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Accurately predicting Drug-Drug Interaction (DDI) is a critical and challenging
aspect of the drug discovery process, particularly in preventing adverse reactions
in patients undergoing combination therapy. However, current DDI prediction
methods often overlook the interaction information between chemical
substructures of drugs, focusing solely on the interaction information
between drugs and failing to capture sufficient chemical substructure details.
To address this limitation, we introduce a novel DDI prediction method: Multi-
layer Adaptive Soft Mask Graph Neural Network (MASMDDI). Specifically, we first
design a multi-layer adaptive soft mask graph neural network to extract
substructures from molecular graphs. Second, we employ an attention
mechanism to mine substructure feature information and update latent
features. In this process, to optimize the final feature representation, we
decompose drug-drug interactions into pairwise interaction correlations
between the core substructures of each drug. Third, we use these features to
predict the interaction probabilities of DDI tuples and evaluate the model using
real-world datasets. Experimental results demonstrate that the proposed model
outperforms state-of-the-art methods in DDI prediction. Furthermore,
MASMDDI exhibits excellent performance in predicting DDIs of unknown
drugs in two tasks that are more aligned with real-world scenarios. In
particular, in the transductive scenario using the DrugBank dataset, the ACC
and AUROC and AUPRC scores of MASMDDI are 0.9596, 0.9903, and 0.9894,
which are 2% higher than the best performing baseline.
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1 Introduction

Given the limited clinical efficacy of a single drug in disease
treatment, the management of complex diseases in humans often
necessitates the concurrent use of multiple drugs (Horikawa and
Sugimoto, 2019). Nevertheless, the concurrent administration of two
or more drugs can give rise to Drug-Drug Interaction (DDI),
wherein the chemical and physical interactions between drugs
result in synergistic or antagonistic effects (Ryu et al., 2018). The
intricate nature of drug interactions and their potential adverse
effects in clinical settings continues to be a pivotal concern for
healthcare professionals and researchers alike. Adverse effects
resulting from these interactions not only compromise the
effectiveness of the treatment, but also pose a significant threat to
the patient’s health and life (Giacomini et al., 2007). In addition, the
identification of DDIs is a critical determinant in drug safety
evaluations and sometimes leads to the withdrawal of drugs from
the market, underscoring the urgency of understanding and
preventing such events (Tatonetti et al., 2012). Therefore, to
avoid the harm caused by DDIs, the detection of interactions
between co-administered drugs has always been a concern for
biologists, pharmacologists, and clinicians. Given the complexity
and multitude of potential drug combinations, relying solely on
conventional approaches like in vitro experiments and clinical trials
for DDI detection proves impractical due to their time-consuming,
inefficient, and costly nature (Whitebread et al., 2005). In response
to these limitations, recent years have witnessed a significant shift in
research focus towards computer-based computational methods as a
promising avenue for DDI prediction (Nyamabo et al., 2021). These
methods employ techniques such as deep learning to learn from
existing drug interaction data and construct models for predicting
DDIs. In particular, the use of these methods offers a remarkable
advantage in terms of speed and cost-effectiveness, revolutionizing
the landscape of DDI prediction and mitigation strategies (Gottlieb
et al., 2012; Tatonetti et al., 2012).

Recent advances in the field have resulted in significant
contributions, with the main approaches being deep learning based
(Ryu et al., 2018; Liu et al., 2019; Yan et al., 2019; Liu et al., 2022). So
far, there are mainly three types of DDI prediction methods:
similarity-based methods, network-based methods, and matrix
factorization-based methods (Yan et al., 2019). Similarity-based
methods are the predominant approach. They operate under the
assumption that drugs sharing similar feature information are more
inclined to exhibit comparable interactions. For instance, Vilar et al.
(2012) identified new DDIs based on the similarity of drug structures
in known DDI data. Network-based methods deduce probable DDIs
by constructing different biologically relevant networks and acquiring
the embedded representation of drug nodes in the network. More
recently, Kang et al. (2022) proposed a deep fusion method for
predicting drug-drug interactions based on drug features and
topological relationships. Furthermore, matrix factorization-based
methods decompose the adjacency matrix of DDIs into several
factor matrices and reconstruct the adjacency matrix to identify
potential DDIs (Narita et al., 2012; Wang et al., 2015). For
example, Rohani et al. (2020) combined nonlinear multi-similarity
fusion with matrix factorization for DDI prediction.

While the learning capabilities of the above deep learning
methods have been shown to be efficient, no consideration has

been given to extracting features from the original characterization
of the drug (e.g., chemical structure), which is still new room for
exploration for the DDI prediction task. Based on pharmaceutical
chemistry knowledge, drugs are entities composed of various
functional groups or chemical substructures. These functional
groups or chemical substructures dictate all pharmacokinetic and
pharmacodynamic properties of a drug and ultimately determine all
its interactions (Harrold and Zavod, 2014). Therefore, recent
research has shifted focus to these substructures, recognizing that
DDIs are influenced by the presence of specific substructures in
drugs. This has led to innovative approaches, such as Huang et al.’s
(Huang et al., 2020b) CASTER framework represents a notable
effort in predicting DDIs by refining drug chemical structures into
substructural components. The drawback of this type of approach is
that it neglects to extract topological information from themolecular
map. In contrast, the graph neural network (GNN) technique is able
to directly take the molecular map as an input and is able to capture
the complex interactions of atoms and bonds in the molecule
through the information transfer between the nodes. This is
clearly favorable for DDI prediction. An example is the SSI-DDI
model proposed by Nyamabo et al. (2021). Their model used a
graph-attention network layer to extract substructural information
of drug molecules.

However, there are still shortcomings in extracting molecular
graph information using GNN technology. One primary issue is that
not all detailed structures in molecular graphs are relevant to the
DDI prediction task. Traditional GNNs use fixed subgraph sizes or
predefined subgraph structures to extract subgraph information,
making it difficult to capture important subgraph structures.
Additionally, molecular graphs also contain noise information
and lack flexibility in dealing with complex graphs, which can
negatively affect the accuracy of the final prediction. Therefore,
the precise extraction of subgraph information, focusing on the key
elements is crucial for DDI prediction. To overcome the challenges
posed by irregularities in the sizes and shapes of substructures and
enhance the prediction accuracy of DDIs, we propose a novel
method named Multi-layer Adaptive Soft Mask Graph Neural
Network (MASMDDI). MASMDDI integrates soft-mask graph
neural networks and substructure attention mechanisms to
facilitate full access to drug features and their interactions. By
extracting substructures from molecular graph structures,
MASMDDI ensures a more nuanced characterization and allows
for more flexible extraction of the necessary subgraphs using soft
masking mechanisms. Consequently, this methodology enhances
the capability to differentiate task-relevant structural details during
downstream processing tasks, with a particular emphasis on
addressing long-range dependencies prevalent in the higher layers
of deep models. Furthermore, we introduce attention mechanism to
mine substructure feature data and update latent features,
facilitating the incorporation of complex information into the
model. The final feature representation is constructed by linking
these updated features, and a common attention mechanism is
utilized to determine importance weights by learning interaction
scores between the core substructure features of two drugs. The use
of the common attention mechanism enables the simultaneous
consideration of correlations between multiple subgraphs, thus
capturing the semantic information between them more efficiently.

The main contributions of this study are as follows.
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(1) We propose a DDI prediction method, MASMDDI, based on
a multi-layer adaptive soft mask map neural network, which
mines molecular map substructure feature information and
updates potential features for DDI prediction.

(2) In the process of substructure extraction, MASMDDI extracts
substructure-related information from the original drug
molecule maps and learns the sequence characterization of
independent subgraphs through a multi-layer adaptive soft
mask map neural network, which acquires the ability to learn
the characterization efficiently.

(3) MASMDDI uses an attention mechanism to update latent
feature data for substructure embedding and exploits the
correlation between core chemical substructures to identify
information about interacting substructures. This enhances
the final feature representation of drugs and increases the
predictive accuracy of DDIs.

(4) We conducted extensive experiments on real-world drug
datasets to validate the superiority of our proposed model
when competing with state-of-the-art baselines in DDI
prediction tasks. It performs well in both transductive and
inductive settings.

The remainder of the paper is organized as follows. Section 2
discusses the work related to DDI prediction. Section 3 introduces
the methodology for implementing MASMDDI. Section 4 describes
the experiments conducted in this paper. Section 5 summarizes the
contents of this paper.

2 Related work

In this section, we will delve into the current research on DDI
prediction tasks from two aspects: drug molecular representations
and the DDI prediction task.

2.1 Drug molecular representation

The representation of drug molecules plays a crucial role in
drug-related tasks. Simplified Molecular Input Line Entry System
(SMILES), as the most commonly used molecular descriptor, is a
string where each atom is represented by its respective ASCII symbol
code, and chemical bonds, branches, and stereochemistry are
indicated by specific symbols in the SMILES string. By utilizing a
vertical-first traversal tree algorithm, SMILES sequences can convert
complex chemical structures into a tree generating character
sequence (Lin et al., 2023). Various deep learning models, such
as recurrent neural networks, can leverage their internal states to
handle variable-length input sequences. Using SMILES sequences as
input, these models employ various natural language processing
techniques to extract chemical context. Sequence-based
representations are often concise, memory-efficient, and easy to
search. In alignment with these advantages, our study capitalizes on
the inherent strengths of SMILES sequences by further transforming
them into graph structures to represent drugs. This strategic
approach aims to encapsulate and preserve the intricate
relationships between molecular entities by exploiting the wealth
of structural information encoded in these graphs.

Some research methods are based on the hypothesis that similar
drugs may have similar chemical activities (Vilar et al., 2012). These
methods represent drugs as similarity vectors for further
preprocessing, often employing similarity metrics such as cosine
similarity, Jaccard similarity, etc., to indicate the degree of similarity
to other drugs in the representation space. These representations are
limited to current human knowledge and cannot flexibly discover
information beyond domain expert knowledge. In recent years, deep
learning models called GNN designed for graph structures have
been applied to generalize chemical molecules, especially in the
learnable task representation of drugs, improving performance in
molecular-related tasks (Yang et al., 2019). Some recently proposed
methods have started to consider the importance of functional
groups/chemical substructures in DDI (Nyamabo et al., 2021;
Nyamabo et al., 2022). However, noise is introduced at each
GNN layer, and nodes fail to capture drug substructure
representations effectively. Our study introduces a soft-mask
GNN layer, free from the constraints of fixed samples or dropout
rates, which can better capture task-related substructures and skip
noisy portions.

2.2 DDI prediction task

With the continuous increase in data volume and the constant
evolution of algorithms, deep learning has made significant
breakthroughs in various fields, including its application in drug-
related prediction tasks (Zeng et al., 2020; Yang et al., 2022). Initially,
most research efforts focused on developing effective representation
methods to extract hidden embeddings from various public datasets
(Xu et al., 2017). In contrast to methods based on traditional
machine learning, these approaches no longer heavily depend on
manual features and domain knowledge; instead, they extract more
abstract information through deep learning frameworks. The deep
learning-based approach eliminates the need for manual selection
and adjustment of features, and the learned latent embeddings are
ultimately used for predicting downstream tasks.

DDI prediction models can be configured for different
classification tasks to serve varying prediction goals. Common
DDI prediction tasks include the DDI binary classification task,
the DDI multiclassification task, and the DDI multilabel
classification task. Binary classification tasks aim to predict the
existence of interactions between drug pairs. Nowadays, there are
a large number of models for DDI binary prediction. For example,
Lin et al. (2020) proposed the KGNN model, which used the GNN
technique to extract drug topological features from the drug
knowledge graph for DDI prediction. Considering that there will
be jump similarity between drug nodes, Huang et al. (2020a)
constructed the SkipGNN model. The model constructed a drug
jump graph and fed it into the model along with a DDI graph to
learn the feature vectors of drugs using iterative fusion.

In contrast, multi-class classification tasks aim to predict and
distinguish specific DDI types between drugs. Some well-known
DDI multiclassification models include the DDIMDL model,
designed by Deng et al. (2020). This model selected data from
DrugBank to construct a 65-class DDI dataset, and then extracted
drug feature information using deep neural networks. Lin et al.
(2022) developed the MDF-SA-DDI model and conducted
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multiclassification experiments on the dataset provided by Deng
et al. (2020) The model was trained on drug pairs in various
combinations using an autoencoder to learn the embedding
representation of drug pairs, resulting in improved performance.
To further enhance the model’s prediction accuracy, Lin et al. (2022)
proposed the MDDI-SCL model. The model presented a supervised
comparative learning strategy, which improved its ability to
distinguish and identify drug-drug interactions.

Furthermore, multi-label classification tasks involve predicting
one or more DDI types that may exist for each pair of drugs. This
task requires considering the possibilities of multiple drug
interactions, providing more comprehensive information for
integrated treatment plans and drug management. These different
classification tasks allow customized modeling for different
prediction goals and requirements, providing more precise
guidance for decision-making and clinical practices in the
pharmaceutical field. There are also some models attempting
multi-label DDI prediction tasks. For example, Feng et al. (2022)
designed the deepMDDI model, which was constructed as an
encoder of a relational graph convolutional network and a
tensor-like decoder for unified modelling of interactions.
Moreover Han et al. (2023) designed the MCFF-MTDDI model,
which extracted drug chemical structure features, additional
labelling features of drug pairs, and knowledge graph (KG)
features of drugs. On top of that, a multi-channel fusion module
was designed to fuse this information effectively, which represented
high performance on both multi-classification tasks and multi-
labelling tasks.

This study belongs to the multi-class classification task, where
the objective is to predict the specific types of DDIs for each drug
pair. During the model training process, model parameters are
optimized by minimizing the cross-entropy loss in the multi-class
classification task. This loss function is employed to measure the
dissimilarity between the predicted probability distribution and the
true distribution of DDI classes. By optimizing these parameters, the
model aims tomake accurate predictions regarding the specific types
of interactions between drugs. The focus on multi-class classification
in this study holds significance, as it allows for a more granular
understanding of the diverse landscape of DDIs. Rather than
providing a binary outcome, this model endeavors to discern and
classify the specific nature of interactions, contributing to a more
nuanced and clinically relevant prediction. This approach not only
enhances the precision of DDI predictions but also improves the
overall generalization performance of the model, making it more
robust and applicable to diverse scenarios in drug
interaction analysis.

2.3 GNN-based DDI prediction method

In recent years, with the rise of graph neural network technology,
an increasing number of people have realized the importance of graph
data. Simultaneously, the application of GNN in the DDI prediction
task is becoming more widespread. Typically, GNN-based DDI
prediction methods can be divided into two categories: methods
based on DDI graphs and methods based on drug molecular graphs.

The DDI graph-based approach considers drugs as nodes,
connects the drugs that will undergo DDI into an edge,

constructs a DDI graph, and learns the topological features of the
drugs in that graph. The topological features of a drug map the
potential link between two drugs that would undergo a DDI, so this
type of approach works to learn more effective topological features
of the drug. Zitnik et al. (2018) constructed a multi-relationship
network for protein-protein interactions, drug-protein target
interactions, and multiple drug side effects. They developed a
novel graph convolutional neural network for predicting multiple
relational links inmultimodal networks.Wang et al. (2022) classified
DDI graphs into DDI-increasing and DDI-decreasing graphs based
on the type of DDI response and used GCN to extract the drug
embedding vectors in both types of graphs. Although these methods
have achieved good prediction performance, there are some
challenges that need to be addressed. For example, if only the
DDI graph is used as the model’s input, it is not possible to
learn the drug embedding vectors of new drugs. This is because
the topological relationship of the new drug is unknown. Therefore,
this type of method faces difficulty in fulfilling the task of new drug
prediction.

The drug molecular graph-based approach uses atoms as nodes
and chemical bonds as edges to extract features of drug molecular
graph using GNN technique. The use of GNN technology to extract
information from drug molecular graphs has the following
advantages: 1) GNNs can automatically learn useful features from
molecular graphs, avoiding the need for traditional machine-
learning based methods that require a lot of effort in feature
engineering; 2) GNNs can adequately capture complex
interactions and relationships between atoms in molecules by
means of message passing, which is clearly advantageous for DDI
prediction. At the same time this type of method can effectively solve
the problem of new drug prediction because the molecular graphs of
new drugs are usually known. The SSI-DDI model constructed by
Nyamabo et al. (2021) is one of the classics in the field. The model
utilized graph attention networks to update the features of nodes in
molecular graphs. Additionally, a joint attention mechanism was
introduced to enhance the performance and interpretability of the
model. Moreover, He et al. (2022) proposed the MFFGNN model
and designed a molecular graph feature extraction module for
extracting both global features of molecular graphs and local
features of each atom in the molecular graph. This enabled the
model to better learn the topological information of drug
molecular graphs.

3 Methodology

In this sectionwe describe in detail the workflow and building block
unit of the MASMDDI method, including its multi-layer structure,
adaptive learning mechanism and the substructure attention module.
Specifically,MASMDDI is centered on the use of graph neural networks
to capture complex chemical information in the structure of a drug
molecule, and we further utilize the adaptive learning mechanism to
extract key chemical substructures. In more detail, six key subsections
are included in this section, which are problem definition, input data,
substructure extraction, potential feature update, substructure
interaction correlation, and DDI prediction and loss function.

Figure 1 shows the overall framework of the model. More
specifically, Figure 1A describes the overall workflow framework
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of MASMDDI. The general workflow of this study involves the
following procedural steps: 1) Given a DDI tuple, the graphical
representation of the drug is taken as input. 2) Extract substructure
information through the application of multiple layers of soft-mask
graph neural network layers and readout operations. 3) Update
latent features based on a substructure attention mechanism. 4)
Utilize a co-attention layer to compute the interaction relevance
between substructures. 5) Predict DDI by aggregating the scores of
substructure interactions. Next, Figure 1B shows the workflow of the
soft mask adaptive graph neural network, which captures
substructure information and readout graph representations
through multi-layer sparse aggregation and weight convolution.
The gradual change in node color represents the process of
subgraph learning. More detailed illustration can be found
in Section 3.3.

3.1 Problem definition

Given a set of drugsH, a set of interaction types I � Ii{ }Mi�1, and a
dataset of DDIsM � (Hx,Hy,R)i{ }N

i�1, whereHx ∈ H andHy ∈ H
denote a pair of drugs with interactions R of type Ii, the DDI prediction
task can be viewed as a solution function f : H × J × H → [0, 1],
which determines the probability that the combination of any two drugs
may result in a given interaction type Ii.

3.2 Input

For a given DDI tuple (Hx,Hy, R), this study takes the graph
structure of drug pairs as input. Here, Hx and Hy, encoded as
SMILES strings, are represented within a graph, denoted as
G � (V, E). In graphs G, V � ui{ }ni�1 is the set of nodes, node
(vertices) u ∈ V represent atoms, ui denotes the ith atom, each
atom ui has its corresponding eigenvector hi ⊆ Rd (d is the number
of features), and edges E � (ua, ub)i{ }mi�1 ⊂ (V,V) denote the
existence of a bond (ua, ub) between atoms ua and ub. Moreover,
for each type of interaction, denoted as IR, which is a subset of all
interactions I , we represent it through a learnable matrix,
MR ∈ RD×D. The presence of an interaction R, between Hx and
Hy is determined by applying this matrix MR.

3.3 Graph neural networks for adaptive
substructure extraction

Traditional GNNs typically employ the strategy of
neighborhood aggregation (or message passing) (Gilmer et al.,
2017), which consists of three core modules: message passing
module, neighborhood aggregation module, and prediction task
module. These modules collaborate with each other to achieve
effective modeling and prediction of graph-structured data. It

FIGURE 1
Overall framework diagram of MASMDDI model. Panel (A) presents an overview of the MASMDDI workflow. Panel (B) is the substructure extraction
module MASMG, the gradual change in node color represents the process of subgraph learning.
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iteratively updates the representation of each node by transforming
and aggregating the representations of its neighboring nodes, and
the aggregation operations of all nodes share the same parameters,
with the structural information being implicitly learned. Specifically,
each node collects messages from its neighboring nodes and updates
its own feature representation through aggregation and combination
functions. Finally, a readout function is used to integrate the node-
level representations, aggregating the node features into a feature
vector that represents the entire graph and is used for subsequent
prediction tasks. However, in this process, the task-relevant
structural information may be obscured by irrelevant (or noisy)
parts, making it difficult to distinguish in downstream processing
tasks, especially for long-range dependencies at higher layers in deep
models (Li et al., 2018). To address this issue, soft-mask graph neural
networks (Yang et al., 2021) adopt the idea of training all layers on
the same subgraph, i.e., layer GNN is trained on a subgraph
sequence of length, allowing for more flexible extraction of the
desired subgraph through a masking mechanism. In this study, a
variant of the soft mask graph neural network called the Multi-layer
Adaptive Soft Mask Graph Neural Network (MASMG) was
designed as the graph neural network for this study. MASMG
aims to learn graph representations adaptively from the subgraph
sequences of the original graph, with the purpose of capturing the
substructure information of molecules and bypassing noise
interference.

Considering that shallow convolutional layers cannot capture
the global structure of molecules, MASMG layers are stacked to
obtain substructure-level graph representations, as shown in
Figure 1B. The substructure extraction part consists of k layers
MASMG, and each graph convolutional layer includes sparse
aggregation operations and weight convolution operations,
updating the feature vector h(k)i of node u in the (k) layer
MASMG. The sparse aggregation operation propagates and
aggregates information among nodes based on their edge
relationships, capturing the local neighborhood information of
nodes. The weight convolution operation weights and adjusts the
features of nodes by learning the weight relationships between nodes,
in order to better express the importance and interactions between
nodes. The core idea of MASMG is to selectively extract nodes and
edges using mask allocation, construct the desired subgraph, and
perform feature propagation and aggregation within the subgraph
scope. The soft mask is defined in continuous space to maintain
different weights and differentiability. Compared with existing
subgraph representation learning methods and graph pooling
operations, the MASMG layer is not limited by fixed samples or
dropout rates (Nyamabo et al., 2021), thus allowing for more flexible
extraction of subgraphs of arbitrary sizes. In order to enable the
MASMG layer to skip irrelevant parts and better capture the
information of substructures, while focusing only on task-relevant
substructures and learning representations of subgraphs with
corresponding subgraph sequences, the expressive power and
generalization ability of the model are improved. To this end, the
formula for updating the corresponding embedding representation
h(k)u of the k layer is calculated as shown in Eq. 1.

h k( )
u � σ W k( )m k( )

u h k−1( )
u ‖ ∑

s∈M u( )
m k( )

s h k−1( )
s

⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠ (1)

where σ denotes the ReLU activation function, ‖ represents the
connection operation, W(k) ∈ Rd×d is the matrix of trainable
parameters, d denotes the dimension of the nodes, and
m(k)

u ∈ [0, 1] is the soft-mask of node u in the k-th layer.
Specifically, m(k)

u is calculated as shown in Eq. 2.

m k( )
u � MLP σ I k( )

1 m k−1( )
u h k−1( )

u( ) ‖ ∑
s∈M u( )

I k( )
2 m k−1( )

s h k−1( )
s( )⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(2)
where I(k)1 and I(k)2 are linear mappings, σ is the ReLU activation
function, and MLP is a 2-layer perceptron with an output feature
dimension of 1. The last layer of the MLP is a Sigmoid activation
function that determines the value of m(k)

u ∈ [0, 1] on each node.∑
s∈M(u)

I(k)2 (m(k−1)
s h(k−1)s ) represents message passing, and the initial

feature matrix for the first input is the feature matrix obtained
through linear mappings.

After careful research, it has been determined that for the central
node u, settingm(k)

u � 0 and we have h(k)u � 0. For the neighborhood
s ∈ M(u) of u, there is

h(k)s � ReLU(W(k)m(k)
s [h(k−1)s ‖ ∑

s′∈M(s)/ v{ }
m(k)

s′ h(k−1)s′ ]), indicating

that node u is not accessible to its neighbors. Therefore, for any
subgraph GS of G, a layer of MASMG and a readout function can
represent the subgraph GS, and other parts can be skipped.

The benefit of using soft-mask is that it takes into account the
weights. The multiplication of m(k)

u and h(k)u provides the weights of
the aggregated operation’s substructure. As a result, it is possible to
calculate the representation of the entire graph by utilizing the node
representations read from different layers, and using SUM as the
readout function. Here, we also use a jump cascade to generate a
final graph-level representation h(k)x of the drugHx ∈ H, as shown in
Eq. 3.

h k( )
x � ����Kk�1 ∑N

i�1
h k( )
i

⎛⎝ ⎞⎠ (3)

3.4 Potential feature updates based on
attention mechanism

After obtaining all the substructure information h(k)x and h(k)y

(from the chemical substructure extraction part) of the input drugs
Hx and Hy respectively from all MASMG layers, in order to
simulate the correlation between drug substructure in both
spatial and channel dimensions, this study utilizes an attention
mechanism (Zhao et al., 2022) and applies MLP to transform
them into attention vectors hax and hay, as shown in Eqs 4, 5.
The purpose of this step is to separate feature extraction from
attention modeling, converting the input features hx and hy into
a more suitable representation for attention modeling to better
handle the interaction between nodes.

hax
i( ) � σ Whx · h i( )

x + b( ) (4)
hay

j( ) � σ(Why · h j( )
y + b) (5)
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where i � j � 1, ..., k, k represents the number of MASMG layers, σ
is the non-linear activation function ReLU,Whx andWhy are weight
matrices, and b is the bias vector. The attention vector Ax,y is
obtained by computing the correlation between vectors hax(i) and
hay(j) as shown in Eq. 6, where Wa is the weight matrix:

Ax,y � F Wa · hax
i( ) + hay

j( )( ) + b( ) (6)

After the aforementioned operations and by concatenating the
attention vectors, the attention matrix Ax,y is obtained, it contains
interactions between drugs in both spatial and channel dimensions.
This study generates the attentionmatricesAhx andAhy for the drugs
by performing mean operations across different dimensions, as
shown in Eqs 7, 8.

Ahx � Sigmoid Mean A, 2( )( ) (7)
Ahy � Sigmoid Mean A, 1( )( ) (8)

where Mean is the average operation that returns the average value
of each row of the input in the given dimension. Sigmoid is the
activation function that maps attention scores to the range (0, 1).
The final representation ĥ

(i)
x and ĥ

(j)
y is obtained by completing the

update of latent features:

ĥ
i( )
x � h i( )

x · 0.5 + h i( )
x ⊗ Ahx (9)

ĥ
j( )

y � h
j( )

y · 0.5 + h
j( )

y ⊗ Ahy (10)

where, in Eqs 9, 10, ⊗ represents element-wise multiplication.

3.5 Substructure interaction correlation

To explain the importance of pairwise interactions between drug
substructures, after obtaining the final graph representation by
updating latent features, this study further utilizes the common
attention mechanism (Lu et al., 2016) to measure the importance γij
of interactions between drug substructures ĥ

(i)
x and ĥ

(j)
y by

calculating the attention weights. Here, i and j denote the
substructures of drug x and drug y corresponding to the number
of MASMG layers. The calculation is shown in Eq. 11.

γij � zT tanh Wxĥ
i( )

x +Wyĥ
j( )

y( ) (11)

where, z is a learnable weight vector, and Wx and Wy are learnable
weightmatrices. By using different weightmatrices, it avoids assigning
higher scores to similar substructures, as this could complicate the
entire learning process. This study also considers non-interacting
drugs, which may receive negative scores, so tanh is used as the
activation function to generate positive and negative outputs.

3.6 DDI prediction and loss function

In the DDI prediction task for the given DDI triplet (Hx,Hy, R),
the probabilities are as follows:

P Hx,Hy, R( ) � σ ∑F
i�1
∑F
j�1
γijĥ

i( )T
x MRĥ

j( )
y

⎛⎝ ⎞⎠ (12)

where, σ represents the Sigmoid activation function, ĥ
(i)
x and ĥ

(j)
y are

the updated latent feature embeddings of drugs Hx and Hy in k
layer, γij is the attention score for the interaction between drug
substructures, and MR is the trainable representation matrix for
interaction type IR.

Therefore, for the DDI prediction task, it can be considered as a
binary classification problem. In the given dataset, only knownDDIs
exist, and such triplets are regarded as positive samples indicating
the presence of interactions. To generate negative samples, this study
follows the negative sample generation strategy proposed by Wang
et al. (2014), which involves randomly replacing Hx or Hy with a
different drug. To balance the number of positive and negative
samples, a 1:1 sampling ratio is commonly used, where the number
of positive samples is equal to the number of negative samples. This
setting helps to avoid the model’s excessive bias towards a particular
class and maintains training balance. Additionally, this study
employs the binary cross-entropy loss function to compare the
prediction results of positive and negative samples, and the
model parameters are updated through backpropagation and
gradient descent algorithms for end-to-end training, with the loss
function as shown in Eq. 13.

L � − 1

N∣∣∣∣ ∣∣∣∣ ∑l∈N log pl( ) + log 1 − p′
l( )( ) (13)

where, pl represents the probability of positive samples, p′
l

represents the probability of corresponding negative samples, |N |
represents the number of DDI triplets in the dataset, and l �
(Hx,Hy, R) represents a DDI triplet. The probabilities of
samples pl and p′

l are calculated by the scoring function defined
in Eq. 12.

4 Experiments

In this section, we evaluate our MASMDDI method by multiple
experiments. Specifically, Section 4.1, Section 4.2 and Section 4.3 first
describe the two real datasets used in the experiments and the
experimental setup, as well as the experimental training and
evaluation metrics. Next, Section 4.4 and Section 4.5 introduce the
baseline and experimental results in detail. Then, Section 4.6 and
Section 4.7 show the ablation experiments and parameter sensitivity
analysis. At last, Section 4.8 and Section 4.9 provide the visual analysis
of the relationships and the model efficiency analysis.

4.1 Dataset

This research employs two widely used datasets, DrugBank
(Wishart et al., 2018) and Twosides (Tatonetti et al., 2012), to
evaluate the model MASMDDI.

DrugBank is a unique bioinformatics and chemoinformatics
resource that integrates comprehensive drug data with detailed
drug-target information (Wishart et al., 2018). It contains
191,808 DDI tuples, 1,706 drugs, and 86 types of interactions.
Within the DrugBank dataset, each drug pair is associated with a
single type of interaction, describing how one drug affects the
metabolism of another drug. Typically, given two drugs with
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SMILES sequences, the ultimate goal is to predict their interaction
types (i.e., binary, multiclass, and multilabel classification).

Twosides was constructed by Zitnik et al. (2018) through
preprocessing and filtering of the original Twosides dataset. The
Twosides dataset collects polypharmacy side effects associated with
drug pairs or individual drugs in higher-order drug combinations. It
includes 645 drugs, 963 interaction types, and 4,576,287 DDI tuples.
In contrast to the DrugBank dataset, the Twosides dataset
encompasses multiple interaction types for drug pairs. According
to Zitnik et al. (2018), interaction types with fewer than 500 DDI
tuples were removed, and further preprocessing retained only the
most common types. Therefore, the final dataset contains
963 interaction types and 4,576,287 tuples.

4.2 Experimental setup

To assess the generalization ability of our model, experiments on
the DrugBank dataset are divided into transductive and inductive
scenarios. The transductive scenario, often referred to as the warm-
start scenario, is the most common dataset split scheme. During the
transductive scenario, the dataset is randomly split into a training set
(60%), a validation set (20%), and a test set (20%). It is noteworthy
that the drug entities used during training, validation, and testing are
consistent; in other words, the model does not encounter new drugs
during the testing phase that it has not seen during training. This
design avoids the “cold start” problem that the model might face in
practical applications, where it has to predict interactions between
new drugs without prior knowledge.

The inductive scenario is more challenging than the transductive
scenario. In this scenario, the test set includes drugs that either partially
or entirely lack representation in the training set, resembling real-world
scenarios where there may be new drugs with unknown interactions. In
such a cold-start scenario, the model requires strong generalization
capabilities as it lacks prior knowledge of the unseen drugs during the
training process. To create this scenario, this study randomly selects
20% of the drugs as unknown drugs, with the remaining 80% being
known drugs. The rest of the experimental setup is the same as in the
warm-start scenario. It is essential to note that in the cold start scenario,
experiments are conducted exclusively within the DrugBank dataset.
This is due to the presence of false positives in the Twosides dataset,
meaning that it contains drug pairs that do not actually interact in
practice, which would lead to unreliable evaluations in the cold-start
scenario. To prevent the models from overfitting to the drugs in the
training data in the cold-start scenario, a weight decay of 0.0005 is
applied to all methods. This approach helps reduce the model’s
tendency to overfit and improves its generalization performance in
cold-start scenarios.

Specifically, this study employs two partitioning schemes to
construct test sets:

S1: In the S1 test set, each DDI sample has two unknown drugs
in the training set. The task is to predict DDIs for a pair of new drugs
for which there are no existing interactions with any drugs in the
training set.

S2: In the S2 test set, each DDI sample has one known drug and
one unknown drug in the training set. The primary task is to predict
DDIs for a new drug when combined with another existing drug for
which no interactions are known.

4.3 Model training and evaluation indicators

MASMDDI comprises k = 4 layers of MASMG modules, with
eachmodule consisting of four sparse aggregation layers and weighted
convolutional layers (see Figure 1). To be specific, the RDKit (Bento
et al., 2020) package converts these strings into a graph structure, and
the molecular graph structures are passed through the MASMDDI
layer to generate hidden feature representations of size 128 as the final
output. In this case, each drug node receives a raw chemical feature
input of dimension 55, the input data is normalized using the
LayerNorm layer, and each interaction type IR ⊆ I is represented
by a learnable matrixMR of dimension 128. In particular, a threshold
of 0.5 is utilized to distinguish predictions in this study: those with a
probability exceeding 0.5 are considered positive 1), whilst all other
predictions are identified as negative 0). Finally, The study employed
Python (Paszke et al., 2019) and Pytorch Geometrics (Fey and
Lenssen, 2019) for model training. The experiments are conducted
on a server equipped with a Tesla V100-32 GB GPU. The model was
trained on a small batch of 128 tuples of DDIs, utilizing the Adam
SGD optimizer (Kingma and Ba, 2014). The optimization algorithm
employed a learning rate lr � 5e − 4 × 0.96t with an exponential
decay schedule, where t corresponds to the current epoch, and a
weight decay with a set value of 5e − 4 was utilized to counteract
overfitting. To assess performance, four evaluation metrics are
employed in this study: accuracy (ACC), area under the subject
operating characteristic curve (AUROC), area under the accuracy-
recall curve (AUPRC), and F1 scores. In all cases, higher values
indicate superior performance.

4.4 Baselines

In this study,MASMDDIwas compared with several state-of-the-
art DDI baseline methods in a transductive and inductive setting,
including MHCADDI (Andreea et al., 2019), GAT-DDI (Velickovic
et al., 2018; Nyamabo et al., 2022), MR-GNN (Xu et al., 2019), SSI-
DDI (Nyamabo et al., 2021), GMPNN-CS (Nyamabo et al., 2022) and
SA-DDI_GMP (Yang et al., 2022). All these methods are chemical
structure-based methods. Among them, MR-GNN and MHCADDI
are molecular map dependent methods that consider the entire
chemical structure of the drug. MASMDDI, SSI-DDI, GAT-DDI,
GMPNN-CS and SA-DDI_GMP are substructure-based GNN
methods. Different from the other methods, MASMDDI uses a
soft-mask GNN. This enables more flexibility in extracting
subgraphs of arbitrary sizes compared to existing subgraph
representation learning methods and graph pooling operations,
which are limited by fixed samples or discard rates.

• MR-GNN (Xu et al., 2019): effectively captures the complex
interactions between entities in the knowledge graph by
combining multi-resolution modeling and dual graph
neural networks for DDI prediction tasks.

• MHCADDI (Andreea et al., 2019): constructs a drug
interaction network and introduces a graph co-attention
mechanism to capture the interrelationships between drugs.

• SSI-DDI (Nyamabo et al., 2021): utilizes substructure features
to represent the characteristics of drug molecules and predicts
DDI by calculating substructure interactions.
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• GAT-DDI (Velickovic et al., 2018; Nyamabo et al., 2022):
directly utilizes Graph Attention Networks (GAT) for drug
modeling and DDI prediction.

• GMPNN-CS (Nyamabo et al., 2022): A Gated Message-
Passing Neural Network (GMPNN) was designed to learn
chemical substructures of different sizes from molecular
graphical representations of drugs for predicting DDIs
between drugs.

• SA-DDI_GMP (Yang et al., 2022): The method was proposed
by Yang et al. (2022) The model uses a substructure-aware
graph neural network with an attention mechanism to extract
adaptive substructures for DDI prediction.

4.5 Results

Table 1 displays the predictive performance of MASMDDI
compared to previous models on DrugBank and Twosides
datasets in transductive setting. In the transduction setup, drugs
used for training may also be present in the test set. To ensure
unbiased evaluation, datasets are randomly split based on the DDI
tuple. We split both datasets hierarchically by interaction type to
maintain the same proportion of interaction types in the training
(60%), validation (20%), and test (20%) sets, and for each DDI tuple,
a negative sample is generated. Due to limited computational
resources, we could not run the MHCADDI model on the
Twosides dataset, so we only reference the AUROC results from
the original paper. Despite the already high accuracy achieved by
existing methods in DDI prediction, our model demonstrates
further breakthroughs in performance. On the DrugBank dataset,
except for the F1 scores, MASMDDI outperformed the other models
on the other three evaluation metrics, with ACC and AUROC
reaching 0.9596 and 0.9903, respectively. In comparison to the
SSI-DDI model, it shows a 2.93% improvement in ACC and a
3.03% improvement in F1 scores. This indicates that MASMDDI, in
a direct-impact setting, can effectively distinguish interacting drugs
from non-interacting drugs and address the prediction of existing
drug DDIs with high precision. MASMDDI also performs
exceptionally well on the Twosides dataset, achieving a score of
0.8183 for ACC, and AUPRC and F1 scores of 0.8472 and 0.8288,
respectively. These experimental results validate the effectiveness of

the DDI prediction method proposed in this paper. To provide a
more intuitive representation of the experimental results, Figure 2
illustrates bar graphs ofMASMDDI and other models for these four-
evaluation metrics on the two datasets (MHCADDI is not shown in
the Twosides bar graph due to missing data).

Table 2 summarizes the experimental results in two tasks under
the inductive scenario. In the inductive scenario, this study chose to
conduct experiments using only the DrugBank dataset. This is
because DrugBank contains a richer number of drugs compared
to the Twosides dataset. If the number of drugs in the selected
dataset is too small, it will result in the model overfitting the features
of the old drugs in the inductive scenario. To prevent overfitting, this
study also added a discard layer to MASMDDI. From the results, it
can be observed that the predictive performance of MASMDDI
decreases significantly in the inductive scenario compared to the
transductive scenario. This indicates that the lack of prior knowledge
about chemical structure information reduces the model’s
generalization ability and highlights the challenge faced by DDI
prediction models in improving their generalization ability. Despite
the overall decrease in model performance, the performance of
MASMDDI in the S2 task is excellent, especially for the high
index of the F1 score. This indicates that the model’s
classification prediction performance is better in the S2 task,
while worse in the S1 task. This is due to the significant
differences in the core chemical structures of most drugs in the
DrugBank dataset and data imbalance. These factors are important
to be considered in future work. In practical applications, the
combination therapy of one unknown drug and one known drug
in S2 task is more common and safe compared to the combination
therapy of two unknown drugs in S1 task. Therefore, the excellent
performance of MASMDDI in task S2 demonstrates the potential
practical value of the proposed method in real-world treatments.

4.6 Ablation study

To assess the influence of the multi-layer MASMG layers and
substructure attention mechanism proposed in this study and to
gauge the effectiveness of the MASMDDI method, disintegration
experiments were conducted by altering the combination of
different numbers of MASMG layers and the presence of the

TABLE 1 Experimental results of MASMDDI and baseline in transductive setting on DrugBank and Twosides.

Method DrugBank Twosides

ACC AUROC AUPRC F1 ACC AUROC AUPRC F1

MR-GNN 0.9283 0.9785 0.9862 0.9367 0.7562 0.8402 0.8225 0.7663

MHCADDI 0.8380 0.9116 0.8926 0.8506 - 0.8820 - -

SSI-DDI 0.9303 0.9758 0.9809 0.9304 0.7766 0.8481 0.8077 0.7856

GAT-DDI 0.7652 0.8437 0.8186 0.7760 0.6363 0.7113 0.7059 0.6199

GMPNN-CS 0.9396 0.9777 0.9696 0.9407 0.8153 0.8899 0.8625 0.8274

SA-DDI_GMP 0.9354 0.9722 0.9580 0.9722 0.7532 0.8259 0.7822 0.7814

MASMDDI 0.9596 0.9903 0.9894 0.9601 0.8185 0.8855 0.8475 0.8291

Bold vales indicate optimal effects.
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substructure attention mechanism module in the model. Each
experiment was run for 100 epochs. Experiments were performed
on DrugBank for models with 3, 4, and 5 layers, and on Twosides for
models with 2, 3, and 4 layers.

Table 3 and Table 4 show the results illustrating how the number
of layers impacts the performance of theMASMGmodel. In both tables,
“L#-N/A” represents experiments conducted without using the
substructure attention mechanism but with # layers of MASMG

layers (e.g., “L3-N/A” means using 3 MASMG layers without adding
the substructure attention module), and “L&-A” represents the
complete experiments conducted with both # layers of MASMG and
the substructure attentionmechanism. From Table 3 and Table 4, it can
be observed that the model with 4MASMG layers and the substructure
attention module in DrugBank achieves the best predictive
performance, while the best performance was achieved by the model
with 3 MASMG layers and substructure focus modules in Twosides.

FIGURE 2
Experimental Performance of MASMDDI and Baseline Models in transductive setting. (A) DrugBank dataset. (B) Twosides dataset.

TABLE 2 Experimental results of MASMDDI and baseline in inductive setting on the DrugBank.

Method S1 (new drug - new drug) S2 (new drug - old drug)

ACC AUROC AUPRC F1 ACC AUROC AUPRC F1

MR-GNN 0.6192 0.6689 0.6431 0.6071 0.6733 0.7652 0.7525 0.5971

MHCADDI 0.6650 0.7253 0.7106 0.6721 0.7058 0.7784 0.7616 0.7274

SSI-DDI 0.5964 0.6937 0.7118 0.3854 0.6948 0.7816 0.7967 0.6170

GAT-DDI 0.6340 0.6968 0.7038 0.5952 0.6409 0.7075 0.7060 0.6284

GMPNN-CS 0.6863 0.7472 0.7453 0.6638 0.7866 0.8666 0.8469 0.7966

SA-DDI_GMP 0.6355 0.6888 0.6609 0.6460 0.7939 0.8812 0.8773 0.7646

MASMDDI 0.6141 0.7014 0.7407 0.4680 0.7260 0.8014 0.8086 0.8576

Bold vales indicate optimal effects.

TABLE 3 MASMDDI ablation experiment results. “L#-N/A” represents
experiments conducted without using the substructure attention
mechanism but with # layers of MASMG layers (e.g., “L3-N/A” means using
3 MASMG layers without adding the substructure attention module), and
“L#-A” represents the complete experiments conducted with both # layers
of MASMG and the substructure attention mechanism.

Method ACC AUROC AP F1

MASMDDI_L3-N/A 0.8929 0.9496 0.9380 0.8940

MASMDDI_L4-N/A 0.9203 0.9688 0.9619 0.9219

MASMDDI_L5-N/A 0.9338 0.9785 0.9735 0.9379

MASMDDI_L3-A 0.9527 0.9890 0.9879 0.9573

MASMDDI_L4-A 0.9596 0.9903 0.9894 0.9601

MASMDDI_L5-A 0.9542 0.9881 0.9867 0.9548

Bold vales indicate optimal effects.

TABLE 4 MASMDDI ablation experiment results. “L#-N/A” represents
experiments conducted without using the substructure attention
mechanism but with # layers of MASMG layers (e.g., “L3-N/A” means using
3 MASMG layers without adding the substructure attention module), and
“L#-A” represents the complete experiments conducted with both # layers
of MASMG and the substructure attention mechanism.

Method ACC AUROC AP F1

MASMDDI_L2-N/A 0.7804 0.8458 0.8010 0.7929

MASMDDI_L3-N/A 0.8023 0.8684 0.8254 0.8143

MASMDDI_L4-N/A 0.8094 0.8772 0.8374 0.8196

MASMDDI_L2-A 0.8100 0.8784 0.8407 0.8206

MASMDDI_L3-A 0.8185 0.8855 0.8475 0.8291

MASMDDI_L4-A 0.8156 0.8823 0.8431 0.8262

Bold vales indicate optimal effects.
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Figure 3 and Figure 4 presents the line plots of (A)ACC, (B)
AUROC, (C)AUPRC and (D)F1 results obtained from the ablation
study of MASMDDI on the DrugBank and Twosides dataset in the
transductive setting. The models using the substructure attention
module outperform the models without it in all the evaluation
metrics. It can be observed that the substructure attention
module plays a crucial role, as the performance of the shallow
model (L3-A) surpasses that of the deep model without the
substructure attention module (L5-N/A) and similarly the L2-A
outperforms the L4-N/A in Twosides. This indicates that the
substructure attention module effectively enhances the latent
feature representation of substructure features extracted by the
MASMG layers in both datasets.

4.7 Parameter analysis experiment

In this section, we will comprehensively assess the
reasonableness of the model in terms of both the number of
MASMG layers and the impact of batch and dimension on
model performance.

4.7.1 Analysis of layers in adaptive soft mask graph
neural networks

To comprehensively evaluate the impact of the number of layers
in the MASMG on model performance, this study conducted
experiments by removing the substructure attention module and/

or increasing or decreasing the number of MASMG layers to adjust
the model’s depth. MASMG with 2–6 and 2 to 5 layers were selected
for experimentation in DrugBank and Twosides, respectively, and
each setting was trained for 100 epochs. Figure 5 and Figure 6
illustrates the results using a dot-line graph format for AUROC,
AUPRC, and F1 scores. Figure 5A and Figure 6A displays the
experimental results of the MASMG models using only multiple
layers. These results indicate that as the number of MASMG layers
increases, the model’s performance also improves. However, the
performance improvement gradually diminishes, suggesting a
diminishing effect of depth for the MASMG. To gain a more
comprehensive understanding of model performance, we further
considered the case of using bothmultiple layers of MASMG and the
substructure attention module in Figure 5B and Figure 6B. It is
evident that the model achieves the best performance in DrugBank
when the number of MASMG layers is 4, and its performance is best
in Twosides when the number of MASMG layers is 3. Excessive
layers lead to a decrease in performance, indicating that overly deep
layers result in overfitting or gradient vanishing issues.

4.7.2 Hyperparameter batch and dim analysis
Due to the adoption of batch sampling and training strategies in

MASMDDI, the batch size is particularly important. This section
delves into the impact of different batch sizes on the method’s
performance. Notably, setting the batch size too small can hinder the
model’s ability to converge effectively. Conversely, if the batch size is
set too large, the computational cost will significantly increase. Both

FIGURE 3
Ablation experiments of MASMDDI with respect to substructure attention mechanism on the DrugBank dataset. Panels represent performance
results using 3 to 5 layers of MASMG modules and/or adding substructure attention mechanisms, where (A) ACC, (B) AUROC, (C) AUPRC, (D) F1.
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situations can lead to a decrease in model performance. Therefore,
we conducted in-depth research on the impact of different batch
sizes on method performance. As shown in Figure 7A, when the
batch size is set to 128, the method exhibits the best performance in
DrugBank. As depicted in Figure 8A, the influence of batch size on

model performance in Twosides is relatively minor. Optimal
performance is observed when the batch size is set to 1024.

In addition, this study also conducted experiments on the
impact of hidden dimensions on model performance. As shown
in Figure 7B and Figure 8B, the larger the hidden dimension of the

FIGURE 4
Ablation experiments of MASMDDI with respect to substructure attention mechanism on the Twosides dataset. Panels represent performance
results using 3 to 5 layers of MASMG modules and/or adding substructure attention mechanisms, where (A) ACC (B) AUROC, (C) AUPRC, (D) F1.

FIGURE 5
Experimental study on the effect of MASMG layers on the performance of MASMDDI model on DrugBank dataset. Panel (A) shows the effect of
increasing or decreasing the number of MASMG layers on model performance in the case of removing structural attention mechanisms, and panel (B)
shows the effect of increasing or decreasing the number of MASMG layers onmodel performance in the case of adding structural attentionmechanisms.
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model, the better its performance. However, as the dimension
increases, the performance improvement gradually diminishes,
and performance tends to stabilize when the hidden dimension
reaches 256. Experimental results for these two parameters indicate
that when the hidden dimension is set to 256 and the batch size is set
to 128, MASMDDI achieves significantly improved performance
compared to other settings on DrugBank. When the hidden
dimension is set to 256 and the batch size is set to 1024,
MASMDDI has better performance on Twosides. These series of
experimental results not only emphasize the criticality of batch size
and hidden dimension but also provide strong support for selecting
optimal hyperparameters. These findings provide valuable guidance
for further optimizing the performance of MASMDDI. Future
research endeavors may delve deeper into refining these strategies

to enhance not only the efficiency but also the scalability of
MASMDDI in handling larger datasets and more complex
learning scenarios.

4.8 Visual analysis of relationships

The analysis of batch size and hidden dimension demonstrates
the outstanding performance of MASMDDI in overall performance.
To gain a deeper understanding of the model’s effectiveness, this
study further conducted extensive experimental predictions on the
performance of the model for each type of DDIs on the DrugBank
and Twosides dataset. Evaluation metrics for each interaction type
were independently calculated using the predicted scores and true

FIGURE 6
Experimental study on the effect of MASMG layers on the performance of MASMDDI model on Twosides dataset. Panel (A) shows the effect of
increasing or decreasing the number of MASMG layers on model performance in the case of removing structural attention mechanisms, and panel (B)
shows the effect of increasing or decreasing the number of MASMG layers onmodel performance in the case of adding structural attentionmechanisms.

FIGURE 7
The performance impact of batch and hidden dimension dim on the MASMDDI model in DrugBank dataset. (A) batch. (B) dim.
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labels. The detailed presentation of these performance metrics can
be seen in Figures 9, 10. Analysis of Figure 9 reveals that out of the
86 DDI types examined on the DrugBank dataset, MASMDDI
achieved the highest AUROC scores and highest AUPRC scores
(over 88%) for 82 DDI types. This indicates that MASMDDI has
strong generalization ability and prediction accuracy for multiple
types of drug interactions. However, we observed significant
variations in accuracy for each relationship when studying
specific relationships. For example, the accuracy for type 75 was
relatively low, while the accuracy for type 59 was much higher.

To further explore this phenomenon, we carefully examined
the number of samples for each relationship and found that
some relationship types had relatively few samples. For example,
type 75 had only 20 samples available for prediction. This
imbalanced distribution of samples may affect the model’s
performance on specific relationships. However, analysis of
Figure 10 shows that the four metrics of MASMDDI among
the 963 DDI types on the Twosides dataset are relatively average,
with scores around or above 0.8. This shows that the Twosides
dataset is a relatively balanced dataset. In this study, we also

FIGURE 8
The performance impact of batch and hidden dimension dim on the MASMDDI model in Twosides dataset. (A) batch. (B) dim.

FIGURE 9
Performance radar chart for each DDI type on DrugBank. (A) ACC and AUROC. (B) AUPRC and F1.
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concluded that the prediction of DDIs actually involves an issue
of relationship imbalance. This means that there are significant
differences in the sample sizes for each relationship, and the
imbalance in data distribution is a key issue that needs to be
addressed in future research. This in-depth analysis not only
highlights the strong performance of the MASMDDI model but
also provides valuable insights for future related research. It
encourages researchers to pay more attention to the challenge of

relationship imbalance and seek solutions to improve the
robustness of the models.

4.9 Model efficiency analysis

In assessing the performance of models on the DrugBank and
Twosides datasets, the comparison of time and memory efficiency is
also a crucial metric, directly impacting the feasibility and scalability of
the model in practical applications. Due to the varying sizes and
complexities of the two datasets, they affect time and memory
efficiency differently. Twosides, the larger dataset, requires more
memory for storage and takes longer processing time. We compare
the efficiency of MASMDDI with the best baseline GMPNN-CS, and
Table 5 presents the average computation time and maximummemory
usage of MASMDDI and GMPNN-CS on the DrugBank and Twosides
datasets, indicating that MASMDDI consumes less computation time
on both datasets compared to GMPNN-CS. However, GMPNN-CS
exhibits relatively lower memory usage on the Twosides dataset due to

FIGURE 10
Performance radar chart for each DDI type on Twosides. (A) DDI type 1-240. (B) DDI type 241-480. (C) DDI type 481-720. (D) DDI type 720-963.

TABLE 5 Comparison of time and memory efficiency on DrugBank and
Twosides datasets.

Method DrugBank Twosides

Time
(s)

Memory
(G)

Time
(s)

Memory
(G)

GMPNN-CS 97.70 2.90 2041.25 3.65

MASMDDI 73.89 1.80 1817.97 6.47

Bold vales indicate optimal effects.
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its optimized algorithm tailored for this dataset. From this experiment,
we can conclude that for future research endeavors aimed at enhancing
time andmemory efficiency, techniques such as algorithm optimization
and parallel computing can be employed.

5 Conclusion

This study introduces a computational methodMASMDDI using
a soft mask adaptive graph neural network to predict DDIs. The
excellent performance of MASMDDI is mainly attributed to the
recognition that DDIs are fundamentally driven by interactions
between chemical substructures. The model introduces multi-
layered soft mask GNN and substructure attention mechanisms to
flexibly learn drug substructures of different sizes and shapes and
establish their interaction models, thereby inferring potential DDIs
based on chemical compositions. In experiments, we evaluate the
performance of MASMDDI using two real-world datasets, DrugBank
and Twosides. The results show that MASMDDI outperforms the
baseline in transductive setting and is competitive in the inductive
setting. However, MASMDDI still has limitations. Even though
MASMDDI performs superiorly on both datasets in transduction
scenarios, it is predictive performance for DDIs of two new drugs is
slightly lower in induction scenarios. Moreover, the time
consumption and model complexity are relatively high, leading to
slightly higher time costs. Future research can focus on improving the
model’s generalization ability in the inductive learning paradigm
while enhancing its applicability. Enhancing MASMDDI’s ability to
infer knowledge from limited or unseen drug interactions can
significantly improve its practicality and relevance in the dynamic
environment of pharmaceutical research and drug development.
Possible approaches include adopting graph contrastive learning
methods or balancing datasets.
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