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Cancer and diabetes are significant diseases that pose a threat to human health.
Their interconnection is complex, particularly when they coexist, often
necessitating multiple therapeutic approaches to attain remission. Sodium-
glucose cotransporter protein two inhibitors (SGLT-2i) emerged as a
treatment for hyperglycemia, but subsequently exhibited noteworthy extra-
glycemic properties, such as being registered for the treatment of heart failure
and chronic kidney disease, especially with co-existing albuminuria, prompting its
assessment as a potential treatment for various non-metabolic diseases.
Considering its overall tolerability and established use in diabetes
management, SGLT-2i may be a promising candidate for cancer therapy and
as a supplementary component to conventional treatments. This narrative review
aimed to examine the potential roles and mechanisms of SGLT-2i in the
management of diverse types of cancer. Future investigations should focus on
elucidating the antitumor efficacy of individual SGLT-2i in different cancer types
and exploring the underlying mechanisms. Additionally, clinical trials to evaluate
the safety and feasibility of incorporating SGLT-2i into the treatment regimen of
specific cancer patients and determining appropriate dosage combinations with
established antitumor agents would be of significant interest.
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1 Introduction

Cancer, the primary contributor to global mortality, poses a significant impediment to
the advancement of life expectancy. The prevalence of cancer is experiencing a notable
surge, with an estimated 10 million fatalities predicted by 2020. The escalating burden of
cancer incidence andmortality necessitates the implementation of comprehensive measures
for cancer prevention and treatment to ensure effective global control (Sung et al., 2021).
The development of novel pharmaceuticals for cancer control typically requires extensive
characterization and clinical validation over an extended period. Alternatively, repurposing
drugs with established anticancer properties may serve as a viable approach for advancing
cancer treatment, particularly when these drugs with proven safety profiles are already
routinely employed in clinical settings. Diabetes is emerging as a prevalent chronic,
noncommunicable disease worldwide and is currently one of the most prevalent and
rapidly growing global diseases. Projections indicate that the number of adults with diabetes
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will reach approximately 537 million by 2021, with a gradual
increase that is expected to reach 783 million by 2045 (Sun et al.,
2022). In 2021, diabetes was responsible for a significant mortality
rate of 6.7 million individuals, thereby contributing to health
expenditures of no less than $966 billion. Moreover, the
condition imposes a substantial economic burden, primarily
stemming from disparities in healthcare expenditures and limited
access to treatment, particularly between developed and developing
nations (Liyanage et al., 2015; da Rocha Fernandes et al., 2016;
American Diabetes Association, 2018; Saeedi et al., 2019; Lin et al.,
2020). Preventing and managing the progression of diabetes have
emerged as prominent concerns in the global healthcare system. A
multifaceted association exists between diabetes and certain types of
cancer because tumors rely heavily on substantial quantities of
glucose for glycolysis and energy generation to facilitate their
metabolic processes, expansion, and propagation. Consequently,
the suppression of glucose availability or hindrance of glycolysis
effectively curtails cellular proliferation and tumor development
(Yang et al., 2002; Chowdhury et al., 2016; Ling et al., 2020;
Pearson-Stuttard et al., 2021).

SGLT-2i is a novel antidiabetic drug that effectively mitigates
hyperglycemia by diminishing renal glucose reabsorption (Chao,
2014). In addition to their hypoglycemic effects, these inhibitors
exhibit significant therapeutic potential for managing cardiovascular
ailments in both diabetic and non-diabetic individuals. Moreover,

their impeccable safety record in humans has prompted
investigations into their viability as prospective treatments for
various non-metabolic disorders (Rieg and Vallon, 2018).
Recently, interest has increased in the antitumor effects of SGLT-
2 inhibitors. Their use has been linked to lower risks of all-cause
mortality, cancer-related mortality and new overall
cancers(Dicembrini et al., 2019; Kato et al., 2019; García et al.,
2021; Rokszin et al., 2021; Suissa et al., 2021; Ueda et al., 2022;
Chinyama et al., 2023; Chung et al., 2023; Wang et al., 2024).
Additionally, studies have shown the anticancer activity of SGLT-
2i in various types of cancers including hepatocellular, pancreatic,
prostate, colon, lung, and breast carcinomas (Saito et al., 2015;
Scafoglio et al., 2015; Villani et al., 2016; Kuang et al., 2017; Obara
et al., 2017; Tang et al., 2017; Kaji et al., 2018; Scafoglio et al., 2018;
Shiba et al., 2018; Nasiri et al., 2019; Komatsu et al., 2020; Ding et al.,
2023). Potential mechanisms include the reduction of glucose
uptake by cancer cells, systemic glucose restriction, cell cycle
arrest, DNA replication, regulation of multiple signaling
pathways, and regulation of the expression of different genes and
proteins. Given its general tolerability and routine use in diabetes
management, SGLT-2i may be a good candidate for drug
repurposing in cancer therapy, and could be used as an adjunct
to conventional therapy. In this paper, we review the anticancer
effects of SGLT-2i in different types of cancer reported in recent
years and their possible mechanisms (Figure 1).

FIGURE 1
Anticancer mechanism of SGLT-2i.
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2 Expression of SGLTs

Overexpression of the glucose transporter GLUT1 in the SLC2A
gene family is associated with increased cellular demand for glucose
(Hung et al., 2019; Okada et al., 2020). Additionally, the expression
of glucose transporters (GLUTs) and key enzymes such as
hexokinase two and pyruvate kinase M2 are altered (Tohma
et al., 2005; DeBerardinis et al., 2008; Hsu and Sabatini, 2008;
Koppenol et al., 2011). In recent years, a second class of human
glucose transporter proteins has been increasingly recognized within
the SLC5 gene family, known as sodium-dependent glucose
cotransporters (SGLTs) (Wright et al., 2011; Wright, 2013;
Koepsell, 2017). SGLTs are widely acknowledged to play a crucial
role in the absorption of glucose in the intestines and the
reabsorption of glucose from the glomerular filtrate in the
proximal tubules of the kidney (Wright et al., 2011; Sala-Rabanal
et al., 2016; Ghezzi et al., 2018; Sala-Rabanal et al., 2018).
Furthermore, apart from its presence in the small intestine and
kidney, SGLT1 is expressed in the liver, lung, brain, and salivary
glands, while SGLT2 is confined to the renal proximal tubule
(Wright et al., 2011; Sabolic et al., 2012; Vrhovac et al., 2015;
Ghezzi et al., 2017; Koepsell, 2017; Madunić et al., 2017). Recent
investigations have revealed significant upregulation of SGLT2 in
numerous tumors, including those affecting the liver (Kaji et al.,
2018; Hung et al., 2019; Nakano et al., 2020; Ozutsumi et al., 2020; Li
et al., 2021; Luo et al., 2021), pancreas (Scafoglio et al., 2015),
prostate (Scafoglio et al., 2015; Villani et al., 2016), kidney (Kuang
et al., 2017), lungs (Scafoglio et al., 2018), breast (Komatsu et al.,
2020; Zhou et al., 2020), cervix (Xie et al., 2020), and colon (Saito
et al., 2015; Okada et al., 2018; Okada et al., 2020), and that it plays a
pivotal role in promoting cancer cell survival (Cangoz et al., 2013;
Scafoglio et al., 2015; Kepe et al., 2018).

3 SGLT-2i species and their
metabolic enzymes

Considering the observed protein expression and functional
activity of SGLT2 in various tumor types, the glucose-lowering
medication SGLT-2i has been investigated as a potential
therapeutic agent for targeted treatment of specific cancers.
Current research cannot determine the efficacy of certain
SGLT-2i species in specific cancer types, but different types of
SGLT-2i have different metabolic enzymes. For instance,
dapagliflozin (DAPA) is metabolized and inactivated by uridine
diphosphate-glucuronosyltransferase (UGT) family 1member A9
(UGT1A9), while empagliflozin (EMPA) is metabolized by
UGT1A9 and other related isoforms of UGT family 2member
B7, UGT family 1member A3, and UGT family 1member A8.
Tofogliflozin, in contrast, undergoes metabolism by five different
enzymes (CYP2C18, CYP3A4, CYP3A5, CYP4A11, and CYP4F3)
before being inactivated and excreted from the body (Obermeier
et al., 2010; Barron et al., 2016; Rieg and Vallon, 2018; Tokarz et al.,
2018; Okada et al., 2020). Canagliflozin (CANA) is primarily
metabolized to two pharmacologically inactive O-glucuronides
(M7 and M5) by UGT1A9 and UGT2B4, respectively, whereas
cytochrome P450 3A4 plays a minimal role in its metabolism
(Devineni et al., 2015). Ipragliflozin is metabolized into multiple

pharmacologically inactive metabolites predominantly via
glucuronidation by UGT2B7, UGT2B4, UGT1A9, and UGT1A8
(Ferrannini et al., 2013)(Table1). Research has shown that DAPA
has potential anticancer effects on colon cancer cells expressing
SGLT2 but not UGT1A9 because cancer HCT116 cells express
SGLT2 but not UGT1A9(Okada et al., 2018). Additional research
is required to investigate the antitumor efficacy of different SGLT-
2i types in different types of cancer. Specifically, clinical trials are
required to evaluate the safety and feasibility of incorporating
SGLT-2i into treatment protocols for patients with specific
malignancies. Furthermore, these trials should aim to identify
the optimal routes of administration for targeted delivery to
specific tumor sites.

4 SGLT-2i anticancer effects

4.1 Hepatocellular carcinoma

It is worth noting that the liver plays a crucial role in
maintaining glucose homeostasis in the body, as hepatocytes not
only consume glucose but also export it. An important characteristic
that distinguishes tumors from normal tissues is the abnormal
expression of glucose transporter proteins. Normal hepatocytes
typically have high levels of bidirectional glucose transporters,
notably GLUT2, which has a low affinity for glucose. Conversely,
human liver tumors demonstrate elevated expression of GLUT1,
GLUT2, and GLUT3 mRNAs (Su et al., 1990; Yamamoto et al.,
1990). GLUT1 has a high affinity for glucose and facilitates
asymmetric transport, leading to increased glucose uptake.
Consequently, GLUT1 and GLUT3 upregulation substantially
enhances glucose uptake in hepatocellular carcinoma (HCC) cells
(Thorens, 1992; Grobholz et al., 1993; Xia et al., 2020). Furthermore,
HCC cells also express SGLT-2. The anti-HCC effects of SGLT-2i
have also been studied extensively (Table 2).

The WNT/β-catenin signaling pathway enhances aerobic
glycolysis in cancer cells, resulting in increased pyruvate
carboxylase and pyruvate dehydrogenase kinase one expression,
ultimately leading to proteasome-mediated degradation of β-
catenin (Reya et al., 2003; Zhan et al., 2017), which is a common
genetic alteration in the development of HCC(Lee et al., 2012; Pate
et al., 2014; Shibata and Aburatani, 2014). Hung et al. analyzed the
clinical tumor samples from 216 patients diagnosed with HCC.
Their findings revealed significant cytoplasmic and/or nuclear
staining for β-catenin in liver tumors, while adjacent non-tumor
sites did not exhibit such staining. In their investigation, using
Huh7 and Hep3B cells as experimental models, CANA impeded the
inward flow of glucose by inhibiting multiple GLUTs rather than
SGLT2 alone. Previous studies also supported this conclusion,
demonstrating that higher doses of CANA can affect not only
SGLT2 but also other SGLTs and GLUTs, particularly GLUT1
(Nomura et al., 2010; Gurney et al., 2012). Additionally, CANA
treatment effectively suppressed the survival and colony-forming
capability of HCC in a dose-dependent manner (Hung et al., 2019).
This inhibition was achieved by impeding the activation of β-catenin
signaling induced by glucose influx, through the promotion of
proteasomal degradation and inhibition of pp2a-mediated
dephosphorylation of β-catenin. Consequently, HCC growth was
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inhibited, leading to an extended survival period for mice
with tumors.

Protein kinase B (AKT), a crucial regulator of cancer cell
survival, is involved in glycolysis regulation because its activation
stimulates glucose uptake and aerobic glycolysis within cells
(Elstrom et al., 2004). CANA showed dose-dependent
antiproliferative effects on SGLT2-expressing Huh7 and
HepG2 cells by downregulating glycolytic metabolism, including
glucose uptake, lactate production, and intracellular ATP
production (Kaji et al., 2018). The mechanism underlying this

effect appears to involve the inhibition of extracellular signal-
regulated kinase (ERK, p38, and AKT) phosphorylation and
caspase3 cleavage, leading to G2/M cell cycle arrest and
apoptosis. Additionally, oral administration of CANA
significantly reduced the subcutaneous tumor load in xenograft
hepatocellular carcinoma models derived from Huh7 and
hepG2 cells. In this study, the oral administration of CANA
resulted in a significant reduction in the subcutaneous tumor
load of xenograft hepatocellular carcinoma tumors derived from
Huh7 and HepG2 cells in BALB/c nude mice. CANA also reduced

TABLE 1 Metabolic characteristics of different species of SGLT-2i.

Type of SGLT-2i Duration metabolic enzymes

DAPA long-acting UGT1A9

IPRA long-acting UGT1A9, UGT2B7, UGT2B4, UGT1A8

CANA intermediate-acting UGT1A9, UGT2B4

EMPA intermediate-acting UGT1A9, UGT2B7, UGT1A3, UGT1A8

TOFO intermediate-acting CYP2C18, CYP3A4, CYP3A5, CYP4A11, CYP4F3

TABLE 2 Anti-hepatocellular carcinoma studies of SGLT-2i.

Studies Research
type

Cancer type Type of
SGLT-2i

Findings

Hung et al. (2019) in vivo and in vitro Hepatocellular carcinoma CANA Event: inhibited the growth of hepatocellular carcinoma

Huh7, Hep3B cells tumor-
bearing mice

Mechanism: impeded the activation of β-catenin signaling induced by
glucose influx through the promotion of proteasomal degradation and
inhibition of pp2a-mediated dephosphorylation of β-catenin

Kaji et al. (2018) in vivo and in vitro Hepatocellular carcinoma CANA Event: inhibited the proliferation of hepatocellular carcinoma cells, blocked
the cell cycle to accelerate apoptosis, and attenuated the angiogenic activity
of SGLT-2-expressing hepatocellular carcinoma mechanism:
downregulated glycolytic metabolism through inhibiting extracellular
signal-regulated kinase phosphorylation

HepG2, Huh7 cells xenograft
model mice

Luo et al. (2021) in vivo and in vitro Hepatocellular carcinoma CANA Event: inhibited hypoxia-induced metastasis, angiogenesis, and metabolic
reprogramming in hepatocellular carcinoma. mechanism: inhibited the
expression of vascular endothelial growth factor, reduces epithelial-
mesenchymal transition associated proteins and glycolysis-associated
proteins, targets the AMPK/mTOR pathway

HepG2, Hep3B, HCCLM3 cells

HepG2 xenograft mice

Nakano et al.
(2020)

in vitro Hepatocellular carcinoma CANA Event: impeded the proliferation of HCC cells by modulating various
metabolic pathways mechanism: altered mitochondrial oxidative
phosphorylation and affect fatty acid metabolismHep3B, Huh7 cells

Jojima et al. (2019) in vivo and in vitro Liver cancer diabetes and
NASH-HCC mouse

CANA Event: inhibited liver tumorigenesis and was anti-fatty degenerative and
anti-inflammatory mechanism: directly inhibited SGLT-2 and
downregulated AFP mRNA and the expression of cyclin D and
Cdk4 proteinsHepG2 cells

Abdel-Rafei et al.
(2021)

in vitro Hepatocellular carcinoma CANA Event: inhibited the clonal survival of HepG2 cells mechanism:
downregulated glucose uptake, lactate release and regulation of
endoplasmic reticulum stress-mediated autophagyHepG2 cells

Kawaguchi et al.
(2019)

in vivo Hepatocellular carcinoma CANA Event: induced spontaneous regression of HCC in patients with cirrhosis
combined with diabetes mellitus. mechanism: downregulated matrix
metalloproteinase-8, angiopoietin-1, angiopoietin-2, prolactin and
placental growth factor-aa

Patients

Li et al. (2021) in vivo and in vitro Hepatocellular carcinoma DAPA Event: mitigated hepatic steatosis mechanism: restored autophagy via the
AMPK-mTOR pathway and promote the phosphorylation of ACC1 and
upregulate the lipid β-oxidizing enzyme ACOX1HepG2 cells
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intra-tumoral angiogenesis. To further investigate these effects,
in vitro experiments were conducted using human umbilical vein
endothelial cells (HUVEC) co-cultured with Huh7 or HepG2 cells.
CANA was found to inhibit the proliferation and tubule formation
of HUVEC, indicating its ability to attenuate the pro-angiogenic
activity of human HCC cells. In summary, CANA has the ability to
block and inhibit angiogenic factors in hepatocellular carcinoma
cells. Ozutsumi (Ozutsumi et al., 2020) discovered that the
combined administration of CANA and teneligliptin, a dipeptidyl
peptidase-4 inhibitor, effectively inhibited HCC cell growth and
angiogenesis. Additionally, this treatment reduced oxidative stress
and demonstrated a synergistic effect in the prevention of
hepatocarcinogenesis. This finding was further supported by a
clinical case study (Kawaguchi et al., 2019) in which a patient
with cirrhosis and diabetes mellitus experienced spontaneous
regression of HCC after taking CANA for 10 weeks. This
regression was accompanied by a significant decrease in the
expression of angiogenesis-related cytokines, including matrix
metalloproteinase-8, vascular protein 1, vascular protein-2
prolactin, and placental growth factor-aa. Spontaneous tumor
regression is a rare and poorly understood phenomenon that
provides a new approach for tumor therapy.

Hypoxia is a commonly observed tumor microenvironment that
induces various processes such as tumor metastasis, tumor
angiogenesis, and glycolysis (Brown and Giaccia, 1998). The
adaptive response to tumor hypoxia is primarily regulated by
hypoxia-inducible factor 1 (HIF-1), a major promoter (Agani and
Jiang, 2013). The biological activity of HIF-1 is influenced by the
expression of HIF-1α, and the target genes regulated by HIF-1α have
been identified to play a role in the systemic physiological responses
of HCC to hypoxia, including glycolysis, metastasis, and
angiogenesis (Guo et al., 2020). Luo et al. (Luo et al., 2021)
demonstrated that CANA effectively inhibited hypoxia-induced
metastasis, angiogenesis, and metabolic reprogramming in HCC.
At the molecular level, the expression of vascular endothelial growth
factor was inhibited, decreasing epithelial-mesenchymal transition-
related and glycolysis-related proteins, and the synthesis of HIF-1α
proteins was reduced without affecting their proteasomal
degradation. Furthermore, evidence has demonstrated that
CANA inhibits the AKT/mTOR pathway, which is crucial for
HIF-1 transcription and translation.

Adenosine monophosphate-activated protein kinase (AMPK)
and acetyl coenzyme A carboxylase (ACC) are sensors of
intracellular ATP levels and modulators of β-oxidation. The role
of AMPK in inducing G2/M blockade in HCC cells has been
demonstrated through its modulation of the transcription factor
p53 and the protein p21 (Lee W. et al., 2012; Sanli et al., 2014), as
well as the inhibition of hepatic de novo lipogenesis and HCC
proliferation via phosphorylation of ACC(Lally et al., 2019).
ACAA1, an essential enzyme involved in the regulation of ketone
body formation including fatty acid β-oxidation and 3-
hydroxybutyric acid, plays a crucial role in promoting the
development and progression of HCC(Liu et al., 2015; Yan et al.,
2017). Nakano (Nakano et al., 2020) conducted a comprehensive
investigation using multi-omics analysis of metabolomics and
absolute quantitative proteomics to examine the effects of CANA
on the proliferation and metabolic reprogramming of HCC cell
lines. These findings suggest that CANA impedes HCC cell

proliferation by modulating various metabolic pathways.
Specifically, CANA upregulated nicotinamide adenine
dinucleotide levels, thereby altering mitochondrial oxidative
phosphorylation. Additionally, CANA downregulated ACAA1,
affecting fatty acid metabolism and nucleoside diphosphate
kinase 1 (NME1), and impacting purine and pyrimidine
metabolism. Researchers have also observed the localization of
SGLT-2 in the mitochondria of Hep3B and Huh7 cells,
indicating that CANA may hinder the oxidative phosphorylation
of AMPK. AMPK inhibition subsequently inhibits hepatic
regeneration of adiposity and HCC proliferation through three
distinct pathways: 1) phosphorylation of ACC, 2) downregulation
of SCD, and 3) G2/M blockade in Hep3B cells. In a mouse model of
HCC, the expression of nucleoside diphosphate kinases one and 2,
which are responsible for the synthesis of nucleotide triphosphate
fromNDP, was upregulated (Hindupur et al., 2018; Puts et al., 2018).
In Hep3B cells, CANA downregulates NME1 and upregulates NDP,
while simultaneously downregulating the expression of DNA
primase subunit 2 (PRIM2). This interference with DNA
replication and mRNA transcription results in the inhibition of
RNA and DNA synthesis. PRIM2 is a regulatory primase subunit
that is involved in nucleotide formation, DNA replication, and
transcription (Zerbe and Kuchta, 2002). Furthermore, a similar
study demonstrated that DAPA effectively restored autophagy via
the AMPK-mTOR pathway and mitigated hepatic steatosis in
HepG2 cell models both in vivo and in vitro. Additionally, it
promotes the phosphorylation of ACC1 and upregulates the lipid
β-oxidizing enzyme 1 (ACOX1)(Li et al., 2021).

Abdel-Rafei et al. (2021) highlighted the efficacy of combining
CANA and γ-IR in the treatment of HCC, as CANA enhances the
antitumor potential of γ-irradiation (γ-IR) by inhibiting the clonal
survival of HepG2 cells through downregulating glucose uptake,
lactate release, and modulation of endoplasmic reticulum stress-
mediated autophagy. Furthermore, CANA inhibits the signaling
pathways involved in γ-IR-induced metabolic reprogramming and
tumor progression, resulting in radioresistance and treatment failure
(Abdel-Rafei et al., 2021). Specifically, CANA disrupts the
communication between the PI3K/AKT/GSK-3β/mTOR and
Wnt/β-catenin signaling pathways, enhances intracellular Ca2+-
mediated apoptosis through the activation of caspase-12/caspase-
3, downregulates the expression of p53 and Bcl-2, reduces
endoplasmic reticulum stress-induced cytoprotective autophagy,
and facilitates the interaction between autophagy and apoptosis
in HepG2 cells.

Metabolic dysfunction associated steatohepatitis (MASH) is
closely associated with type 2 diabetes and metabolic syndrome
(Suzuki and Diehl, 2017; Tilg et al., 2017; Sheka et al., 2020; Rinella
et al., 2023). The presence of a higher degree of steatosis,
inflammation, and balloon degeneration in MASH is crucial in
the development of cirrhosis and HCC and is strongly correlated
with morbidity and mortality associated with liver disease (Haas
et al., 2016; Taylor et al., 2020). Research has demonstrated that the
combination of TOFO and pemafibrate, a selective PPARα
modulator, holds therapeutic potential in halting the progression
of MASH-associated HCC, enhancing HCC-related survival in
STAM mice, reducing the incidence of liver tumors, and
preventing liver injury through the inhibition of the IRE1-XBP1-
PHLD3A pathway (Murakami et al., 2022). Two other in vivo
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studies demonstrated that the administration of TOFO improved
the MASH-like liver phenotype in Western diet-fed melanocortin
four receptor-deficient (Mc4r-KO) mice, which served as a human
MASH mouse model. Additionally, TOFO treatment resulted in a
reduction in the number of large tumors with a diameter of ≥2 mm
and hindered the progression of MASH-associated liver tumors by
ameliorating non-tumorigenic lesions (Shiba et al., 2018; Yoshioka
et al., 2021). These findings are consistent with the conclusions
drawn by Obara, who investigated the effects of TOFO on the
development of MASH-associated liver tumorigenesis in C57BL/
KsJ- + Leprdb/+Leprdb obese and diabetic mice. The study revealed
that TOFO significantly impedes the formation of pre-tumorigenic
hepatic lesions, reduces hepatic steatosis, and alleviates
hepatocellular balloon formation and inflammation (Obara et al.,
2017). Jojima et al. demonstrated the inhibitory effects of CANA on
liver tumorigenesis in mouse models of diabetes, MASH, and HCC.
Continuous administration of CANA resulted in a significant
reduction in the number of liver tumors compared with that in
the control group. Additionally, the presence of glutamine
synthetase-positive nodules was significantly reduced, and the
mRNA expression of the HCC marker AFP was downregulated
(Jojima et al., 2019). Flow cytometry analysis further confirmed that
CANA decreased the percentage of HepG2 cells in the G2/M phase
of the cell cycle, downregulated the expression of cyclin D and Cdk4,
and increased the proportion of cells in the G0/1 phase.
Additionally, CANA promoted apoptosis in HepG2 cells by
activating caspase three and demonstrated anti-lipotropic and
anti-inflammatory effects, thereby mitigating the advancement of
MASH and preventing its progression to HCC. Similar findings have
been made in clinical studies (Akuta et al., 2019; Takahashi et al.,
2022). In essence, CANA induces cell cycle arrest and apoptosis in
hepatocellular carcinoma, while also inhibiting tumor growth by
directly inhibiting SGLT-2 in tumor cells. This indicates that the
SGLT-2i attenuates the deterioration of MASH and prevents it from
developing into HCC (Table 3).

4.2 Pancreatic and urinary tract cancer

Pancreatic cancer is one of the most lethal solid malignancies
with poor prognosis and high mortality. Pancreatic cancer cells
exhibit enhanced glycolysis and maintain rapid growth. CANA
effectively inhibits the growth of pancreatic cancer in a dose-
dependent manner, whether in cultured Capan-1 and PANC-1
cells or in PANC-1 derived tumor nude mice, and shows greater
efficacy when used in combination with gemcitabine. Glucose
metabolism is significantly inhibited in pancreatic cancer cells;
specifically, glucose uptake and lactate production are reduced,
and the mRNA levels of glycolysis-related genes (including
glucose transporter-1 and lactate dehydrogenase A) are reduced.
In addition, CANA induced early apoptosis of cancer cells and
decreased the protein levels of PI3K, p-AKT, p-mTOR, and HIF-1α,
indicating that CANA effectively inhibited the growth of pancreatic
cancer by inhibiting glycolysis through the PI3K/AKT/mTOR
signaling pathway (Xu et al., 2020).

ACC is a regulatory factor in fatty acid synthesis (Kahn et al.,
2005; Lounis et al., 2017; Steinberg and Carling, 2019; Nakano et al.,
2020). In a study evaluating the anticancer activity of SGLT-2
inhibitors (Villani et al., 2016), CANA inhibited the proliferation
and clonal survival of prostate cancer cells (PC3, 22RV-1). A
possible mechanism is that CANA strongly and dose-dependently
inhibits mitochondrial complex I, causing cellular respiratory
disorders, decreased ATP concentration, increased AMP/ATP
ratio, and a rapid and significant increase in AMPK activity,
leading to a significant increase in serine phosphorylation at
position 79 of the ACC. However, blocking AMPK
phosphorylation, inhibiting ACC, and overexpressing reduced
nicotinamide adenine dinucleotide dehydrogenase subunit one
complex I did not alter the inhibitory effect of CANA on cancer
cell proliferation, indicating that CANA affects fatty acid synthesis
by inhibiting respiration, supported by mitochondrial complex I,
thereby limiting cancer cell proliferation. Furthermore, two clinical

TABLE 3 Precancer protection studies of SGLT-2i.

Studies Research
type

Cancer type Type of
SGLT-2i

Findings

Murakami et al.
(2022)

in vivo Hepatocellular carcinoma TOFO Event: enhanced HCC-related survival in STAM mice, reduced the
incidence of liver tumors, and prevented liver injury mechanism: inhibited
the IRE1- XBP1-PHLD3A pathwaySTAM mice

Yoshioka et al.
(2021)

in vivo Liver cancer TOFO Event: improved the NASH-like liver phenotype and resulted in a reduction
in the number of large tumors with a diameter of 2 mm or more

Mc4r-KO mice and NASH
mouse

Obara et al. (2017) in vivo Liver cancer TOFO Event: impeded the formation of pre-tumorigenic hepatic lesions reduce
hepatic steatosis, alleviated hepatocellular balloon formation and
inflammationC57BL/KsJ- + Leprdb/+Leprdb

(db/db) mice

Shiba et al. (2018) in vivo Liver cancer CANA Event: reduced hepatic fibrosis, the number of liver tumors, and maximum
tumor size mechanism: “healthy adipose expansion”

Mc4r-KO mice

Takahashi et al.
(2022)

in vivo diabetes with MASH patients IPRA Event: improved glycemic control, obesity, and hepatic outcomes, including
liver fibrosis

Akuta et al. (2019) in vivo patients with MASH CANA Event: ameliorated liver steatosis, inflammation, hepatocyte ballooning, and
fibrosis, as well as the abnormalities in liver function tests and glycemic
control
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studies investigated the frequency of cancer in patients treated with
SGLT2i, revealing a notable decrease in the likelihood of urothelial
and hematologic malignancies alongside a lower incidence of cancer
overall with SGLT2i therapy(Dicembrini et al., 2019; Rokszin
et al., 2021).

In NSG xenograft mouse models, expression of the pancreatic
and prostate cancer cell lines ASPC-1 and PC-3 was assessed
(Scafoglio et al., 2015). The tumors were subsequently evaluated
using microPET, ex vivo radioautography, and
immunohistochemistry. These findings indicate that the specific
novel radiotracer Me4FDG was distributed throughout the body,
excluding the brain and bladder, and accumulated in crucial regions
of the pancreas and prostate. Moreover, the oral administration of
small doses of DAPA in mice resulted in a notable reduction of up to
40%–50% in prostate tumorigenesis. Additionally, oral
administration of either high-dose CANA or DAPA significantly
facilitated tumor necrosis by 70%–100% (Wright, 2020). CANA
exhibited a notable reduction in tumor growth, suggesting that
functional SGLT-2 is crucial for tumor survival. Furthermore,
limited glucose diffusion within the tumor center may be
attributed to its large size.

4.3 Breast cancer

Breast cancer is a highly significant cancer linked to type
2 diabetes and obesity (Lega and Lipscombe, 2020). A study
conducted in Japan (Komatsu et al., 2020) investigated the
expression of SGLT-2 in three distinct human breast cancer cell
lines. SGLT-2 expression was found to be increased in highly
estrogen-sensitive MCF-7 cells, whereas no such increase was
observed in normal human mammary glands. Treatment with
the SGLT-2 inhibitor IPRA resulted in a dose-dependent
reduction in proliferation and DNA synthesis in MCF-7 cells.
Notably, this effect was abolished when SGLT-2 was knocked
down. The underlying mechanism may involve inhibition of
glucose or sodium transport, leading to a decrease in intracellular
sodium influx, hyperpolarization of the cell membrane, and
instability of the mitochondrial membrane in MCF-7 cells. This
results in an inhibitory effect on breast cancer cell proliferation.

A territory-wide study directly comparing the impact of SGLT2i
and DPP4i on overall and predetermined cancer risk in a group of
Asian patients demonstrated that DAPA is associated with a reduced
risk of breast cancer (Chung et al., 2023). In agreement with a
previous study (Komatsu et al., 2020), a comparative analysis of
tumor and normal breast tissues acquired intraoperatively from
25 female patients with breast cancer revealed elevated mRNA and
protein levels of SGLT-2 in breast cancer tissues compared with
normal breast tissues. Furthermore, the administration of DAPA
and CANA demonstrated dose-dependent inhibition of glucose
transport in MCF-7 and ZR-75–1 human breast cancer cells
(Zhou et al., 2020). This inhibition induced G1/G0 cell cycle
arrest in MCF-7 cells, as well as suppressed proliferation and
growth in human breast cancer cells and nude mouse MCF-7 cell
xenografts. This mechanism potentially has a significant impact on
glucose uptake reduction, oxidative phosphorylation inhibition in
breast cancer cells, ATP production decrease, intracellular ATP
concentration reduction, AMPK phosphorylation enhancement at

the Thr172 locus, decrease in p70S6K phosphorylation, and
mammalian rapamycin-targeted mTOR inhibition. This signaling
pathway, in part, inhibits mTOR via AMPK activation, and is
believed to be responsible for the inhibition of breast cancer cell
proliferation, suppression of the G1 phase of the cell cycle, and
induction of apoptosis (Zakikhani et al., 2012; Kennedy et al., 2020).

Glutamate dehydrogenase (GDH) activity has been linked to
tumor cell adaptation to metabolic stress, and its overexpression has
been recognized as an indicator of unfavorable cancer prognosis
(Yang et al., 2014; Liu et al., 2015; Di Conza et al., 2019).
Furthermore, it regulates redox homeostasis, promoting tumor
growth (Jin et al., 2015). By utilizing CANA or DAPA in breast
cancer cell lines characterized by high rates of aerobic glycolysis and
glucose uptake (Papadopoli et al., 2021), the inhibition of cancer cell
proliferation by SGLT-2i remained consistent regardless of the
presence or absence of glucose. Therefore, the antiproliferative
effect of the drug was not contingent on the level of glucose
within the intracellular pathways. Further mechanistic studies
demonstrated that CANA significantly reduced the levels of
various intermediates of the citric acid cycle, including citrate, α-
ketoglutarate, and succinate. Simultaneously, CANA increased the
intracellular fluxes of glutamine, histidine, and lysine while notably
inhibiting the activity of GDH. Consequently, this inhibition
resulted in elevated intracellular glutamate levels and a decline in
the intracellular concentrations of α-ketoglutarate, alanine, aspartic
acid, and proline. These alterations ultimately led to a decrease in the
tricarboxylic acid cycle activity and ATP production, thereby
disrupting mitochondrial respiration and facilitating
antiproliferative responses. Therefore, disruption of glutamine
metabolism serves as a significant mechanism underlying the
antiproliferative effects of CANA in breast cancer cells.

Hyperinsulinemia plays a pivotal role in the progression of
obesity-associated tumors, and its reversal leads to the
deceleration of tumor growth (Wang et al., 2018). In a mouse
model of obesity-associated triple-negative breast cancer
(E0771 tumor), glucose metabolism was found to be responsive
to insulin, and the administration of excessive doses of DAPA and
therapeutically relevant doses of CANA impeded cancer progression
by attenuating glucose uptake and oxidation in E0771 tumors
through the reversal of hyperinsulinemia (Nasiri et al., 2019).

4.4 Lung cancer

Lung cancer is a prominent contributor to cancer-related
mortality worldwide, with non-small cell lung cancer (NSCLC)
accounting for over 85% of all cases. The prognosis of NSCLC is
notably unfavorable (Hirsch et al., 2017). Additionally, diabetes
mellitus serves as an independent prognostic indicator of poor
outcomes in individuals with lung cancer (Deng et al., 2019; Bi
et al., 2020). Epidermal growth factor tyrosine kinase inhibitors
(EGFR TKIs) exhibit remarkable clinical efficacy in advanced lung
cancer. However, their effectiveness is significantly hindered by
various mechanisms that facilitate drug resistance, primarily due
to the presence of secondary EGFR T790M mutations that impede
the binding of EGFR TKIs to receptor kinases, thereby nullifying
their therapeutic impact. A study (Li et al., 2017) conducted on
H1975 cells with EGFR L858R/T790M mutation revealed that
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TABLE 4 Anticancer studies of SGLT-2i.

Studies Research
type

Cancer type Type of
SGLT-2i

Findings

Xu et al. (2020) in vivo and
in vitro

Pancreatic cancer CANA Event: inhibited the growth of pancreatic cancer mechanism:
inhibited glucose metabolism through the PI3K/AKT/mTOR
signaling pathwayCapan-1 and PANC-1 cells, PANC-1

derived tumor nude mice

Villani et al.
(2016)

in vitro Prostate cancer CANA Event: inhibited the proliferation and clonal survival of the
prostate

PC3, 22RV-1 cells Mechanism: affected fatty acid synthesis by inhibiting respiration
supported by mitochondrial complex I

Rokszin et al.
(2021)

in vivo Urinary tract cancer or hematological
malignancy patients

All SGLT-2i Event: in patients on SGLT2i, the hazard of development of
urinary tract cancer or hematological malignancy was half that of
the hazard in patients taking DPP-4i

Dicembrini et al.
(2019)

in vivo Bladder cancer patients All SGLT-2i Event: DAPA treatment significantly reduces the incidence of
bladder cancer

Wright (2020) in vivo Pancreatic cancer and Prostate cancer CANA and
DAPA

Event: reduced prostate tumorigenesis and facilitated tumor
necrosis

NSG xenograft mouse

ASPC-1 and PC-3 cells

Komatsu et al.
(2020)

in vitro Breast cancer IPRA Event: attenuated breast cancer cell proliferation mechanism:
induced cell membrane hyperpolarization and mitochondrial
membrane instabilityMCF-7、MDA-MB-231 and KPL-1 cells

Zhou et al. (2020) in vivo and
in vitro

Breast cancer CANA and
DAPA

Event: blocked human breast cancer cells proliferation and growth
and induced cell apoptosis mechanism: induced AMPK-mediated
cell cycle arrest and apoptosisMCF-7, SUM-131502, ZR-75–1 and T-47D

cells

25 female patients xenograft breast cancer
tumors in athymic nude mice

Papadopoli et al.
(2021)

in vitro Breast cancer CANA Event: inhibited proliferation of breast cancer cells mechanism:
reduced oxygen consumption and glutamine metabolism through
the citric acid cycleSKBR3, BT-474, and MCF7 cell

Chung et al.
(2023)

in vivo Breast cancer patients DAPA Event: DAPA is associated with a reduced risk of breast cancer

Nasiri et al.
(2019)

in vivo Breast and Colon cancer DAPA Event: impeded cancer progression mechanism: attenuated
glucose uptake and oxidation through the reversal of
hyperinsulinemiaE0771 tumor mouse

MC38 homozygous mice

Li et al. (2017) in vitro Lung cancer CANA Event: induced apoptosis in cancer cells mechanism: reduced the
effectiveness of Anticancer activity of L858R/T790M EGFR kinase

H1975 cells with the EGFR L858R/T790M
mutation

Scafoglio et al.
(2018)

in vivo Lung cancer CANA Event: hindered tumor progression and retards lung
adenocarcinoma development and growth mechanism: restricted
the supply of glucose to cancer cellsPre-cancerous and early LADC mice

Luo et al. (2023) in vivo Lung cancer CANA Event: enhanced overall survival rates among NSCLC patients

24,915 newly diagnosed NSCLC patients

Yamamoto et al.
(2021)

in vivo and
in vitro

Lung cancer tissue from 2 non-diabetic lung
cancer patients

CANA Event: possessed anticancer properties against lung cancer cell
lines mechanism: impeded cell cycle progression

A549、H1975 and H520 cells

Xie et al. (2020) in vivo and
in vitro

Cervical cancer a nude mouse model
injected with HeLa cells

EMPA Event: inhibited malignant proliferation and induced apoptosis
mechanism: activated AMPK/FOXA1 pathway and inhibited SHH
expression

(Continued on following page)
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CANA induces apoptosis in cancer cells through a mechanism
independent of SGLT-2i or cellular glucose inflow. Additionally,
CANA significantly reduced the anticancer activity of L858R/
T790M EGFR kinase, thereby inhibiting the efficacy of EGFR
TKIs in resistant lung cancer cells. Lung adenocarcinoma
(LADC) and squamous cell carcinoma are the most prevalent
histological subtypes of NSCLC. LADC primarily occurs in the
terminal fine bronchioles and alveoli, which are not easily detectable
using bronchoscopy. Furthermore, the identification of
premalignant lesions associated with LADC is particularly
challenging (Hirsch et al., 2017). Research findings indicate
(Scafoglio et al., 2018) that SGLT-2 exhibits specific expression in
premalignant and highly differentiated lung carcinomas, whereas
precancerous and early lung adenocarcinomas predominantly rely
on SGLT-2 for glucose transport into the tumor. In a mouse model,
CANA effectively hindered tumor progression and retarded the
development and growth of lung adenocarcinoma by restricting the
supply of glucose to cancer cells. Administering CANA at an early
stage of premalignant lung tumors can significantly diminish tumor
burden and extend survival. Moreover, when combined with PET
imaging, the ability to detect SGLT-dependent glucose transport in
vivo enhances the response to SGLT-2i therapy.

An epidemiological analysis was conducted on a comprehensive
dataset comprising a large, nationally representative sample of
24,915 patients newly diagnosed with NSCLC aged 66 years or older
over a period of 2 years (Luo et al., 2023). This study aimed to
investigate the association between SGLT-2i and cancer survival.
The findings of this study revealed that the utilization of SGLT-2i
was linked to enhanced overall survival rates among NSCLC patients
with preexisting diabetes mellitus, irrespective of other confounding
factors. An investigation (Yamamoto et al., 2021) was conducted on
lung cancer tissues obtained from two elderly patients without diabetes
who underwent segmental lung resection at Fukuoka University
Hospital. This study revealed the presence of SGLT2 on the
membranes of lung cancer cells. Subsequent treatment of the cancer
cell lines with CANA resulted in a significant increase in the number of
cells in the G0/G1 phase, and a concurrent dose-dependent decrease in
the number of cells in the S phase. This effect did not induce apoptosis
but rather led to cell cycle arrest, specifically from G1 to S entry. These
findings suggested that CANA possesses anticancer properties on lung
cancer cell lines by impeding cell cycle progression. Table 4.

4.5 Osteosarcoma

Osteosarcoma, a rare bone malignancy with a poor prognosis,
necessitates the development of novel therapeutic approaches.
TRIM21, a ubiquitinated molecule, hinders cancer progression by
facilitating the degradation of multiple molecules (Si et al., 2020;
Zhou et al., 2021). Compared with osteoblast cell lines, osteosarcoma
cells exhibit a notable decrease in TRIM21 protein expression.
Immunoprecipitation demonstrated an interaction between
SGLT2 and TRIM21, with TRIM21 suppressing
SGLT2 degradation, whereas its overexpression led to the
enhanced degradation of SGLT2. Consequently, upregulation of
SGLT2 protein levels in osteosarcoma may be linked to diminished
degradation of SGLT2 facilitated by TRIM21(Wu et al., 2022).
STING mRNA and protein levels were upregulated in response
to SGLT-2i in a dose-dependent manner. This effect is contingent on
the expression of SGLT2, and the inhibition is nullified by the
silencing of SGLT2. STING pathway agonist 2′3′-cGAMP effectively
stimulates immune cells (Wu et al., 2013; Chandra et al., 2014).
Furthermore, augmenting STING levels amplified the tumor
immunotherapeutic effectiveness of cGAMP in mice (Lai et al.,
2021). Conversely, AKT phosphorylation exhibited an inverse
relationship with the STING pathway (Wu et al., 2019). CANA
activated the STING/IRF3/IFN-β pathway in K7M2 tumor-bearing
mice and osteosarcoma cells by impeding AKT phosphorylation
levels (Wu et al., 2022), thereby synergistically inhibiting tumor
growth when combined with 2′3′-cGAMP. Additionally, an increase
in the population of circulating and splenic CD4+ and CD8+

lymphocytes was observed, suggesting the potential stimulation of
a heightened systemic immune response, which induces immune
cell infiltration to inhibit osteosarcoma progression.

4.6 Cervical cancer

Cervical cancer is a malignant tumor that affects women globally
and ranks second in terms of occurrence (Wu et al., 2019). The
development of this type of cancer involves a complex series of steps.
The initiation of cervical cancer is attributed to the activation of
specific pathways, including the well-known Wnt pathway, which
facilitates the human papillomavirus (HPV)-induced

TABLE 4 (Continued) Anticancer studies of SGLT-2i.

Studies Research
type

Cancer type Type of
SGLT-2i

Findings

Okada et al.
(2020)

in vitro Colon cancer DAPA Event: induced a loss of cell adhesion in cancer cells mechanism:
inhibited cell adhesion to collagen types I and IV by enhancing
ADAM10 activity, resulting in a loss of cell adhesionHCT116 cells

Kuang et al.
(2017)

in vitro Renal cancer DAPA Event: inhibited cell growth mechanism: decreased glucose
uptake, leading to downregulation of SGLT2, inhibited cell
viability, arrested the G1 phase, promoted apoptosisRCC cell lines

Wu et al. (2022) in vivo and
in vitro

Osteosarcoma CANA Event: inhibited osteosarcoma progression mechanism: activated
the STING/IRF3/IFN-β pathway and induce immune cell
infiltrationK7M2 tumor-bearing mice osteosarcoma

cells

Okada et al.
(2018)

in vivo Colon cancer two colon cancer and type
2 diabetes mellitus patients

DAPA Event:DAPA treatment may be linked to improved tumor markers
in colon cancer patients
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transformation of germinal keratinized cells (Uren et al., 2005). The
sonic hedgehog (Shh) pathway is widely expressed in various
malignant tumors (Jeng et al., 2020) and plays a crucial role in
promoting tumor cell proliferation, resistance to chemotherapy, and
metastasis (Cochrane et al., 2015; Pak and Segal, 2016). Additionally,
studies have demonstrated [9] that the combined effects of HPV
oncoprotein and hedgehog signaling contribute to the acquisition of
stem cell-like properties in cervical cancer cells. Xie et al. (Xie et al.,
2020) investigated the antitumor effects of engeletin in a nudemouse
model injected with HeLa cells. The results revealed that EMPA
effectively suppressed the growth of mouse tumors in nude mice,
inhibited the proliferation of cervical cancer cells, and induced
apoptosis. Additionally, in vitro experiments using cervical cancer
cell cultures demonstrated that EMPA hinders cancer cell migration
and facilitates apoptosis. These effects were potentially mediated
through activation of the AMPK/FOXA1 pathway, which impedes
HeLa cell migration and promotes HeLa cell apoptosis. The
relationship between Shh expression and overall survival time
was determined using Kaplan–Meier survival analysis in patients
with cervical cancer. These findings revealed that high Shh
expression is associated with unfavorable overall survival.
Additionally, EMPA activated AMPK phosphorylation and
downregulated FOXA1 expression, leading to the inhibition of
Shh expression. This suppressed malignant proliferation and
induced apoptosis in cervical cancer cells.

4.7 Colon cancer

A study (Okada et al., 2020) investigated the effects of DAPA,
EMPA, and TOFO in human colon cancer (HCT116), human
hepatocellular carcinoma (HepG2), pancreatic carcinoma
(PANC-1), and lung carcinoma (H1792) cells. The findings
revealed that only DAPA induced loss of cell adhesion in cancer
cells, with HCT116 cells exhibiting greater sensitivity to DAPA
treatment than other cell types. Furthermore, the loss of cell
adhesion was specific to DAPA and was not observed with
EMPA or TOFO. The sensitivity of HCT116 cells to DAPA was
influenced by SGLT-2 and UGT1A9 protein levels. Mechanistically,
DAPA inhibited cell adhesion to collagen types I and IV by
enhancing disintegrin and metalloproteinase structural domain
protein 10 activity and promoting extracellular structural domain
shedding of discoidin structural domain receptor family member 1
(DDR1), which results in a loss of cell adhesion and induces the
dephosphorylation of Y792 tyrosine of DDR1, leading to a loss of
substrate kinase activity downstream of DDR1.

In a clinical setting (Okada et al., 2018), levels of the colon
cancer marker CEA were notably increased in two patients with
both colon cancer and type 2 diabetes mellitus. Additionally,
CEA levels in patients with colon cancer and type 2 diabetes
mellitus, specifically those expressing SGLT2 but not UTG1A9,
initially decreased after treatment with DAPA following
radiotherapy, but subsequently increased upon discontinuation
of DAPA. These findings suggest that DAPA treatment may be
linked to improved tumor marker levels in patients with colon
cancer. Therefore, for individuals with inconsistent levels of
SGLT2 and UTG1A9, DAPA could potentially serve as an
effective therapeutic agent against cancer.

Another study (Nasiri et al., 2019) demonstrated that AKT
phosphorylation (pSer473) in tumors exhibited a temporary
increase following a meal, with a slight delay compared with
plasma insulin levels. Additionally, pThr389 p70 S6K levels were
elevated in tumors during an oral glucose tolerance test conducted in
MC38 homozygous mice with colon cancer. These findings suggest
that the mechanism of action of the drug does not involve an
increase in ketosis or a direct effect on tumor cell division. Instead, it
indicates a significant alteration in tumor insulin signaling in
response to normal physiological fluctuations in insulin
concentration. Consequently, DAPA may impede the
advancement of colon cancer associated with hyperinsulinemia
by diminishing tumor glucose uptake and oxidation through the
reversal of hyperinsulinemia, opening up an alternative mechanism
for SGLT2-inhibited tumors.

4.8 Renal cancer

A study (Kuang et al., 2017) investigated the expression of SGLT2 in
ACHN, A498, and CaKi-1 human renal cell carcinoma (RCC) cell lines,
and Human Glandular KalliKrein-2 (HK-2) cells. The results revealed
significantly higher mRNA expression level of SGLT2 in RCC cell lines
than in HK-2 cells. Additionally, the SGLT2 inhibitor DAPA
demonstrated a dose- and time-dependent inhibition of cell growth,
with greater sensitivity observed in RCC cells than in HK-2 cells. This
sensitivity may be attributed to the ability of DAPA to decrease glucose
uptake in CaKi-1 cells, leading to the downregulation of SGLT2,
inhibition of cell viability, arrest of the G1 phase, promotion of
apoptosis, and reduction in malignant behavior. Furthermore, the
administration of DAPA to nude mice resulted in a notable
reduction in tumor size and a significant decrease in the expression
of SGLT2, indicating a potential impact on tumor necrosis.
Consequently, the functional manifestation of SGLT2 in renal cancer
present novel prospects for its identification and management.

5 Conclusion

Despite substantial advancements in cancer therapy, cancer remains
a prominent cause of mortality, ranking as the primary or secondary
cause of death in 183 countries for individuals under the age of 70 (Sung
et al., 2021). Consequently, there is a pressing need to explore more
effective approaches. Hence, it is imperative to pursue more efficacious
therapeutic or preventive strategies, particularly for specific cancer types
characterized by rapid growth, metastasis, and treatment resistance. A
burgeoning body of research investigates the utilization of selective
SGLT-2i agents to impede cancer cell proliferation and induce
apoptosis, a class of drugs whose intricate mechanisms of anticancer
activity remain incompletely comprehended. However, the prospect of
repurposing drugs currently used in the management of diabetes and
heart failure for cancer therapy appears promising.

Given the increased susceptibility of patients with diabetes to
cancer, it is imperative to consider modifying their glucose-lowering
regimens to incorporate SGLT-2i, considering its potential
anticancer properties. The selection of a specific SGLT-2i variant,
the optimal treatment duration for assessing efficacy, and the
appropriate antitumor drug combination necessitates immediate
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attention. Addressing these questions requires further investigation
through preclinical and clinical studies to ascertain the prospective
utilization and clinical advantages of these agents in oncology.

6 Perspectives

It is evident that numerous domains and potential targets exist
for the anticancer properties of SGLT-2i. Despite unresolved
inquiries, a substantial body of ongoing preclinical investigations
and forthcoming clinical trials instill optimism about the prospective
optimal utilization of this intriguing drug class in clinical oncology.
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