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Chronic kidney disease (CKD) is a progressive disorder characterized by structural
and functional changes in the kidneys, providing a global health challenge with
significant impacts on mortality rates. Extracellular vesicles (EVs), are vital in the
physiological and pathological processes associated with CKD. They have been
shown tomodulate key pathways involved in renal injury, including inflammation,
fibrosis, apoptosis, and oxidative stress. Currently, the application research of EVs
in the diagnosis and treatment of CKD is highly prevalent. However, there is
currently a lack of standardized guidelines for their application, and various
methodologies have advantages and limitations. Consequently, we present an
comprehensive summary elucidating themultifaceted involvement of EVs in both
physiological and pathological aspects in CKD. Furthermore, we explore their
potential as biomarkers and diverse therapeutic roles in CKD. This review provides
an overview of the current state of research on application of EVs in the diagnosis
and therapeutic management of CKD.
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1 Introduction

Chronic kidney disease (CKD) is a progressive disorder that results from various causes,
typically defined as a reduction in renal function, an estimated glomerular filtration rate
(eGFR) of less than 60 mL/min per 1.73 m2, or markers of kidney damage (albuminuria,
haematuria, or abnormalities detected through laboratory testing or imaging) are present
for at least 3 months (Webster et al., 2017). CKD is caused by various factors such as
diabetes, hypertension, glomerulonephritis, which lead to irreversible impairment of renal
function and structure (Levey et al., 2015). Typically, CKD gradually develops into end-
stage renal disease (ESRD), leading to progressive uremia, electrolyte abnormalities, anemia,
mineral and bone metabolism abnormalities and acid-base imbalance. Without treatment,
it will inevitably result in death (Zarantonello et al., 2021). Currently, the intervention for
CKD primarily focuses on two aspects: slowing disease progression and reducing further
renal damage. Notably, four scientifically validated strategies have been applied to impede
the progression of kidney disease including regulating hypertension, using renin-
angiotensin-aldosterone system inhibitors, managing diabetes and hyperglycemia, as
well as correcting metabolic acidosis (Vassalotti et al., 2016). The global prevalence of
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CKD in 2017 was nearly 700 million. The global burden of CKD
increased significantly by 29.3% from 1990 to 2017 (Collaboration,
2020). Although current diagnostic and treatment methods for CKD
are feasible, it remains a significant threat to human health.
Therefore, the exploration of more sensitive biomarkers and
effective treatment approaches continues to be a major challenge
in diagnosing and treating CKD.

EVs are double-layer phospholipid vesicles secreted by cells and
commonly found in various body fluids or cell culture. Typically,
they can be classified into three distinct groups based on their
biological origins: exosomes, microvesicles (MVs), and apoptotic
bodies (ABs). In recent years, EV research has received extensive
attention (Elsharkasy et al., 2020). The constituents of EVs are
composed of proteins (e.g., heat-shock proteins, tetraspa-nins, and
Alix), lipids (e.g., ceramide and cholesterol), and nucleic acids (e.g.,
DNA, mRNAs, and microRNAs). With a large number of these
contents, EVs shuttle between cells and tissues, transferring signals
and mediating micro-environmental communication in certain
diseases (Lin et al., 2019; Li et al., 2020a; Li et al., 2020b; Wang
et al., 2020b). Thus, EVs can possess significant physiological and
pathological functions, including immune regulation, wound
healing facilitation, and modulation of tumor initiation and
progression (van Balkom et al., 2011).

Currently, due to their abundant sources and stable biological
activities, EVs possess remarkable diagnostic value as a minimally
invasive liquid biopsy for monitoring disease progression
(Colombo et al., 2014). An increasing number of EV-related
diagnostic biomolecules have been identified as potential
biomarkers for a wide range of diseases, including
cardiovascular diseases (Hafiane and Daskalopoulou, 2018),
cancer (Fitts et al., 2019), central nervous system disorders
(Kanninen et al., 2016), and CKD (Zhang et al., 2016).
Additionally, the therapeutic effect of EVs has emerged as
prominent area of research. EVs from various sources have been
shown to ameliorate the pathological status as well as postpone the
progression of many diseases including CKD (Ståhl et al., 2019;
Corrêa et al., 2021; Cheng and Hill, 2022). It has been reported that
a wide range of cell types such as fibroblasts, epithelial cells, blood
cells, adipocytes, neurons, stromal cells, tumor cells, chondrocytes
and mesenchymal stem cells (MSCs), exhibited the capability to
secrete EVs (Kalluri and LeBleu, 2020). Many studies have reported
multiple therapeutic roles of EVs in CKD by regulating pathways
involved in renal injury, including inflammation, fibrosis, apoptosis
and oxidative stress. Additionally, they also facilitate renal
regeneration by promoting angiogenesis and cell proliferation
(Nagaishi et al., 2016; Liu et al., 2018a; Ebrahim et al., 2018). In
this review, we aim to elucidate the role of EVs in the pathogenesis
of CKD and primarily focus on their potential as biomarkers and
therapeutic agents for CKD.

2 Biogenesis and isolation methods
of EVs

2.1 Biogenesis of EVs

The biogenesis of EVs is a highly complex process with
heterogeneity defined by factors such as size, cargo composition,

functional impact on recipient cells, and cellular origin. Exosomes
are the most extensively studied EVs in recent years. In 1984,
exosomes were first found in the supernatant of sheep
erythrocytes cultured in vitro (Pan and Johnstone, 1984).
Researchers noticed that certain vesicles could transfer
unnecessary proteins between cells. The process of exosome
generation involves two steps: first, the cell plasma membrane
double invaginates, wrapping around extracellular components
and cell membrane proteins to form early sorting endosomes
(ESEs). Secondly, these ESEs fuse together to form intracellular
multivesicular bodies (MVBs), which contain numerous
intraluminal vesicles (ILVs). ILVs are then secreted as exosomes
through fusion with the plasma membrane and exocytosis (Raposo
and Stoorvogel, 2013).

MVs are a type of EV with diameters ranging from 100 to
1,000 nm that originate by budding from the plasma membrane.
Unlike the early intracellular steps of exosome biogenesis, MV
biogenesis begins with the plasma membrane budding directly
outward (Clancy et al., 2021). The biogenesis mechanism begins
with the outward budding and pinching of the plasma membrane
(PM), which releases newly produced MVs straight into the
extracellular environment (Muralidharan-Chari et al., 2009).
Meanwhile, SCRT-dependent mechanisms and small GTPases
may both be involved in this process (Sedgwick et al., 2015;
Mathieu et al., 2019; Fang et al., 2024).

ABs are generated during the process of cell apoptosis, mainly
referring to the membrane shrinkage and invagination, division and
encapsulation of cytoplasm, containing DNA material and
organelles, forming small EVs with a diameter ranging from
100 to 5,000 nm (Phan et al., 2020). ABs can maintain
homeostasis and fine-tune the life cycle of multicellular
organisms, and mediate intercellular communication (Liu et al.,
2018c; Zhao et al., 2021).

2.2 Methodology for the isolation of EVs

Various techniques can be used for the isolation and purification
of EVs, such as ultracentrifugation, immunoaffinity capture, size-
based isolation, and polymer precipitation (ALTINTAs and
SAYLAN, 2023). Advantages, disadvantages, and methodologies
of each method are discussed.

2.2.1 Ultracentrifugation
Ultracentrifugation is the most popular method for EV isolation,

known as the gold standard owing to its high efficiency and low cost
(Livshits et al., 2015; Ludwig et al., 2018; Poupardin et al., 2024).
Because of the different densities, cells, platelets and large apoptotic
bodies will be separated from EVs by this method (Witwer et al.,
2013). The simplicity of the procedure and no need of sample
volume limitations are both significant advantages of this method.
Conversely, large sample sizes may result in a lack of purity time-
consuming process and lower EV yields (Clos-Sansalvador et al.,
2022). Ultracentrifugation is applicable for the isolation of EVs from
various body fluids. Although plasma is one of the most challenging
bodily fluid samples to handle in EV associated studies,
ultracentrifugation showed the highest purity of EVs compared
to several commercial isolation kits (Tian et al., 2020). However,
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in order to achieve higher EV purity and yield, it is essential to
optimize the ultracentrifugation method. An improved one-step
sucrose cushion ultracentrifugation (SUC) method was developed
based on the density and buffering properties of sucrose. Compared
to conventional ultracentrifugation methods, this method
demonstrates higher yields of EVs with better integrity and fewer
protein contaminants (Gupta et al., 2018). In future applications, the
combination of ultracentrifugation with various other isolation
methods is highly necessary.

2.2.2 Size-based techniques
Size exclusion chromatography (SEC) is a common EV

isolation method of size-based techniques. SEC relies on the
difference in size between EVs and other components in
biological samples (Benedikter et al., 2017). Compared with
ultracentrifugation and precipitation-based methods, SEC
causes less morphological changes in EVs, thereby
maintaining their integrity and biological activity. However,
the SEC relies on extensive laboratory equipment, which is
time-consuming (Kumar et al., 2024). Another popular size-
based EV isolation techniques is ultrafiltration. It uses
membranes with diverse pore sizes to selectively capture
molecules, particles, or vesicles of specific dimensions while
allowing smaller components to permeate through the filter
(Xu et al., 2017). Its advantages include a simple process, no
need for special equipment, and a high yield (Kim et al., 2021).
However, it can lead to protein residue, which poses challenges
for EV downstream analysis by proteomics. Tangential flow
filtration (TFF) uses a cross-flow technique to concentrate and
filter particles. Compared to ultrafiltration, TFF has better
membrane permeability and is capable of preventing
molecular accumulation and membrane fouling. Therefore, the
separation of EVs has high yield and is suitable for large-scale
research applications (Veerman et al., 2021; Visan et al., 2022).

In the past decade, size-based techniques are increasingly
applied for EV isolation (Poupardin et al., 2024). In clinical
samples, this technique can be effectively used for the
isolation of EVs from various sources including urine, plasma,
serum, and tissues. Typically, the isolated EVs could be well
applied to downstream analysis (Sedej et al., 2022; Mazzucco
et al., 2023; Zhang et al., 2023). Therefore, EVs isolated through
SEC are commonly used for protein research. However, the
complex process of size-based techniques needs simplification
in the future, such as simplified dichotomic SEC, which can be
applied for the bulk separation of EVs in clinical research (Guo
et al., 2021).

2.2.3 Immunoaffinity-based capture
Immunoaffinity-based capture relies on the distinctive

identification of surface biomarkers proteins on EVs. The method
can be achieved by incubating sample with magnetic beads coated
with antibodies against the surface proteins (Li et al., 2017). It is typically
used as a supplementary step combined with ultracentrifugation
method to further purify isolated EVs (Reiner et al., 2017). The
main advantage of the method is its ability to separate specific
subtype of EVs, resulting in high specificity and purity (Tschuschke
et al., 2020). However, immunocapture requires a large number of
antibody conjugates, leading to high costs and making it unnecessary

for use with large samples. Additionally, many biological materials are
added during the EV separation process, making immunoaffinity-based
capture difficult to apply for treatment purposes (McNamara et al.,
2018). Immunoaffinity-based capture of EVs is already possible with the
development of commercial kits. Most of these kits are coated with
antibodies against CD9, CD63, and CD81 (Wiklander et al., 2018). This
methodology is applicable for the isolation and characterization of
distinct EV subtypes, enabling high-purity research. As a result of its
efficiency and sensitivity, immunoaffinity-based capture has been
recognized as a useful method. However, further studies should
concentrate on the development of low-cost and less biological
material added method.

2.2.4 Polymer precipitation
Polymer precipitation is achieved by reducing the solubility

of EVs using polyethylene glycol (PEG) as a medium
(Konoshenko et al., 2018). Due to the simple operation and
high yield, polymer precipitation has ability for processing
large-scale samples, and offers the advantage of reduced
analysis time (Batrakova and Kim, 2015). Currently, there are
mature PEG-based commercial kits, such as ExoQuick™.
Polymer precipitation is commonly used for the isolation of
EVs in blood and cell culture (Poupardin et al., 2024). In
addition, polymer precipitation can achieve the highest yield
of EVs and genetic content, such as miRNA and mRNA,
compared to ultracentrifugation and ultrafiltration methods,
making it suitable for subsequent analysis (Patel et al., 2019).
However, one disadvantage of the method is that other
unnecessary precipitates can contaminate the separated EVs,
reducing their purity and recovery rate. It is not conducive to
downstream proteomics and other analytical work. To address
this issue, additional purification steps should be employed to
remove contaminants (Zarovni et al., 2015).

3 EVs in chronic kidney disease
pathogenesis

The pathology of CKD occurs inextricably with two
mechanisms: initial stimulation and persistent renal damage.
Initial stimulus factors include inflammation, immune response,
toxins, and underlying renal conditions. In this context, EVs
participate in CKD pathogenesis through intercellular
communication, facilitating content delivery and activating
signaling pathways in target cells or processing pathways
exclusive to cell contents (Hogan et al., 2009; Borges et al., 2013).
Mechanically, EVs contribute to the pathogenesis of CKD through
facilitating intercellular communication and promoting
inflammation and fibrosis (Figure 1).

3.1 EVs in intercellular communication

Renal EVs are generated and secreted by kidney cells, and
through intercellular communication, they have been linked to
renal function and disorders (Krause et al., 2015). Gildea et al.,
2014 demonstrated that cells in the upper segments of tubules
can release EVs that can be absorbed by downstream cells,
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transmitting active molecules to regulate cellular behavior.
Moreover, Street et al., 2011 first reported the functional
transfer of AQP2 via urinary EVs in murine kidney collecting
duct cells. An in vitro study showed that the activation of
glomerular endothelial cells (GEnC) could induce the transfer
of miR-200C-3p from GEnC to podocytes through EVs, affecting
the communication between GEnC and podocytes (Hill et al.,
2020). Similarly, EVs derived from injured podocytes may
mediate crosstalk between glomeruli and tubules, inducing
apoptosis in tubular interstitial cells and reducing tubular
function (Jeon et al., 2020). Meanwhile, long-distance cell-to-
cell communication mediated by EVs between distinct aspects of
kidney could amplify kidney injury, tubulointerstitial fibrosis
and inflammation (Munkonda et al., 2018; Hill et al., 2020). β-
catenin is a master controller in renal tubular injury and
fibrogenesis (Conduit et al., 2019; Miao et al., 2019). Chen
et al. confirmed that β-catenin activated tubular epithelial
cells to secrete EVs containing Osteopontin protein, which
binded to CD44 receptors in fibroblasts, promoting their
proliferation and activation (Chen et al., 2022b).
Consequently, the crosstalk mediated by EVs is widespread in
the kidney injury and the process of CKD. Regulating the
intercellular communication of EVs in renal cells is a
promising therapeutic strategy for CKD.

3.2 EVs in inflammation

Inflammation serves as a pivotal mechanism contributing to
the renal damage in CKD. EVs have the potential to trigger pro-
inflammatory responses, which may be attributed to the transfer of
inflammatory mediators (Mesri and Altieri, 1998; Distler et al.,
2006). During inflammation, both innate immune cells and
damaged cells can release EVs carrying damage associated
molecular patterns (DAMPs). These DAMPs can be either
attached to the surface of the EVs or encapsulated into them.
Meanwhile, DAMPs can activate macrophage toll-like receptors
(TLRs), leading to the stimulation of NF-κB signaling and
subsequent release of inflammatory cytokines and reactive
oxygen species (ROS) (Cao et al., 2015). In CKD, the injury of
proximal tubular epithelial cells (TECs) is closely associated with
the decline in renal function. Under hypoxia condition,
stimulation of proteinuria or physical damage leads to the
release of various pro-inflammatory cytokines by damaged
TECs, thereby eliciting an immune response (Nangaku, 2006;
Liu et al., 2018b). TECs can upregulate hypoxia-inducible factor
1α (HIF-1α) and release EVs enriched with miR-23a, which induce
macrophage reprogramming under hypoxia and promoting
tubulointerstitial inflammation (Li et al., 2019). Albuminuria is
a significant indicator of CKD and plays a vital role in the

FIGURE 1
EVs in the pathogenesis of CKD.
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development of tubulointerstitial inflammation related to CKD
(Liu et al., 2014). It is worth noting that proteinuria-stimulated
renal TECs release an increased number of EVs loaded with
inflammatory cytokine CCL2 mRNA, which are directly
transferred to macrophages. The transfer represents a critical
initial stage in albumin-induced tubulointerstitial inflammation
(Lv et al., 2018b). Although many studies have been conducted on
the relationship between EVs and inflammation, several unknown
mechanisms still need to be explored.

3.3 EVs in renal fibrosis

Renal fibrosis is a crucial pathological characteristic of CKD,
characterized by tubular atrophy, interstitial chronic
inflammation and fibrosis, glomerulosclerosis, and vascular
rarefaction. The mechanism is that renal injury leads to local
fibroblast activation, continuous synthesis of extracellular matrix
(ECM) proteins, resulting in ECM deposition, tissue damage, and
impaired renal function (Huang et al., 2023). EVs also have a role
in tubulointerstitial inflammation (Nangaku, 2006). Under
hypoxia condition, damaged renal tubular epithelial cells
secrete EVs containing TGF-β1 mRNA, thereby facilitating
adjacent fibroblast proliferation, alpha-smooth muscle actin
expression, and type I collagen production. Furthermore,
extensive researches have demonstrated that the stimulation of
TGF-β1 induced the release of EVs carrying miR-21 and miR-
216a from TECs, thereby activating neighbor cells through the
PTEN/Akt pathway to undergo epithelial-mesenchymal
transition (EMT) (Zheng et al., 2018; Qu et al., 2019). In the
condition of ischemia-reperfusion (IR), injured TECs were able
to secrete EVs containing miR-150, which directly stimulated
fibroblast and proliferation (Guan et al., 2020). The function of
EVs is not only involved in initiating CKD fibrosis but also plays a
key role in the progression of fibrosis is well documented.
Therefore, repressing the release of EVs may thus emerge as a
promising therapeutic strategy for CKD.

4 EVs as biomarkers of chronic
kidney disease

In CKD, early diagnosis holds paramount importance for
optimizing clinical treatment strategies and alleviating healthcare
burdens. EVs play a crucial role in the pathogenesis and
progression of CKD. Simultaneously, the potential application
of EVs and their cargo as biomarkers has been accepted by
researchers. Moreover, compared to other biomarkers such as
urinary protein or microprotein levels, EVs do not require
specific collection time. The diagnostic roles of EVs in CKD
will be discussed.

The expression of miR-21 is significantly upregulated in renal
tissue and closely associated with renal fibrosis (Denby and
Baker, 2016). This relationship has been consistently
demonstrated across various animal models of kidney disease,
including unilateral ureteral obstruction (UUO) and ischemia/
reperfusion (I/R) models (Zarjou et al., 2011). Moreover, the
urinary EV miR-21 level was significantly increased in CKD

patients, and it was positively correlated with the severity of
tubulointerstitial fibrosis as well as podocyte injury (Lv et al.,
2018a; Lange et al., 2019). The ability of miR-29c to reduce renal
fibrosis is achieved by inhibiting EMT and decreasing
extracellular matrix deposition (Chung et al., 2013), which
involves multiple signaling pathways such as AMPK/mTOR
(Shao et al., 2019), Wnt/β-Catenin (Huang et al., 2020) and
PI3K/AKT (Feng et al., 2022). Meanwhile, several studies have
demonstrated that miR-29c levels in urinary EVs were
significantly decreased in patients with CKD or renal fibrosis
compared to healthy people (Lv et al., 2018a; Chun-Yan et al.,
2018). MiR-192 specifically expresses in renal cortical tissues
(Ren et al., 2021) and is closely associated with the degree of renal
fibrosis, EMT, inflammation, and oxidative stress (Bhatt et al.,
2016; Ma et al., 2016). Similarly, urinary EV miR-192 was
significantly increased in DN patients with proteinuria,
suggesting that miR-192 could be used to distinguish between
normal albuminuria and microalbuminuria and provide a
reference for the early diagnosis of DN (Jia et al., 2016).
However, further investigation is needed to explore the
correlation between miR-192 derived from EVs and other
renal function indicators. Other studies showed that urinary
EV miR-181a was significant reduced in CKD patients at all
stages, as well as in DN patients (Khurana et al., 2017; Zha et al.,
2019; Liu et al., 2022). Furthermore, miR-181a overexpression
could reduce glomerulosclerosis and tubular epithelial injury
(Liu et al., 2018d).

As biomarkers, miRNA panels were important substances in
EVs, which exhibit potential to develop as biomarkers in CKD.
For example, Eissa et al. discovered that miR-15b, miR-34a, and
miR-636 were upregulated in urinary EVs of DKD patients by
PCR, and these urinary EV miRNAs were validated with 100%
diagnostic sensitivity in a large sample (Eissa et al., 2016).
Similarly, miR-21, miR-29c and miR-150 also can predict the
fibrosis progressing in Lupus Nephritis, as a urinary EV derived
multimarker panel (Solé et al., 2019). Furthermore, other RNA
components in EVs, such as circRNAs can be used as urine
diagnostic biomarkers for CKD (Cao et al., 2022a; Cao et al.,
2022b). However, this study did not determine the relationship
between urinary EV derived circRNA and kidney fibrosis, a
further mechanism studiy is needed.

Proteins carried by EVs also have potential as biomarkers. In
diabetic nephropathy (DN), increasing urinary EV derived AFM,
CP, and IGLV7-46 were upregulated with the DN progression,
regucalcin protein was significantly downregulated in both
urinary EVs and kidney tissue, while increasing C-megalin
protein was predictive of the progression of the albuminuric
stages (Zubiri et al., 2015; De et al., 2017; Du et al., 2023). The
proteome of urinary EVs has already been investigated in search of
potential indicators for renal diseases, however, prospective large-
scale research are necessary to confirm its accuracy.

Currently, due to the stable structure of proteins, increasing
numbers of studies have applied proteomics technology to search
relative proteins as biomarkers in CKD. However, compared with
transcriptomics technology, proteomics technology has higher
cost and more complex protocol. Thus, it is essential to establish a
panel of combined biomarkers for CKD using RNAs
and proteins.
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5 Therapeutic role of EVs in chronic
kidney disease

EV-based therapies for CKD are currently undergoing active
research. EVs have shown great potential as both therapeutics and
carriers for drug delivery (Table 1; Figure 2). In the field of kidney
disease treatment, current research primarily focuses on the
therapeutic prospects offered by EVs themselves. However, there
is a lack of established systematic therapeutic regimens in this field.
The therapeutic role of EVs in CKD will be discussed below,

including their application as a therapeutic agent, treatment
target and drug delivery carrier.

5.1 EVs as a therapeutic agent in chronic
kidney disease

Mesenchymal stem cells (MSCs) are a type of self-renewing
pluripotent cells that can be derived from various tissues and organs.
MSCs have the ability to prevent kidney injury by regulating the

TABLE 1 Therapeutic roles of EVs in CKD.

Kidney
disease

Models Source
of EVs

Cargos Mechanism Outcome Ref.

DN STZ-induced DN rats Ad-MSC miR-125a Regulate the activation HDAC1 and
ET-1

Inhibit DN progression and
alleviate the symptoms

Hao et al.
(2021)

RAS porcine model of metabolic
syndrome and renal artery

stenosis

Ad-MSC - Increase reparative macrophages,
upregulate the expression of IL-10

Decrease renal inflammation,
attenuated renal fibrosis

Eirin et al.
(2017)

DN db/db mice Ad-MSC miR-486 Inhibit the Smad1/mTOR signaling
pathway in podocyte

Prevent renal injury from
diabetes

Jin et al.
(2019)

RAS porcine model of metabolic
syndrome and renal artery

stenosis

Ad-MSC - Decrease microvascular oxidative
stress and apoptosis

Restore renal angiogenesis and
microvascular architecture

Eirin et al.
(2018)

CKD UUO mice BM-MSC miR-374a-5p Inhibit apoptosis by regulate
MAPK6/MK5/YAP axis

Prevent the progression of renal
fibrosis

Liang et al.
(2022a)

CKD UUO mice BM-MSC miR-21a-5p Inhibit glycolysis in TECs by
targeting PFKM

Ameliorate renal fibrosis Xu et al.
(2022)

CKD UUO rats BM-MSC miR-294,
miR-133

Prevent phosphorylation of SMAD2/
3 and ERK1/2

Ameliorate renal fibrosis Wang et al.
(2020a)

CKD UUO mice BM-MSC miR-186-5p Downregulate the expression of
Smad5

Ameliorate renal fibrosis Yang et al.
(2022)

DN STZ-induced DN rats BM-MSC - Revert oxidative stress, ER stress,
inflammatory condition, and

apoptosis

Inhibit DN progression Khamis
et al.
(2023)

CKD 5/6 subtotal nephrectomy
mice

BM-MSC - Prevent fibrosis, reduce interstitial
lymphocyte infiltrates

Ameliorate renal injury He et al.
(2012)

CKD UUO mice BM-MSC Let-7i-5p
Antagomir

Regulate TSC1/mTOR signaling Reduce renal fibrosis and
improve kidney function

Jin et al.
(2021)

CKD UUO mice Huc-MSC miR-874-3p Target RIPK1/PGAM5 to regulate
programmed necrosis and
mitochondrial division

Attenuate renal tubular
epithelial cell injury and enhance

repair

Yu et al.
(2023)

CKD UUO mice Huc-MSC CK1δ and β-
TRCP

Transport CK1δ and β-TRCP
system, inhibit YAP activation

Reduce collagen deposition,
alleviate renal fibrosis

Ji et al.
(2020)

DN STZ-induced DN rats Huc-MSC miR-146a-5p Facilitate M2 macrophage
polarization by targeting TRAF6

Restore renal function in DN
rats

Zhang
et al.

(2022b)

DN db/db mice Huc-MSC miR-424-5p inhibit high glucose-Induce
apoptosis and EMT through of YAP1

Decrease cell apoptosis,
inhibit EMT

Cui et al.
(2022)

DN STZ-induced DN mice Huc-MSC miR-451a Inhibit cell cycle inhibitors to restart
the blocked cell cycle and

reverse EMT

Promote the repair of injured
kidney structure and function,

improve EMT

Zhong
et al.
(2018)

CKD UUO mice Primary mouse
satellite cells

miR-29 Downregulate YY1 and TGF-β
pathway proteins

Ameliorate skeletal muscle
atrophy and attenuate kidney

fibrosis

Wang et al.
(2019)
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release of EVs. MSC-derived EVs can be delivered to the kidney
through intraperitoneal, arteriovenous, and intraosseous routes,
exerting their protective effects on the kidneys via paracrine
mechanisms such as anti-fibrosis, anti-oxidative stress, anti-
apoptosis, and pro-angiogenesis (Peired et al., 2016).

Bone marrow derived MSCs (BMMSCs) have been extensively
investigated and are considered the primary source of therapeutic
EVs (Pittenger et al., 1999; Tang et al., 2022). Zhang et al. (2022a)
discovered that miR-16 and miR-21 in BMMSC EVs could induce
the polarization of a specific anti-inflammatory macrophage
phenotype within the kidneys of MRL/lpr mice, thus alleviating
lupus nephritis. The miR-21a-5p carried by BMMSC EVs can
effectively suppress the expression of phosphofructokinase muscle
isoform, which is the rate-limiting enzyme in glycolysis, thereby
reducing glycolytic activity in TECs. Consequently, this
mechanism contributes to the amelioration of renal fibrosis in
UUO mice (Xu et al., 2022).

The abundant source and low immunogenicity make human
umbilical cord mesenchymal stem cell (hUCMSCs) a proper choice
for allogeneic cell therapy, highlighting their suitability as a type of
stem cells (Ding et al., 2018). HUCMSC EVs possess the benefits of
hUCMSCs while evading their drawbacks (Huang et al., 2022). The
protective effect of hUCMSC EVs on CKD mainly manifests
through the regulation of inflammation and immunity. The
presence of miR-22-3p in hUCMSC EVs exhibits anti-
inflammatory and nephroprotective effects in diabetic mice by
downregulating NLRP3 expression, while also conferring
podocyte protection (Wang et al., 2023). MiR-146a-5p in
hUCMSC EVs targeted the TRAF6/STAT1 pathway, thereby
facilitating macrophage polarization towards the M2 phenotype
and ameliorating renal injury in DN rats (Zhang et al., 2022b).

Compared to bone marrow and umbilical cord, adipose tissue
provides a less invasive and more accessible source of stem cells
(Mazini et al., 2020). Zhu et al., 2017 demonstrated that EVs derived

FIGURE 2
Therapeutic roles of EVs in CKD.
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from adipose-derived MSCs (ADMSCs) possessed the ability to
counteract the AKI-CKD transition by suppressing the expression of
sox9 in TECs. In the porcine model of metabolic syndrome and renal
artery stenosis, Eirin et al. observed that ADMSC EVs exhibited
multiple functions, including enhancing modulation of renal
angiogenic factors expression, amelioration of kidney
inflammation, improvement in medullary hypoxia and fibrosis,
thereby presenting a potential therapeutic approach for
addressing metabolic syndrome and renal artery stenosis (Eirin
et al., 2017; Eirin et al., 2018).

5.2 EVs as a therapeutic target in chronic
kidney disease

As previously mentioned, EVs play a pivotal role in biological
processes of CKD. Consequently, they have emerged as a promising
therapeutic target for the treatment of CKD. Zhuang et al., 2022
demonstrated that GABA could mitigate the pro-inflammatory
effects of macrophages on podocytes by modulating miR-21a-5p/
miR-25-3p in macrophage-derived EVs. Ding et al., 2021 discovered
that the exosome inhibitor GW4869 effectively attenuated cyst
growth in Autosomal Dominant Polycystic Kidney Disease
(ADPKD) and reduced macrophage infiltration in cystic kidneys.
Moreover, systemic administration of GW4869 did not induce
hepatic or renal toxicity. Pharmacological inhibition of exosome
biogenesis and release, exemplified by GW4869, shows promise as a
potential therapeutic strategy for the treatment of ADPKD.

Numerous traditional Chinese medicines and natural products
have demonstrated efficacy in ameliorating chronic kidney disease
through the utilization of EVs. Panax ginseng saponins have the
potential to alleviate steroid resistance in the mouse glomerular
endothelial cells (GECs) by modulating hormone-resistant signals
present in lymph-derived EVs (Chen et al., 2022a). The Jian-Pi-Yi-
Shen Formula exerts a reno-protective effect in adenine-induced
CKD rats by attenuating the release of miR-192-5p from
macrophage-derived EVs (Liang et al., 2022b).

5.3 EVs as a drug delivery system in chronic
kidney disease

EVs have been extensively considered as an efficient drug
delivery system in recent years due to their compatibility, low
toxicity, long half-life, non-immunogenicity, and effective
targeting ability towards various cells (Rajput et al., 2022). There
are two methods for packaging cargo into EVs, including
endogenous and exogenous loading. Exogenous drug loading,
which involves extracting and purifying EVs, and then
encapsulating therapeutic drugs in EVs, has the advantage of
simple preparation. Common methods include electroporation,
co-incubation, ultrasound, chemical transfection, and repeated
freeze-thaw cycles. Another method is endogenous drug loading,
which involves using genetic engineering techniques or co
incubation to introduce target molecules into donor cells,
followed by secretion of extracellular vesicles from the donor
cells, and finally recovering the drug loaded EVs through
separation and purification (Gupta et al., 2021).

Sun et al. generated and isolated ADMSC-derived EVs
overexpressing GNDF using lentiviral transduction,
demonstrating significant attenuation of renal fibrosis in UUO
mice. Moreover, these EVs exhibited the ability to enhance
peritubular capillary angiogenesis following kidney injury by
activating the SIRT1/eNOS pathway (Chen et al., 2020).
Endogenous cargo involves genetically modifying parent cells to
regulate the cargo during EVs biogenesis (Gupta et al., 2021). Wang
et al., 2019 used engineered EVs vectors containing miRNA-29 and
targeting peptide RVG, enabling specific renal targeting. In the
fibrotic kidneys in UUO mice, these engineered EVs exhibited
enhanced accumulation and effectively mitigated renal fibrosis by
suppressing YY1 and TGF-β pathway proteins. This study
demonstrates the feasibility of constructing therapeutic-loaded
engineered EVs.

Besides, enhancing the targeting ability of EVs to kidney injury
sites can significantly enhance the therapeutic effect of EVs in CKD.
One strategy is the utilization of peptides or antibodies that exhibit
specific binding affinity towards specific molecules. Kidney injury
molecule-1 (Kim-1) is recognized as a marker for tubular injury in
AKI (Vaidya et al., 2010). Tang et al., 2021 established a red blood
cell-derived EVs (RBCEVs)based drug delivery platform and
conjugated Kim-1-targeting LTH peptides to RBCEVs to target
renal tubular injury. In addition, Wu et al. constructed a
neutrophil membrane-engineered nanoparticle (NEX) that
significantly promoted targeted enrichment of EVs in damaged
renal tissue, thereby improving AKI (Wu et al., 2022). In
addition, various hybrid approaches from tumor treatment
models have provided valuable insights for targeted EV therapy
in CKD. These methods include the hybridization of synthetic
liposomes with EVs and the conjugation of diacyllipid-aptamer
conjugates with EVs (Zou et al., 2019), providing support for
precise targeted therapy of CKD.

6 Conclusion and perspective

EVs in the diagnosis and treatment of CKD have made a lot of
advancements, thus holding immense potential for future
applications. The distinctive characteristics of EVs, including
their inherent stability, biocompatibility, and capacity for
intercellular biomolecule transfer, render them highly appealing
candidates for non-invasive diagnostics and targeted therapeutics
in CKD. However, as research progresses, the methods of EV
isolation and their clinical applications still require further
exploration.

Despite increasing studies about EVs have been investigated, our
comprehension of the EV cellular and molecular mechanisms
remains limited. The technical difficulty of precisely
distinguishing specific subtypes of EVs poses a significant
limitation. The development of multi-omics technology provides
technical basis to reveal the mechanism of EVs. Hence, we suggest
the construction of a public database using multi-omics data
(genome, transcriptome, proteome, and metabolome) on EVs.

EVs are currently isolated and purified using various techniques,
but there are still some areas that need improvement. Firstly, there is
no standardized method for EV isolation. This lack of
standardization makes it challenging to compare results across
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studies and hinders the reproducibility of research findings.
Therefore, it is important to establish standardized isolation
protocols that can be widely adopted. Secondly, most isolation
methods rely on the physical characteristics of EVs, which may
also co-isolate other extracellular vesicles or contaminants, leading
to impure EV preparations. The combined use of EV isolation
methods has become a common trend in recent years
(Poupardin et al., 2024). Hence, we suggest that several strategies
such as the combination of isolationmethods and the use of multiple
markers should be used to enhance the specificity of EV isolation.

Through extensive research and experimentation, researchers
have found some potential renal-specific EV-derived biomarkers
that can serve as diagnostic tools for CKD in the future. The
detection of these specific markers in urine samples provides
valuable insights into the underlying pathophysiology and
progression of CKD, enabling early intervention and
personalized treatment strategies. Nonetheless, the current
studies have small sample sizes, and larger clinical samples
will be necessary in the future to determine the potential of
specific EVs as biomarkers. Although some EV-derived
biomarkers associated with CKD have been discovered, further
identification and confirmation of specific biomarkers for
particular diseases are necessary. This will enhance the
accuracy and reliability of EVs as biomarkers for CKD.

EVs play a pivotal role in intercellular communication and the
transfer of miRNAs, mRNA, proteins, and other bioactive
molecules. These properties can be exploited for therapeutic
purposes in CKD. Researchers have also investigated the
potential of engineering EVs to delivery therapeutic cargo,
including anti-inflammatory agents, growth factors, and gene-
editing tools, directly to sites of renal injury. These targeted
strategies have exhibited promising outcomes in preclinical
investigations, demonstrating the capacity of EVs to ameliorate
renal damage, facilitate tissue regeneration, and enhance overall
renal function. However, EVs in the treatment of CKD still have
some issues that need to be addressed. Achieving targeted delivery
and ensuring specificity remains a challenge. Novel techniques and
strategies such as surface modification, specific receptor recognition,
and the design of targeted delivery nanoparticles, can be developed
to resolve the problem. Additionally, the safety and long-term effects
of EV-based therapies need to be thoroughly assessed through
rigorous preclinical and clinical studies. Furthermore, the
development of EV-based drug delivery systems offers great
potential for individualized and targeted CKD therapy. By
engineering EVs with specific surface proteins and loading them
with therapeutic agents, it becomes possible to precisely target
afflicted cells or tissues, minimizing off-target effects and
optimizing treatment outcomes. Moreover, the integration of EVs
with nanotechnology and bioengineering approaches will facilitate
the development of novel platforms for controlled release and
enhanced cargo delivery to the kidneys.

Currently, the use of EVs for treating CKD is still at initial stage.
Research on targeted delivery of EVs is mainly focused on the heart
and tumors, with limited studies related to the kidneys. Most
therapeutic studies using EVs for CKD lack material science
support and overlook kidney targeting, which is an important

clinical objective. Therefore, we advocate that in future research
directions, emphasis should be placed on the targeting of EVs to sites
of renal injury.

In conclusion, with ongoing research, technological
advancements, EVs have the potential to revolutionize the field
of renal diagnostics and therapeutics. The ability to non-invasively
detect and monitor CKD progress, coupled with targeted and
personalized treatments using EV-based platforms, holds promise
for improving patient outcomes and reducing the burden of
CKD worldwide.
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