981).
CPT1A plays an important role in using fatty acids as an energy
source (Patsoukis et al., 2015). CAPT1A and HSL are commonly
utilized as representative genes for assessing lipid levels through
lipolysis (Hu et al., 2020; Tardelli et al., 2020; Oh et al., 2021). The
study chose to investigate the expression of the well-known genes
SREBP-1 and FASN involved in lipid synthesis, as well as the genes
CAPT1A and HSL related to lipid decomposition, to evaluate lipid
accumulation.

Lipids are a group of molecules with various important cellular
functions, including energy storage, signaling, and serving as
essential components of cellular membranes (Orešič et al., 2008).
The alteration of lipid metabolism represents a crucial step in the
development and progression of fatty liver disease (Onorato et al.,
2021). Among other techniques, recent advancements in mass
spectrometry have introduced lipidomics into translational
medicine and research (Ma and Fernández, 2022; Salvador et al.,
2022). Lipidomics is an emerging and effective method for studying
intact lipids in biological systems, which contributes to
comprehensively understand the biochemical mechanism of lipid
metabolism (Long et al., 2020). Lipidomics relies heavily on
analytical chemistry tools, techniques, and principles to analyze
lipid structure, abundance of individual molecular species, as well as
their cellular functions and interactions. This comprehensive
approach enables the identification of dynamic changes in lipids
during cellular perturbations. Therefore, lipidomics plays a crucial
role in elucidating the pathogenesis of lipid-related diseases such as
fatty liver, by detecting and quantifying alterations in cellular lipid
signaling, metabolism, transport, and homeostasis (Han and Gross,
2021). Consequently, studying lipid homeostasis is essential for a
comprehensive understanding of the pathogenesis of fatty liver.

An increasing number of studies indicate a close relationship
between NEFA and lipid metabolism disorders in hepatocytes
(Rukkwamsuk et al., 1999; Li et al., 2012; White, 2015). However,
the specific mechanism by which NEFA affects lipid metabolism
disorders in hepatocytes remains unclear.

2 Materials and methods

2.1 Cell culture

The AML-12 cell line was acquired from the Cell Bank of the
Chinese Academy of Sciences. The cells were cultured in F12 medium

(Gibco) supplemented with 10% fetal bovine serum, 1% ITS (Gibco),
and 1% dexamethasone. Culturing of cells was routinely performed in
a humidified atmosphere at 37°C with 5% CO2.

2.2 Cell viability assay

AML-12 cells (104 cells/well) were seeded into 96-well plates
and then exposed to varying concentrations of NEFA (0, 0.3, 0.6,
1.2, 2.4 mM) for 12 h. Cell viability was assessed using the
CCK8 analysis kit (Bioss). Subsequently, 10 μL of CCK-8
solution was added to each well, followed by incubation for
4 h, and the optical density (OD) was measured at 450 nm
using a microplate reader.

2.3 TAG content assay

AML-12 cells were stimulated with NEFA for 12 h. The
stimulated cells were collected and rinsed three times in PBS.
The cell lysate was incubated on a shaker at room temperature for
20 min, followed by collection of the cells using a scraper and
transfer to a centrifuge for ultrasonic pulverization.
Subsequently, reagents were added according to the
manufacturer’s instructions (NJJCBIO), and measured 450 nm
OD of each well using microplate reader. The protein
concentration of each sample was determined using BCA, and
the total amount of triglycerides was calculated based on the
protein concentration of each well.

2.4 Lipid metabolism

2.4.1 Chemicals and reagent
The mass spectrometry-pure acetonitrile, isopropanol, and

chromatography-pure ammonium acetate used in this experiment
were purchased from Thermo-Fisher Scientific (FairLawn, NJ,
USA). Ultrapure water for the experiments was obtained from
Millipore Reference Ultrapure Water System 92 (Billerica, MA,
USA) which equipped with a 0.22 μm filter head for liquid-
quantity coupling.

2.4.2 Sample preparation
To minimize degradation, samples were thawed under an ice

bath. Ten grinding beads were added to each tube of cell samples
with 10 µL of deionized water and homogenize for 3 min (BB24,
Next Advance, Inc, NY, USA). 300 μL of lipid extraction solvent was
added and homogenized again for 3 min. The samples were vortexed
and mixed at 1,200 rpm for 20 min at 10°C (MSC-100, Allsheng
Instruments, Co. Hangzhou, China), and then centrifuged at 4,000 g
for 20 min at 4°C (Allegra X-15R, Beckman Coulter, Inc, IN, USA),
20 µL of supernatant was transferred to a 96-well plate and mixed
with 80 µL of lipid dilution solvent for LC-MS analysis.

2.4.3 Instrumentation
This project utilized an Ultra High Performance Liquid

Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-
TQMS) instrument (TACQUITY UPLCXevo TQ- S, Waters
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Corp. Milford, MA, USA) for targeted lipidomic assays. System
optimization and maintenance were performed every 48 h.

2.4.4 Analytical quality control procedures
Endogenous small molecule metabolites are susceptible to

changes in ambient temperature and environment, and therefore,
sample thawing requires that it be performed slowly on an ice bath
slowly, thus avoiding changes in metabolite composition and
concentration caused by activation of metabolic enzymes after
the sample is sharply returned to room temperature. The
reagents used for extraction were pre-frozen and stored in an ice
bath. The reagents used for extraction were pre-frozen and stored in
a −20°C refrigerator to avoid the exothermic addition of organic
solvents to the precipitated proteins, which can lead to the
degradation of small molecule metabolites in biological samples.
The entire sample preparation process should be completed as
quickly as possible. There were reagent blanks and mixed QC
samples before and after analyzing each batch of samples. These
QCs were also added to monitor the analytical process for possible
contamination and data quality.

2.4.5 Sample run order
In order to eliminate errors caused by the order of the analytical

process, the samples to be tested were randomized according to the
group information, andQC samples, blanks, etc. were interspersed with
the overall samples for testing. QC samples, blank samples were
interspersed in the overall sample for testing.

2.4.6 Sample control procedure
Samples for each project were entered into Metabo-Profile’s LIMS

management system upon receipt. The system assigned a unique
identifier, MP ID, that matches the original sample information.
This identification was tracked throughout the experiment.

2.4.7 Data analysis
Mass spectrometry-based quantitative metabolomics works by

comparing metabolites in a sample of unknown concentration to a
set of standard samples of known concentration (quantitative curve)
to obtain the actual concentration. A quantitative curve is a curve
that analyzes the signal as it varies with the concentration of the
measured substance (DUT). For most analyses, a plot of instrument
response versus concentration will show a linear relationship. This
will produce a regression equation of y = aX + b where y is the
instrument’s corresponding (peak height or peak area), a represents
the slope/sensitivity, and b is a constant representing the
background signal. The analyte in the unknown sample
concentration (X) is calculated from this equation.

2.5 Statistical analysis

Data are expressed as mean ± standard error of mean (S.E.M) of
each group. Data are expressed as mean ± standard error of mean
(S.E.M) for each group. Two-tailed unpaired Student’s t-test was
used for comparisons between the two groups, and one-way
ANOVA was used to compare the data for CCK8. All statistical
analyses were performed using Graphpad Prism 6.0 software
(GraphPad software, CA, USA).

3 Results

3.1 NEFA reduces the viability of hepatocytes
in a concentration-dependent manner

In this study, we investigated the toxic effect of NEFA on
hepatocytes. The effect of different concentrations (0.3, 0.6, 1.2,
2.4 mM) of NEFA on cell viability was assessed using the CCK-8
assay kit. As shown in Figure 1A, compared with the control
group, there was no significant change in cell viability in the
0.3 mM NEFA treatment group. However, the cell viability was
significantly decreased after treatment with 0.6 mM NEFA (p <
0.001), 1.2 mM NEFA (p < 0.0001), and 2.4 mM NEFA (p <
0.0001), with 2.4 mM NEFA causing excessive cell damage and
reducing cell viability to below 20%. The results revealed that
NFEA reduces the cell viability in a concentration-
dependent manner.

3.2 NEFA promotes lipid accumulation in
hepatocytes

The effect of NEFA on lipid accumulation in hepatocytes was
analyzed in this study by measuring the TAG contentin cells. As
shown in Figure 1B, the TAG content in the 0.3 mM NEFA
treatment group did not exhibit a significant change compared to
the control group. In contrast, the TAG content was significantly
increased in the 0.6 mM (p < 0.05) and 1.2 mM (p < 0.001) NEFA
treatment groups compared to the control group. The oil red O
staining results also demonstrated that high concentrations of NEFA
promote lipid accumulation (Figure 1C).

Consequently, based on the results of CCK-8 and TAG content
detection, we chose to employ 0.6 mM NEFA for subsequent
experiments.

3.3 Effect of NEFA on molecules of lipid
metabolism

To further investigate the effect of NEFA on lipid accumulation,
this study examined the mRNA expression of key molecules
involved in cellular lipid metabolism. Compared with the control
group, NEFA treatment significantly increased the expression of
lipid synthesis-related molecules FASN and SREBP, and
significantly decreased the expression of lipolytic molecules HSL
and CPT1A (Figure 2).

In summary, NEFA promotes lipid accumulation in AML-12
cells by regulating lipid metabolism-related molecules.

3.4 Exploring the effects of high
concentration of NEFA on hepatocytes
based on lipidomics

Based on the experimental results presented above, it is evident
that high concentration of NEFA can impact the lipid metabolism in
hepatocytes, leading to the inhibition of lipolysis and the promotion
of lipid accumulation. However, the specific lipid metabolites and
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metabolic pathways responsible for the disruption of liver cell lipid
metabolism induced by high concentration of NEFA remain
unclear. Hence, this study employed lipidomics to further
elucidate the mechanism underlying the effect of NEFA on the
lipid metabolism disorder in hepatocytes.

3.4.1 QC and total sample principal
component analysis

Before analyzing the sample data, a portion of the extracted
material from 12 test samples was taken to prepare quality control

(QC) samples for the subsequent calibration analysis. Multivariate
quality control charts were utilized to supervise and judge whether
the instrument’s fluctuations are within the normal range.
Figure 3A illustrates that the fluctuation of the QC sample was
within the range of plus or minus 3 standard deviations, indicating
that the instrument’s fluctuations were within the normal range
and the data can be used for subsequent analysis. Additionally, as
depicted in Figure 3B, Pearson correlation analysis of the QC
samples was conducted. A correlation coefficient greater than
0.9 generally indicated good correlation. The experimental

FIGURE 1
Effect of non-esterified fatty acids (NEFA) on cell viability. (A) The cells were treated with different concentrations of NEFA for 12 h, and the cell
viability was detected using the CCK8 kit. (B) Effects of various concentrations of non-esterified fatty acids (NEFA) on the triglyceride (TAG) content in
hepatocytes. (C) Oil Red O staining. Data are expressed as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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results demonstrate that the correlation coefficients between the
QC samples are all above 0.9, indicating good experimental
repeatability. Furthermore, Figure 3C showed the scores of
principal component analysis with QC. The QC samples were

closely clustered in the graph, signifying a high degree of clustering
and suggesting good stability in instrument detection. Therefore,
the data of this model was stable and reliable, and can proceed to
the next step of statistical analysis.

FIGURE 2
Effects of high NEFA concentration on mRNA expression levels of lipid metabolism-related molecules in hepatocytes. (A) CPT1A: carnitine
palmitoyltransferase 1 A. (B) FASN: Fatty acid synthase. (C) SREBP-1c: sterol regulatory element binding protein-1c. (D) HSL: hormone sensitive lipase.
Data are expressed as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.4.2 Lipid composition analysis
After using mass spectrometry to detect the lipids in the samples,

a total of 310 metabolites were obtained. These lipid molecules were
further analyzed and categorized into 11 subclasses. As shown in
Figure 4A, there are 79 types of Phosphatidylcholine (PC),
accounting for 25.48% of the total amount of lipid molecules,
46 types of Phosphatidylethanolamine (PE) accounting for
14.84%, 38 types of Triacylglycerol (TAG) accounting for 12.26%,
29 types of Sphingomyelin (SM) accounting for 9.35%, 27 types of
Ceramide (Cer) accounting for 8.71%, 23 types of
Phosphatidylserine (PS) accounting for 7.42%, 21 types of
Diacylglycerol (DAG) accounting for 6.77%, 18 types of
lysoPhosphatidylcholine (LPC) accounting for 5.81%, 14 types of
Phosphatidylinositol (PI) accounting for 4.52%, 12 types of
lysoPhosphatidylethanolamine (LPE) accounting for 3.87%, and
the remaining three types of other lipids accounting for 0.97%.

The relative abundance of various metabolites in each sample
was shown in Figure 4B. The average abundance of various
metabolites in the NEFA group was shown in Figure 4B, with
Cer accounting for 45.08%, PE accounting for 41.78%, and DAG
and TAG accounting for 6.88% and 3.33% respectively. All
quantified lipids in the same group were summed to observe the
differences in lipid molecular content among different groups of

samples. As shown in Figure 4C, DAG and LPC were significant
increase in relative abundance (p < 0.01). LPE and CerPE were
significant decrease in relative abundance (p < 0.001).

3.4.3 Orthogonal partial least squares
discriminant analysis

The PCA model may not be sensitive to variables with low
correlations, rendering it unsuitable for identifying differential
metabolites. However, this limitation can be addressed by
employing OPLS-DA analysis. As illustrated in Figure 5A, the
data from the two groups exhibit a clear separation trend,
indicating substantial differences between the control and NEFA
samples. The OPLS-DA model was validated using Permutation
testing. A value of R2Y closer to 1 indicates higher model
performance, while a Q2 value greater than 0.5 signifies model
effectiveness. In this case, R2Y was determined as 0.9333 and Q2

as 0.76, confirming the validity of the model as illustrated
in Figure 5B.

3.4.4 Significant difference lipid
metabolite screening

Based on the OPLS-DA model results, volcano plot was used to
screen reliable metabolite markers. The volcano plot comprehensively

FIGURE 3
QC and total sample principal component analysis. (A) Multivariate control chart: Each point in the chart represents a sample, and any points that
exceed three times the standard deviation are considered outliers. (B) Pearson correlation analysis: The closer the r-value is to 1, the closer the similarity
between the QC samples. (C) PCA analysis with QC samples.
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investigated the contribution of metabolites to model grouping
(Variable importance in projection, VIP) and the reliability of
metabolites (Correlation Coefficients) (Figure 5C). The volcano
plot effectively illustrates the distribution and content disparities of
metabolites across the samples. Larger absolute values on the
horizontal axis indicate greater differences in expression levels
between the two sample groups, while larger values on the vertical
axis signify more pronounced differences, thus affirming the stability
and reliability of the obtained differential lipid metabolites. Using a
significance level of p < 0.05 and an absolute value of log2FC ≥ 0 (FC,
Fold Change) as the threshold for screening differential metabolites,
116 metabolites were identified in the comparison between control

andNEFA (Figure 5D). Figure 5D reveals that out of the 116 identified
metabolites, 83 are upregulated and 33 are downregulated. Boxplot of
top 9 differential metabolites ordered by p-value were shown in
Figure 5E. These metabolites encompass 21 types of DAG,
27 types of Cer, 17 types of PE, 4 types of PS, 12 types of LPE,
18 types of LPC, 79 types of PC, 29 types of PE, 3 types of CerPE,
14 types of PI, 19 types of PS, 29 types of SM, and 38 types of TAG.

Applying dual criteria (t-test p < 0.05, |Log2FC|≥0, and OPLS-
DA analysis VIP≥1), the selection of potential biomarkers with
potential biological significance by combining the different
metabolites obtained above is the most reliable approach. This
diagram reveals 107 common different metabolites between the

FIGURE 4
Quality control and principal component analysis of total samples and quantitative analysis of lipidomics. (A) Pie chart of average abundency
composition of various metabolites in all samples. (B) Pie chart of the average abundance composition ratio of each metabolite class in all samples in the
NEFA group. (C) Stacked bar chart of relative abundance of various metabolites in each group of samples.
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two groups, and their distribution in different samples is illustrated
in the Figure 6A. Among the 107 potential biomarkers, 77 are
upregulated and 30 are downregulated. The boxplot in Figure 6B
highlights the 9 most significantly different metabolites: LPE (18:2),

LPE (18:3), LPE (18:1), PE (36:3), LPE (20:0), DAG (38:4), LPE (20:
3), PE (34:1), LPE (22:6).

Using the selected mmu library for pathway enrichment analysis
of differential metabolites, the results were shown in Figure 6C. The

FIGURE 5
(A)OPLS-DA 2D Score Chart. (B)OPLS-DA 2D Permutation test Result. (C)Metabolite VIP volcanomap of OPLS-DA. (D)One-dimensional roadmap
of a volcano: Compared to the CONTROL group, the highlighted metabolites in the top right increased in the NEFA group, while the highlighted
metabolites in the top left decreased in the NEFA group. (E) Boxplot of top 9 differential metabolites ordered by p-value.
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differential metabolites enriched in these metabolic pathways are
shown in Supplementary Table S1. Each bubble in Figure 6C
represented a pathway. The redder the bubble, the closer the
p-value is to 0, indicating more significant enrichment. The
larger the bubble, the more differential lipid metabolites are
enriched in that pathway. There were 5 differential metabolic
pathways related to lipid metabolism involved in the disordered
lipid metabolism process induced by high concentration of NEFA in
liver cells, including glycerophospholipid metabolism,
glycosylphosphatidylinositol (GPI) -anchor biosynthesis,
triglyceride metabolism, sphingolipid metabolism, and inositol
phosphate metabolism.

4 Discussion

The liver serves as the central organ for lipid metabolism,
responsible for regulating the equilibrium of lipids, proteins, and
carbohydrates (Mun et al., 2019). In the pathogenesis of fatty liver,
the excessive mobilization of adipose tissue due to negative energy
balance results in a substantial influx of NEFA into the liver.
However, the liver is unable to metabolize excessive NEFA,
resulting in its esterification into triglycerides, which then
accumulate in the liver (Grummer, 1993; González et al., 2011).
This highlights that the disorder in lipid metabolism is the core of
fatty liver disease in dairy cows, and numerous studies have been
carried out to investigate this phenomenon (Grummer, 1993; Wang
et al., 2018; Zhao et al., 2023). Furthermore, the high concentration
of NEFA is closely associated with the disorder in lipid metabolism.
In healthy cows, the serum NEFA content is lower than 0.4 mM, but
the serum NEFA concentration gradually increases to more than

0.5 mM in parturient cows due to metabolic disorders and negative
energy balance leading to extensive catabolism of body fat. In cases
of particularly severe negative energy balance, the serum NEFA
concentration can exceed 1.5 mM (Samiei et al., 2010). Previous
research by Dong et al. has revealed that elevated levels of NEFA can
stimulate lipid synthesis in the liver, suppress lipolysis, activate
inflammatory signaling pathways, and consequently contribute to
hepatic lipid accumulation and the initiation of an inflammatory
response in cows with fatty liver (Dong et al., 2019). Huang and
others discovered that NEFA play a role in mediating the PERK-
eIF2α signaling pathway, leading to the upregulation of the key
transcription factor SREBP-1c involved in lipid synthesis. This
process ultimately promotes lipid synthesis in bovine liver cells.
Consequently, their findings indicate that elevated levels of NEFA
can impact lipid metabolism in liver cells, contributing to the
accumulation of lipids (Huang et al., 2021). The findings of this
study suggest that high concentrations of NEFA have the potential to
affect the lipid metabolism in liver cells, resulting in lipid
accumulation in the cells. Thus, the study seeks to investigate the
influence of NEFA on lipid accumulation in liver cells. The results of
the cell viability experiment demonstrated that NEFA can
significantly decrease cell viability in a concentration-dependent
manner. While the cell viability in the 0.3 mM NEFA treatment
group did not exhibit significant changes compared to the control
group, the cell viability significantly decreased after treatment with
0.6, 1.2, and 2.4 mM NEFA. Notably, treatment with 2.4 mM NEFA
resulted in excessive cell damage and significantly reduced cell
viability. This suggests that high concentrations of NEFA have
the potential to disrupt normal cell metabolism.

Fatty liver in cows is characterized by the significant
accumulation of TAG in the liver (Pralle et al., 2021), leading to

FIGURE 6
Potential biomarkers and their enrichment pathways. (A)Heatmap of potential biomarkers. (B) Box diagram of potential biomarkers. (C)mmu library
pathway analysis bubble diagram.
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a substantial impact on its metabolic function (Grummer, 1993). In
this study, the TAG content in liver cells from the experimental
group (0.6 mM NEFA) showed a significant increase compared to
the control group. Zhao (Yang et al., 2023) stimulated primary calf
liver cells with 1.2 mMNEFA for 12 h and observed that there was a
significant increase in the mRNA expression levels of SREBP-1c,
FAS, and ACC1, along with a notable increase in TAG content and
lipid droplet content. These results are consistent with our present
study, confirming that a high concentration of NEFA can stimulate
lipid accumulation in liver cells. However, it is important to note
that the aforementioned study employed 1.2 mMNEFA to stimulate
primary calf liver cells, whereas our study utilized 0.6 mM NEFA to
stimulate AML-12 cells. As different cell types exhibit different
tolerances to NEFA stimulation, the final concentration used for
stimulation in our study was different from that used in other
studies. Furthermore, existing literature (Simino et al., 2021)
discusses the in vitro model of fatty liver induced by NEFA in
AML-12 cells, which supports the credibility of our study.

From the perspective of lipidomics, it is evident that high levels
of NEFA are involved in the differential metabolism of lipids in
hepatic cells. Moreover, pathway enrichment analysis can help
identify differential metabolic pathways, thus elucidating the
mechanism by which high levels of NEFA affect lipid metabolism
in hepatic cells. This study employed multidimensional and
univariate statistical analyses to identify 107 potential biomarkers,
a large proportion of which were upregulated lipid metabolites. This
suggests that an increase in NEFA level can disrupt lipid
metabolism, leading to lipid deposition and lipid metabolism
disorders in fatty liver in dairy cows. The most significant
differential metabolites encompassed 9 types, primarily belonging
to the lipid subclasses of lysophosphatidylethanolamine (LPE),
phosphatidylethanolamine (PE), and diacylglycerol (DAG).

By inputting the information of 107 potential biomarkers into
the database for further analysis, we obtained 5 different metabolic
pathways related to lipid metabolism, including
glycerophospholipid metabolism, glycosylphosphatidylinositol
(GPI)-anchor biosynthesis, glycerolipid metabolism,
sphingolipid metabolism, and inositol phosphate metabolism.
The analysis of these metabolic pathways indicates that high
level of NEFA may lead to lipid metabolism disorders in liver
cells through five differential metabolic pathways. However, the
detailed process by which high level of NEFA affect lipid
metabolism through these metabolic pathways requires further
research. The glycerophospholipid metabolism pathway is
significantly involved in the pathogenesis of fatty liver disease.
Phosphatidylcholine is the most abundant phospholipid in the
body and is an important component of biological membranes,
participating in the recognition and signal transduction of
membrane proteins. Phosphatidylcholine metabolism is one of
the most important components in maintaining the homeostasis of
the body (Zhao et al., 2021). The crucial role of phospholipid
metabolism in regulating lipid, lipoprotein, and systemic energy
metabolism has been extensively proven (Li et al., 2006; Jacobs
et al., 2008; Niebergall et al., 2011). The findings of the experiment
further confirm the pivotal role of the glycerophospholipid
metabolic pathway in the development of fatty liver. Therefore,

the targeting of glycerophospholipid metabolism pathway can
serve as a potential strategy for managing fatty liver.

In addition, the differences in the metabolism of sphingolipids,
glycerides, inositol phosphate, and glycosylphosphatidylinositol
anchoring biosynthesis between the 2 cell groups are also very
significant. Sphingolipids are a type of lipid that was initially
thought to be essential component of organelles and cell
membranes. Research has shown that sphingolipid molecules
also have biological activities and can participate in the signal
transduction of key physiological processes such as cell growth,
differentiation, proliferation, migration, and apoptosis (Maceyka
and Spiegel, 2014). Therefore, NEFA may affect lipid metabolism
disorder through the glycerophospholipid metabolism pathway.

5 Conclusion

Therefore, this study aimed to establish an in vitromodel of fatty
liver using NEFA and focus on lipidomics research to identify
differential lipid metabolites involved in the pathogenesis of
fatty liver.

The results showed that high concentration of NEFA is lipotoxic
to cells, promoting lipid accumulation. Further, lipidomics reveals
potential metabolites regulated by NEFA LPE (18:2), LPE (18:3),
LPE (18:1) via glycerophospholipid metabolism,
glycosylphosphatidylinositol (GPI)-anchor biosynthesis,
glycerolipid metabolism, sphingolipid metabolism, and inositol
phosphate metabolism, indicating their potential regulation role
in the pathogenesis of fatty liver.

In summary, this study has provided new insights into the
pathogenesis of fatty liver from the perspective of lipid metabolism.
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