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Introduction: Chronic hyperglycemia-induced oxidative stress plays a crucial
role in the development of diabetic nephropathy (DN). Moreover, adverse
extracellular matrix (ECM) accumulation elevates renal resistive index leading
to progressive worsening of the pathology in DN. Nimbidiol is an alpha-
glucosidase inhibitor, isolated from the medicinal plant, ‘neem’ (Azadirachta
indica) and reported as a promising anti-diabetic compound. Previously, a
myriad of studies demonstrated an anti-oxidative property of a broad-
spectrum neem-extracts in various diseases including diabetes. Our recent
study has shown that Nimbidiol protects diabetic mice from fibrotic renal
dysfunction in part by mitigating adverse ECM accumulation. However, the
precise mechanism remains poorly understood.

Methods: The present study aimed to investigate whether Nimbidiol ameliorates
renal injury by reducing oxidative stress in type-1 diabetes. To test the hypothesis,
wild-type (C57BL/6J) and diabetic Akita (C57BL/6-Ins2Akita/J) mice aged
10–14 weeks were used to treat with saline or Nimbidiol (400 μg kg−1 day−1)
for 8 weeks.

Results: Diabetic mice showed elevated blood pressure, increased renal resistive
index, and decreased renal vasculature compared to wild-type control. In
diabetic kidney, reactive oxygen species and the expression levels of 4HNE,
p22phox, Nox4, and ROMO1 were increased while GSH: GSSG, and the
expression levels of SOD-1, SOD-2, and catalase were decreased. Further,
eNOS, ACE2, Sirt1 and IL-10 were found to be downregulated while iNOS and
IL-17 were upregulated in diabetic kidney. The changes were accompanied by
elevated expression of the renal injury markers viz., lipocalin-2 and KIM-1 in
diabetic kidney. Moreover, an upregulation of p-NF-κB and a downregulation of
IkBα were observed in diabetic kidney compared to the control. Nimbidiol
ameliorated these pathological changes in diabetic mice.

Conclusion: Altogether, the data of our study suggest that oxidative stress largely
contributes to the diabetic renal injury, and Nimbidiol mitigates redox imbalance
and thereby protects kidney in part by inhibiting NF-κB signaling pathway in type-
1 diabetes.
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1 Introduction

Diabetic nephropathy (DN) is the major microvascular
complication of Diabetes Mellitus (DM) and has emerged as the
principal cause of morbidity and mortality among diabetic patients.
If DN remains untreated, hyperglycemia-induced renal disfunction
progress to end-stage renal disease (ESRD), predominantly in type-1
diabetic (T1D) patients (Molitch et al., 2003; Boright et al., 2005;
Tramonti and Kanwar, 2011; Grutzmacher et al., 2013; Kundu et al.,
2015; Juin et al., 2021).

Oxidative stress has been shown to play a crucial role in vascular
complications including DN and hypertension (Magenta et al.,
2013). Further, previous reports also suggest that diabetes-
induced oxidative stress regulates diabetic nephropathy (Zitka
et al., 2012). Oxidative stress is primarily manifested by the
excessive reactive oxygen species (ROS) production in the
presence of inadequate or faulty antioxidant defence mechanism.
It has been also demonstrated that hyperglycemia plays a causal role
in the production of ROS (Koya et al., 2003; Gao et al., 2016). A
plethora of studies have already shown the direct involvement of
ROS in the kidney injury including DN (Koya et al., 2003; John
et al., 2017).

In addition, hyperglycemia is known to induce vascular
alterations leading to hypertension in T1D (Brownlee, 2005;
Ceriello, 2006; de Boer et al., 2008). Although, hypertension is
presumably associated with underlying nephropathy in type-2
diabetic patients due to concomitant ‘essential’ hypertension or
renovascular complications, it is typically caused by the underlying
DN in T1D patients (Molitch et al., 2004). It has been also
demonstrated that hypertension-exacerbated glomerular
dysfunction is mediated through oxidative stress in DN (Tomohiro
et al., 2007).

Previous study suggested that adverse accumulation of
extracellular matrix increases renal arterial restive index in
diabetic kidney resulting to elevated blood pressure (John
et al., 2017). Nevertheless, the co-existence of diabetes and
hypertension synergistically induce oxidative stress and
chronic inflammation, which in turn contribute to the
pathogenesis of DN (Tomohiro et al., 2007; Lopes de Faria
et al., 2011). The intricate relationship between oxidative
stress and inflammation is a well-known fact. The frequent
co-existence of oxidative stress and inflammation has been
evidenced in various organs including the kidney (Vaziri and
Rodriguez-Iturbe, 2006; Kern, 2007; Lopes de Faria et al., 2011).
While the inflammatory cells instigate oxidative stress through
the production of ROS, oxidative stress triggers inflammation
via NF-κB-mediated upregulation of the pro-inflammatory
molecules (Calcutt et al., 2009; Lopes de Faria et al., 2011).

A wide range of active constituents derived from the
medicinal plant, Azadirachta indica (neem) have been
implicated in the management of different diseases by
regulating oxidative stress and inflammation (Alzohairy,
2016). Our recent study demonstrated that neem-derived
diterpenoid Nimbidiol possesses anti-alpha-glucosidase
activity that helps to ameliorate hyperglycemia thereby
protecting diabetic mice from fibrotic renal dysfunction in
part by mitigating adverse ECM accumulation (Juin et al.,
2022). In the present study, we evaluated the contribution of

oxidative stress in the diabetic renal injury and whether
Nimbidiol protects kidney in T1D.

2 Materials and methods

2.1 Animals

Ten-fourteen-week-old male wild-type (WT) C57BL/6J (stock
no. 000664) and type-1 diabetic (Akita) C57BL/6-Ins2Akita/J (stock
no. 003548) mice were bought from the Jackson Laboratory (Bar
Harbor, ME). The mice were maintained in the University of
Louisville’s animal facility and fed ad libitum with standard chow
and water. The animal experiments were performed according to the
approved protocols (Approval No. 20683, dated 2 December 2020)
by the institutional animal care and use committee (IACUC) of the
University of Louisville School of Medicine and conformed to the
Guide for the Care and Use of Laboratory Animals published by the
National Institutes of Health (NIH Publication, 2011), U.S.A. WT
and Akita mice were either treated with saline or Nimbidiol
(0.40 mg kg−1 d−1) for 8 weeks with a micro-osmotic pump. The
dose of Nimbidiol was determined based on the optimized dose in
our previous study (Juin et al., 2023). The four experimental groups
were termed as ‘WT+ Saline’, ‘WT+Nimbidiol’, ‘Akita + Saline’ and
‘Akita + Nimbidiol’. At the end of the experiment, 2X
tribromoethanol (TBE) was used to euthanize the mice, and the
samples were collected.

2.2 Chemicals

Dihydroethidium (cat. no.: D11347) was purchased from Thermo
Fisher Scientific (Carlsbad, CA). The detection kit for GSH: GSSG
(cat. no. ab138881) was procured from Abcam (Cambridge, MA).
Assay kits for SOD (cat. no. 706002) and catalase (cat. no. 707002)
activity were purchased from Cayman Chemicals (Ann Arbor, MI).
Tween 20 (cat. no. M147) was from VWR Chemicals, LLC (Solon,
OH), and polyvinylidene fluoride (cat. no. 1620177) membrane was
from Bio-Rad (Hercules, CA). Non-fat dry milk powder (cat. no.
M17200) and Bovine Serum Albumin (cat. no. A30075) were
procured from Research Products International Corp. (Mt.
Prospect, IL, USA). Agarose (cat. no. BP-160) was bought from
Fisher Scientific (Fair Lawn, NJ). Optimal Cutting Temperature
compound (cat. no. 23-730–571) was purchased from Fisher
Healthcare, (Houston, TX). Nimbidiol (cat. no. SMB00209) was
purchased from Sigma-Aldrich (St. Louis, MO).

2.3 Measurement of blood pressure

Blood pressure (BP) of the mice was measured every fortnight by
the tail-cuff method using the ‘CODA™ Non-Invasive Blood
Pressure System’ (Kent Scientific Corporation, Torrington, CT)
as described previously (Majumder et al., 2022). Mice were
trained with BP holder in a few 15 min sessions a week prior BP
measurement. Mice were placed on an animal warming platform
putting in the BP holder and acclimatised for 10 min before
measuring the BP.
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2.4 Renal ultrasonography

The mice were anesthetized with isoflurane and then placed on
a warm (37.5°C) platform supinely. An ultrasound transmission gel
(Other-Sonic; Pharmaceutial Innovations, Inc., Newark, NJ, USA)
was applied on the depilated skin and ultrasound imaging was
performed using a Vevo 2,100 system (VisualSonics, Toronto, ON,
Canada, USA). The left kidney was scanned in the short axis by the
transducer, MS550D (22–55 MHz). Peak systolic velocity (PSV)
and end-diastolic velocity (EDV) (mm/sec) of the renal arterial
blood flow was recorded in the Pulsed-Wave Doppler mode. Renal
arterial resistive index (RI) was obtained by analysing the
cine loops.

2.5 Renal angiography

Barium angiography was performed to evaluate renal vascular
density as described previously (Pushpakumar et al., 2020).
Barium sulfate (0.1 g/mL) was introduced into the kidney
through the infrarenal aorta using a PE10 catheter (ID -
0.28 mm; Franklin Lake, NJ, USA). Renal angiogram was
obtained using Kodak In-Vivo Imaging Systems FX Pro
(Molecular Imaging System, Carestream Health Inc.,
Rochester, NY, USA). Density of the vessels was quantified
using ‘VesSeg software tool’.

2.6 Measurement of reactive oxygen
species (ROS)

Dihydroethidium (DHE) staining was used to measure a major
ROS, i.e., superoxide (O2•−) in the kidney as described elsewhere
(John et al., 2017). In brief, ice-cold acetone fixed kidney
cryosections were incubated with freshly prepared 5 µM DHE
solution for 15 min at room temperature in a humidified
chamber avoiding exposure to light. The stained sections were
imaged by an Olympus FluoView1000 confocal microscope (B&B
Microscope, Pittsburgh, PA, USA) and the fluorescence intensity
was determined using ‘ImageJ’ software.

2.7 Western blotting

Total protein was extracted from the kidney by RIPA buffer
(Boston BioProducts, Worcester, MA, USA), containing
phenylmethylsulfonyl fluoride and protease inhibitor cocktail
(Sigma, St. Louis, MO, USA). The protein was quantified by
Bradford assay. An equal amount protein was resolved by SDS-
PAGE and Western blotting was performed following the standard
protocol as described previously (Juin et al., 2021). GAPDH was
used as a loading control for normalization of the relative expression
of protein. A list of antibodies along with the sources, catalog
numbers, and dilutions was provided in Table 1. ‘ImageJ’

TABLE 1 List of antibodies.

Antibody Source Catalog number Dilution

4-HNE Thermo Fisher Scientific (Carlsbad, CA) MA5-27570 1:1,000

IL-17A Thermo Fisher Scientific (Carlsbad, CA) PA5-106856 1:1,000

ROMO1 Abcam (Cambridge, MA) ab139353 1:1,000

IL-10 Abcam (Cambridge, MA) ab189392 1:1,000

KIM-1 Abcam (Cambridge, MA) ab47635 1:1,000

Lipocalin-2 R&D Systems, Inc. (Minneapolis, MN) AF1857 1:4,000

p-NF-κB (p65) Cell Signaling Technology (Danvers, MA) 3,033 1:1,000

IkBα Cell Signaling Technology (Danvers, MA) 9,242 1:1,000

Sirt1 Cell Signaling Technology (Danvers, MA) 8,469 1:1,000

eNOS BD Biosciences (San Jose, CA) 610,297 1:2,500

iNOS BD Biosciences (San Jose, CA) 610,329 1:2000

GAPDH Santa Cruz Biotechnology (Dallas, TX) sc-365062 1:1,000

catalase Santa Cruz Biotechnology (Dallas, TX) sc-50508 1:1,000

SOD-1 Santa Cruz Biotechnology (Dallas, TX) sc-101523 1:1,000

ACE2 Santa Cruz Biotechnology (Dallas, TX) sc-390851 1:1,000

p22phox Santa Cruz Biotechnology (Dallas, TX) sc-20781 1:1,000

Nox4 Santa Cruz Biotechnology (Dallas, TX) sc-55142 1:1,000

anti-rabbit IgG-HRP Santa Cruz Biotechnology (Dallas, TX) sc-2357 1:1,000

anti-mouse IgG-HRP Santa Cruz Biotechnology (Dallas, TX) sc-516102 1:1,000

SOD-2 MilliporeSigma (Burlington, MA) 06-984 1:1,000
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software was used to quantify the protein bands by
densitometric analysis.

2.8 Assessment of the reduced to oxidized
glutathione ratio (GSH: GSSG)

An assay kit (refer to the ‘Chemicals and Antibodies’ section)
was used to evaluate the ratio for the reduced to oxidized glutathione
(GSH: GSSG) following the manufacturer’s instructions as
mentioned elsewhere (Pushpakumar et al., 2020).

2.9 Determination of superoxide dismutase
(SOD) and catalase activity

Total SOD and catalase activity was determined using Assay kits
(refer to the ‘Chemicals’ section) according to the manufacturer’s
protocol as described previously (Pushpakumar et al., 2020).

2.10 RNA isolation and semi-quantitative
RT-PCR

Total RNA was extracted from the kidney using Trizol reagent
(cat. no. 15596-026, Invitrogen, Carlsbad, CA, USA). cDNA was
synthesized from 1 µg of isolated total RNA by reverse-transcription
using an EasyScript cDNA Synthesis kit (cat. no. G234, MidSci, St.
Louis, MO, USA) according to the manufacturer’s protocol. Reverse
transcription-polymerase chain reaction (RT-PCR) was performed
to amplify cDNA using the GoTaq Hot Start Green Master Mix (cat.
no. M5122, Promega, Madison, WI, USA) as per manufacturer’s
instructions. After PCR amplification, the product was subjected to
electrophoresis on 1.5% agarose gel and a ChemiDoc XRS system
(Bo-Rad, Hercules, CA) was used to visualize the bands. The band
intensity was analysed by densitometry with ‘ImageJ’. A list of the
primer sequences (Invitrogen, Carlsbad, CA, USA) are shown
in Table 2.

2.11 Statistical analysis

The experimental data are represented as mean ± standard
deviation (SD) from 6 mice/group. Statistical significance was
determined by the one-way or two-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test using GraphPad
Prism 9 software. p < 0.05 was considered to be statistically
significant.

3 Results

3.1 Nimbidiol treatment mitigated high
blood pressure in diabetic mice

At the beginning of the experiment (0 weeks), saline-treated
diabetic Akita mice showed higher systolic, diastolic, and mean
blood pressure (BP) compared the age-matched WT control
(Figures 1A–C). BP in Akita mice continued to increase and
reached to the peak at 4 week and thereafter remained constant
(Figures 1A–C). Interestingly, Nimbidiol-treatment to Akita mice
significantly reduced systolic, diastolic, and mean BP at 4 weeks
onwards compared to that of saline-treated Akita mice (Figures
1A–C). The reduction of BP was maximum at 6 week of the
Nimbidiol-treatment and thereafter it remained constant till the end
of the experiment, i.e., 8 week (Figures 1A–C). BPwas unchanged in the
Nimbidiol-treatedWTmice compared to the saline-treatedWT control
throughout the experiment (Figures 1A–C).

3.2 Nimbidiol attenuated elevated resistive
index (RI) in the renal artery of diabetic mice

Renal arterial resistive index (RI) is the measure of vascular
resistance that serves as a prognostic marker of renal outcome
associated with diabetes and hypertension (Weber et al., 2017;
Li et al., 2021). Therefore, we assessed renal arterial RI of the
mice by ultrasonography and tested whether Nimbidiol
influences vascular resistance. There was no significant
change in RI between WT mice-treated with saline and
Nimbidiol (Figures 2A, B). Akita mice exhibited significantly
elevated renal arterial RI compared to that of WT control
(Figures 2A, B). Nimbidiol-treatment to Akita mice
significantly decreased renal arterial RI compared to the
saline-treated Akita mice (Figures 2A, B).

3.3 Nimbidiol improved vascular density in
the kidney of diabetic mice

In order to evaluate renal vasculature, barium angiography was
performed. Compared to the WT control, total renal vascular
density of the Akita mice was significantly reduced (Figures 3A,
B). Nimbidiol-treatment to Akita mice significantly increased
vascular density compared to the Akita mice that received saline
(Figures 3A, B). No significant change in total vasculature was
observed between saline- and Nimbidiol-treated WT mice
(Figures 3A, B).

TABLE 2 Primer sequences.

Forward Reverse

IL-10 5′AGATCTCCGAGATGCCTTCA3′ 5′CCGTGGAGCAGGTGAAGAAT3′

IL-17 5′GCAAGAGATCCTGGTCCTGAAG3′ 5′AGCATCTTCTCGACCCTGAAAG3′

GAPDH 5′GTCAAGGCCGAGAATGGGAA3′ 5′GGCCTCACCCCATTTGATGT3′
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3.4 Nimbidiol alleviated oxidative stress in
the diabetic kidney

To assess reactive oxygen species (ROS) levels, dihydroethidium
(DHE) staining was performed. The ROS production remained
unchanged in the kidney of WT mice-treated saline and
Nimbidiol (Figures 4A,B). Compared to the WT control, saline-
treated Akita mice demonstrated an elevation in the ROS
production as evidenced a significant increase in the fluorescence
intensity in the glomerular and tubular regions of the Akita mice
receiving saline (Figures 4A,B). It was interesting to note that
Nimbidiol treatment to Akita mice significantly reduced the
ROS production that is comparable to that of WT control
(Figures 4A, B).

The lipid peroxidation product, 4-hydroxynonenal (4-HNE)
is widely considered as a crucial oxidative stress marker that
contributes to the hypertension and diabetic complications
including DN (Calabrese et al., 2007; Yang et al., 2014; Csala
et al., 2015; Yu et al., 2018; Dham et al., 2021). Therefore, we
measured the expression of 4-HNE in the kidney. Our results

showed that there was no significant difference in 4-HNE
expression between WT mice treated with saline and
Nimbidiol (Figure 4C). We observed a significant
upregulation of 4-HNE in the kidney of saline-treated
Akita mice, which was mitigated by Nimbidiol
treatment (Figure 4C).

The ratio of reduced to oxidized glutathione (GSH: GSSG)
serves as an important indicator of oxidative stress in the
diabetic complications including DN (Zitka et al., 2012). To
investigate whether elevated ROS production was associated
with the imbalance in the ratio of the reduced to oxidized
glutathione, we evaluated reduced and oxidized glutathione
in the kidney of the experimental mice groups. Our results
showed that there was no significant difference in the ratio of the
reduced to oxidized glutathione in the kidney of saline- and
Nimbidiol-treated WT mice (Figure 4D). However, the ratio
was drastically decreased in the diabetic kidney compared to
that of WT control (Figure 4D). Interestingly, Nimbidiol
treatment ameliorated the adverse ratio in diabetic
mice (Figure 4D).

FIGURE 1
Nimbidiol treatment mitigated high blood pressure in diabetic mice. Time course changes of (A) systolic, (B) diastolic, and (C) mean arterial blood
pressure was monitored by the tail-cuff method. Data are mean ± SD (n = 6/group). *p < 0.05 vs. WT + Saline, WT + Nimbidiol and Akita + Nimbidiol,
†p < 0.05 vs. Akita + Saline.
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3.5 Nimbidiol ameliorated the expression of
p22phox, Nox4, ROMO1, SOD and catalase
in the diabetic kidney

NADPH oxidase (Nox) system serves as the important source of
ROS production (Pushpakumar et al., 2017). Nox4, the most
abundant isoform of Nox present in the kidney, and another
important Nox subunit p22phox have been reported to be
involved in diabetes and hypertension (Etoh et al., 2003;
Watanabe et al., 2013; Munoz et al., 2020). Therefore, the
expression levels of Nox4 and p22phox were measured by
Western blot analyses. Akita mice showed elevated expression of
Nox4 and p22phox in the kidney compared to the WT control
(Figure 5A). Nimbidiol treatment to Akita mice significantly
reduced their expression levels, that were comparable to the WT
mice (Figure 5A). Nox4 and p22phox expression in Nimbidiol-
treated WT mice remained statistically unaltered compared to the
WT mice receiving saline (Figure 5A). Further, we evaluated the
expression of reactive oxygen species modulator 1 (ROMO1), an
important regulator of the ROS production. Results revealed that
ROMO1 was upregulated in the kidney of saline-treated Akita mice
compared to that of WT control (Figure 5A). Interestingly,
compared to the saline-treated Akita mice, ROMO1 expression
was significantly reduced in Akita mice treated with Nimbidiol
(Figure 5A). No significant difference in ROMO1 expression was
observed between WT mice treated with saline and
Nimbidiol (Figure 5A).

To understand whether elevated ROS generation was related to
the imbalance of crucial antioxidative enzymes, we evaluated the
expression of SOD-1, SOD-2, and catalase in the kidney. Western
blot analyses showed a significant decrease in the renal expression of
SOD-1, SOD-2, and catalase in diabetic mice compared to the WT

control (Figure 5B). Nimbidiol-treatment to diabetic mice
normalized their expression in the kidney (Figure 5B). However,
Nimbidiol did not change the expression of these enzymes in the
WT mice (Figure 5B). Then, we measured the activity of the total
SOD and catalase in the kidney. Results revealed that there was no
significant difference in the SOD and catalase activity in the kidney
of the WT mice-treated with saline and Nimbidiol (Figures 5C, D).
Compared to the WT control, on the other hand, diabetic mice
showed a sharp decline in the SOD and catalase activity in the kidney
(Figures 5C, D). Interestingly, Nimbidiol-treatment to diabetic mice
normalized their activity, comparable to the WT control
(Figures 5C, D).

3.6 Nimbidiol treatment normalized reduced
eNOS and elevated iNOS expression levels in
the diabetic kidney

The two important isoforms of nitric oxide synthases (NOSs)
viz., Endothelial nitric oxide synthase (eNOS) and inducible nitric
oxide synthase (iNOS) play crucial role in the regulation of oxidative
stress, vascular function, blood pressure and DN (Trachtman et al.,
2002; Kumar et al., 2005; Forstermann and Sessa, 2012; Dellamea
et al., 2014; Pushpakumar et al., 2017; Juin et al., 2023). Therefore,
we assessed the expression levels of eNOS and iNOS in the kidney.
Akita mice showed a downregulation of eNOS and an upregulation
of iNOS expression compared to the WT mice (Figure 6).
Interestingly, Nimbidiol treatment to Akita mice normalized their
expression levels that were comparable to the WT mice (Figure 6).
Nimbidiol did not statistically alter the expression levels of eNOS
and iNOS in WT mice compared to the saline-treated WT
mice (Figure 6).

FIGURE 2
Nimbidiol attenuated elevated resistive index in the renal artery of diabetic mice. (A) Representative images from ultrasound of renal artery. Resistive
index was calculated using the formula: (PSV-EDV)/PSV. PSV, peak systolic velocity (white arrow); EDV, end diastolic velocity (yellow arrow). (B) The bar
graph shows mean resistive index. Data are mean ± SD (n = 6/group). *p < 0.05 vs. WT + Saline, WT + Nimbidiol and Akita + Nimbidiol, †p < 0.05 vs. Akita
+ Saline.
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3.7 Nimbidiol ameliorated the altered
expression of Sirt1 and ACE2 in the
diabetic kidney

Oxidative stress induces progression and development
of hypertension and nephropathy in diabetes (Shi et al., 2013).
SIRT1 plays a pivotal role in the regulation of oxidative
stress in hypertension and DN by regulating ACE2 expression
(Yacoub et al., 2014). The results exhibited that there were no
significant differences in the expression levels of SIRT1 and
ACE2 between WT mice receiving saline and Nimbidiol
(Figure 7). A distinct downregulation of the expression levels of
SIRT1 and ACE2 was observed in Akita mice compared to the
Winduce oxidative stress leading to the renal injury. Nimbidiol
mitigatesT control (Figure 7). It was noteworthy that Nimbidiol
treatment to Akita mice significantly increased the levels of
SIRT1 and ACE2 expression, comparable to that of WT
control (Figure 7).

3.8 Nimbidiol normalized the expression of
pro-inflammatory cytokine, IL-17 and anti-
inflammatory cytokine, IL-10 in the
diabetic kidney

A plethora of evidence suggest the pathogenic role of
proinflammatory cytokine IL17 and protective role of anti-
inflammatory cytokine IL10 in diabetes and hypertension (Gunnett
et al., 2002; Didion et al., 2009; Madhur et al., 2010; Weber et al., 2017;
Qiu et al., 2021). To evaluate the mRNA and protein expression levels
we performed semi-quantitative RT-PCR and Western blot analyses.
Our results exhibited a distinct upregulation of IL-17 and a
downregulation of IL-10 both at mRNA and protein levels in the
kidney of Akita mice compared to the WT control (Figures 8A, B). In
Akita mice receiving Nimbidiol, the expression levels of IL-17 and IL-
10 were normalized (Figures 8A, B). The mRNA and protein
expression levels of IL-17 and IL-10 remained unaltered in the
WT mice treated with saline and Nimbidiol (Figures 8A, B).

FIGURE 3
Nimbidiol treatment normalized vascular density in the diabetic kidney. Renal vascular architecture was captured by CarestreamMolecular Imaging
In vivo Multispectral system after infusion of 0.6 mL of barium sulfate (0.1 mg/mL) in the infrarenal aorta through a PE10 tube. (A) Vascular density was
quantified utilizing Vessel Segmentation software. (B) Bar diagram represents the mean percentage change ±SD (n = 6). Values were obtained after
background subtraction and plotted as percent change from WTY + saline group (100%). *p < 0.05 vs. WT + Saline, †p < 0.05 vs. Akita + Saline.
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3.9 Nimbidiol protected diabetic mice from
kidney injury

Kidney injury molecule-1 (KIM-1) present in the proximal
tubules of the kidney is largely recognized as an important
biomarker of the progressive renal damage in diabetes

(Papu John et al., 2019; Majumder et al., 2022). Further,
Lipocalin-2 (LCN-2) also serves as a crucial prognostic marker of
renal injury in diabetes and hypertension (Johnson et al., 2022;
Majumder et al., 2022). Therefore, we investigated whether diabetic
conditions induced kidney damage and Nimbidiol treatment
ameliorated renal injury in Akita mice. The Western blot

FIGURE 4
Nimbidiol alleviated oxidative stress in the diabetic kidney. (A) Dihydroethidium (DHE) staining was performed to evaluate superoxide (O2

•−) in the
kidney sections. Scale bar: 20 μm;magnification ×20 (B) The bar diagram represents the fold change in the fluorescence intensity for DHE staining from
WT + Saline. (C) Western blot analyses showing protein expression of an α, β-unsaturated hydroxyalkenal product of lipid peroxidation, i.e., 4-
Hydroxynonenal (4-HNE) in the kidney. The bar diagrams represent the fold change vs. WT + Saline. (D) Reduced to oxidized glutathione ratio (GSH:
GSSG) was measured in the kidney and represented as the bar diagram showing the change in the percentage fromWT + Saline. Data are mean ± SD (n =
6/group). *p < 0.05 vs. WT + Saline, WT + Nimbidiol and Akita + Nimbidiol, †p < 0.05 vs. Akita + Saline.
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analyses revealed that there was no significant change in the
expression levels of KIM1-1 and LCN-2 between WT mice
treated with saline and Nimbidiol (Figure 9). We observed that
KIM1-1 and LCN-2 were substantially elevated in the kidney of the

Akita mice compared to the WT control (Figure 9). Of note,
Nimbidiol treatment to Akita mice significantly reduced the
levels of KIM1-1 and LCN-2 that were comparable to the WT
control (Figure 9).

FIGURE 5
Nimbidiol ameliorated the expression of p22phox, Nox4, ROMO1, SOD and catalase in the diabetic kidney. Western blot analysis showing protein
expression of (A) the primary producers of ROS such as p22phox and Nox4, andmodulator of ROS, i.e., ROMO1 and (B) SOD-1, SOD-2 and catalase in the
kidney. The bar diagrams represent the fold change vs. WT + Saline. (C) Total SOD activity and (D) catalase activity was measured and represented as bar
diagrams showing the change in the percentage fromWT + Saline. Data are mean ± SD (n = 6/group). *p < 0.05 vs. WT + Saline, WT +Nimbidiol and
Akita + Nimbidiol, †p < 0.05 vs. Akita + Saline.
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3.10 Nimbidiol inhibited NF-κB signaling in
the diabetic kidney

NF-κB signaling plays a critical role in the development of
different kindney diseases including DN by regulating
macrophage polarization and gene expressions of various
inflammatory cytokines and chemokines (Baker et al., 2011).
Therefore, we measured the expressions of phosphorylated-NF-
κB (p65) [p-NF-κB (p65)] and IkBα in the kidney by Western
blot analysis. p-NF-κB was found to be significantly upregulated and
IkBα was significantly downregulated in the diabetic kidney
compared to the WT control (Figure 10). Nimbidiol treatment
normalized the expression levels of p-NF-κB and IkBα in Akita
mice (Figure 10). However, there were no significant differences in
the protein levels of p-NF-κB and IkBα between saline- and
Nimbidiol-treated WT mice (Figure 10).

4 Discussion

Diabetic nephropathy (DN) is the principal microvascular
complication of diabetes and is the leading cause of end-stage
renal disease (ESRD). DN has been a major threat to the global
population in the recent years. The pathogenesis of DN is
multifactorial. The concomitance of elevated blood pressure with

the increased albuminuria and reduced glomerular filtration rate
(GFR) in DN ultimately progresses to ESRD (Cooper, 1998).

In diabetes Mellitus (DM), the impact of hypertension on
exponentially poor vascular outcomes have been evidenced
including DN (Giunti et al., 2006). As arterial hypertension
remains the major risk factor for the development of DN,
alleviation of elevated blood pressure has been crucial for the
control and management of DN in type-1 diabetes (T1D) (Giunti
et al., 2006; Thomas and Atkins, 2006; Wong et al., 2007). Therefore,
haemodynamic factors such as systemic and glomerular
hypertension, and the vasoactive hormone, angiotensin II have
become the major therapeutic target for DN (Cooper, 1998;
Wong et al., 2007). In consistent with the earlier observations,
our present study demonstrated a rise in blood pressure in
diabetic Akita mice (Gurley et al., 2006; Oudit et al., 2010).
Further, elevated BP was found to be associated with increased
renal resistive index (RI) and reduced vasculature in Akita mice,
corroborating the previous report (John et al., 2017). Notably,
Nimbidiol mitigated the elevation in blood pressure, ameliorated
RI and improved renal vasculature in Akita mice.

The occurrence of hypertension remains to be more prevalent
among diabetic patients compared to the non-diabetic subjects
(National High Blood Pressure Education, 1994). The synergistic
effect of hyperglycemia and hypertension augments the
pathogenesis of DN (Stratton et al., 2006). A close correlation of

FIGURE 6
Nimbidiol treatment normalized reduced eNOS and elevated
iNOS expression levels in the diabetic kidney. Western blot analyses
showing protein expressions of eNOS and iNOS in kidney. The bar
diagram represents the fold change vs. WT + Saline. Data are
mean ± SD (n = 6/group). *p < 0.05 vs. WT + Saline, WT + Nimbidiol
and Akita + Nimbidiol, †p < 0.05 vs. Akita + Saline.

FIGURE 7
Nimbidiol ameliorated the altered expression of Sirt1 and ACE2 in
the diabetic kidney. Western blot analyses showing protein
expressions of ACE2 and Sirt1 in kidney. The bar diagram represents
the fold change vs. WT + Saline. Data are mean ± SD (n = 6/
group). *p < 0.05 vs. WT + Saline, WT + Nimbidiol and Akita +
Nimbidiol, †p < 0.05 vs. Akita + Saline.
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increased blood pressure and impaired renal function was evidenced
with the commencement of DN in T1D (Jensen et al., 1987).
However, the interplay by which hyperglycemia and hypertension
aggravates diabetic nephropathy is not fully understood. The present
study elucidates that oxidative stress mediates the synergistic
detrimental consequences of hyperglycemia and elevated blood
pressure on kidney injury in T1D mice.

Previous reports suggested that oxidative stress and
inflammation are greatly involved in the development of DN. In
this context, it is noteworthy that hyperglycemia-exacerbated excess
superoxide anion (O2•−) induces kidney injury in DN (Koya et al.,
2003; Thallas-Bonke et al., 2008; Coughlan et al., 2009). Our study
also showed elevated ROS production in diabetic mice. Moreover,
hyperglycemia-induced excess production of renal superoxide, due
to an imbalance between NADPH oxidase (Nox), the superoxide-
producing enzyme and superoxide dismutase (SOD), the
superoxide-scavenging enzyme, instigates oxidative stress leading
to the progression and maintenance of DN (Fujita et al., 2012).
Further, the crucial contribution of mitochondrial Nox system
especially, Nox4 has been suggested to trigger oxidative stress in
hyperglycemia including in T1DN (Brownlee, 2005; Gorin et al.,
2005; Susztak et al., 2006; John et al., 2017). In agreement with these
previous findings, our study also demonstrated an elevation in ROS,
4HNE, Nox4, p22phox, and ROMO1, and a decrease in SOD and

catalase activity in the kidney of Akita mice, suggesting elevated
oxidative stress in T1DN. Further, a decrease in the ratio of the
reduced to oxidized glutathione (GSH:GSSG) in Akita mice
corroborating the previous observations in DN (Zitka et al., 2012).

Although Nox remains the primary source for the cytosolic ROS
production, activity of nitric oxide synthases (NOSs) plays a crucial
role in the regulation of vascular endothelial dysfunction, ROS
generation, and upregulation of the pro-inflammatory mediators,
contributing to the pathogenesis of hypertension and DN (Thallas-
Bonke et al., 2008; Balakumar et al., 2009). We observed an
upregulation of iNOS and a downregulation of eNOS at the
protein level in the kidney of diabetic mice, supporting the
previous findings, which elucidates that reduced eNOS and
elevated iNOS instigate renopathy in diabetes and hypertension
(Kumar et al., 2005; Zhao et al., 2006; Balakumar et al., 2009; Wang
et al., 2011). However, differential expression of eNOS and iNOS
was explained as the result of the time course of diabetes induced in
different experimental models (Onozato et al., 2002).

Previous studies have provided the evidence of important role of
ACE2 in the pathogenesis of hypertension and DN (Castro-Chaves
et al., 2010; Oudit et al., 2010). A reduction in ACE2 was shown to be
associated with diabetic nephropathy and absence of ACE2 has been
shown to worsen the pathogenicity of DN (Tikellis et al., 2003;
Shiota et al., 2010). Our study revealed a downregulation of ACE2 in

FIGURE 8
Nimbidiol normalized the expression of pro-inflammatory cytokine, IL-17 and anti-inflammatory cytokine, IL-10 in the diabetic kidney. (A) Semi-
quantitative RT-PCR analyses showing gene expressions and (B)Western blot analyses showing protein expressions of IL-17 and IL-10 in kidney. The bar
diagrams represent the fold change vs. WT + Saline. Data are mean ± SD (n = 6/group). *p < 0.05 vs. WT + Saline, WT + Nimbidiol and Akita + Nimbidiol,
†p < 0.05 vs. Akita + Saline.
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T1D Akita mice which is consistent with the previous observation
in different experimental diabetic mice including diabetic Akita
mice (Tikellis et al., 2003; Gurley et al., 2006; Wysocki et al., 2006;
Wong et al., 2007; Oudit et al., 2010). Nimbidiol-treatment was
effective to elevate the level of ACE2, suggesting that elevation of
ACE2 by the therapeutic intervention of Nimbidiol could be
novel approach in the normalization of elevated BP and
amelioration of diabetic renal injury. Sirtuin 1 (Sirt1) is an
important member of the conserved family of the
nicotinamide adenine dinucleotide (NAD+)-dependent
deacetylases that controls hyperglycemia, oxidative stress,
inflammation and fibrosis by regulating transcriptional
activities of a wide range of enzymes including ACE2, eNOS
and NF-κB p65 subunit in DN (Hallows et al., 2012; Price et al.,
2012; Yacoub et al., 2014). Our study revealed a downregulation
of renal Sirt1 expression in the Akita mice which is in accordance
with the earlier studies (Chuang et al., 2011; Hasegawa et al., 2013;
Yacoub et al., 2014). Interestingly, Nimbidiol normalized
Sirt1 expression in Akita mice, suggesting its potential
renoprotective role in diabetes.

Further, our present study showed a distinct upregulation in the
renal expression of biomarkers related to kidney-damage viz. KIM-1
and LCN-2 in the Akita mice, which is in agreement with the
previous studies (Nielsen et al., 2010; Liu et al., 2022). Interestingly,
Nimbidiol mitigated KIM-1 and LCN-2 levels in the kidney of Akita
mice, indicating the therapeutic potential of Nimbidiol to ameliorate
diabetic renal injury.

A plethora of studies have indicated the concomitant
contribution of oxidative stress and inflammation in the
pathogenesis of diabetes and hypertension (Vaziri and
Rodriguez-Iturbe, 2006; Kern, 2007). It is well established that
conjunction of diabetes and hypertension induces oxidative stress
and inflammation, that synergistically leads to pathogenesis of DN.
The close relationship between oxidative stress and inflammation
has been indicated by many studies (Vaziri and Rodriguez-Iturbe,
2006; Kern, 2007). The production of ROS by inflammatory
molecules has been suggested to trigger the oxidative stress, that
in turn, induces the NF-κB-mediated upregulation of pro-
inflammatory cytokines and chemokines (Vaziri and Rodriguez-
Iturbe, 2006; Kern, 2007). In agreement with these previous reports,
our study also showed that an elevated ROS generation was
accompanied by an upregulation of p-NF-κB, downregulation of
IkBα, along with an increased production of pro-inflammatory
cytokine, IL-17, and a reduction of anti-inflammatory cytokine,
IL-10 in the kidney of diabetic mice. Nimbidiol-treatment
ameliorated these renal pathophysiological conditions in Akita mice.

Together, the findings of our present study indicate that diabetic
conditions facilitate to the elevated blood pressure, increased renal
resistance, and decreased renal vasculature in Akita mice. Further,
4HNE, p22phox, Nox4, and ROMO1 were increased in diabetic
mice, which was associated with decreased GSH: GSSG, SOD,
catalase, eNOS, Sirt1, ACE2, and increased iNOS levels and

FIGURE 9
Nimbidiol treatment mitigated the expression of lipocalin-2 and
KIM-1 in the diabetic kidney. Western blot analyses showing protein
expressions of lipocalin-2 and KIM-1 in kidney. The bar diagram
represents the fold change vs. WT + Saline. Data are mean ± SD
(n = 6/group). *p < 0.05 vs. WT + Saline, WT + Nimbidiol and Akita +
Nimbidiol, †p < 0.05 vs. Akita + Saline.

FIGURE 10
Nimbidiol inhibited NF-κB signaling in the diabetic kidney.
Western blot analyses showing protein expressions of p-NF-κB (p65)
and IkBα in kidney. The bar diagram represents the fold change vs. WT
+ Saline. Data are mean ± SD (n = 6/group). *p < 0.05 vs. WT +
Saline, WT + Nimbidiol and Akita + Nimbidiol, †p < 0.05 vs. Akita
+ Saline.
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ultimately leading to the oxidative stress and inflammation
mediated renal damage as evidenced by the elevated kidney
injury markers such as LCN-2 and KIM-1. Nimbidiol
ameliorated these pathological changes. The present study thus
indicates that oxidative stress plays a crucial role to promote
diabetic renal injury, and Nimbidiol alleviates redox imbalance
and thereby protects kidney in part by inhibiting NF-κB
signaling pathway in T1D (Figure 11). Therefore, the novel
glucosidase inhibitor, Nimbidiol could be used as a potential
anti-oxidative agent for the treatment of diabetic kidney injury
in future.
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