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Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by
synovial inflammation, cartilage destruction, pannus formation and bone erosion.
Various immune cells, including macrophages, are involved in RA pathogenesis.
The heterogeneity and plasticity of macrophages render them pivotal regulators
of both the induction and resolution of the inflammatory response.
Predominantly, two different phenotypes of macrophages have been
identified: classically activated M1 macrophages exacerbate inflammation via
the production of cytokines, chemokines and other inflammatory mediators,
while alternatively activated M2 macrophages inhibit inflammation and facilitate
tissue repair. An imbalance in the M1/M2 macrophage ratio is critical during the
initiation and progression of RA. Macrophage polarization ismodulated by various
transcription factors, epigenetic elements and metabolic reprogramming.
Curcumin, an active component of turmeric, exhibits potent
immunomodulatory effects and is administered in the treatment of multiple
autoimmune diseases, including RA. The regulation of macrophage
polarization and subsequent cytokine production as well as macrophage
migration is involved in the mechanisms underlying the therapeutic effect of
curcumin on RA. In this review, we summarize the underlying mechanisms by
which curcumin modulates macrophage function and polarization in the context
of RA to provide evidence for the clinical application of curcumin in RA treatment.
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1 Introduction

Rheumatoid arthritis (RA) is one of the most common systemic autoimmune diseases
affecting approximately 1% of the population worldwide (Venetsanopoulou et al., 2022). RA
is characterized by synovitis, pannus formation, cartilage destruction, and progressive bone
erosion. Although the etiology of RA has not been fully elucidated, it is thought to be related
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to complex interactions among the immune system, epigenetic
changes, and environmental factors underlying chronic
inflammation (Romao and Fonseca, 2021).

As essential components of the innate immune system,
macrophages perform multiple functions in inflammation,
including the removal of invading pathogens, phagocytosis of
apoptotic cells, production of proinflammatory cytokines, and
facilitation of antigen presentation for cellular immunity
activation. Moreover, during the resolution of inflammation,
macrophages play pivotal roles in tissue repair (Fujiwara and
Kobayashi, 2005). These functions are due to the plasticity of
macrophages (Shapouri-Moghaddam et al., 2018; Yunna et al.,
2020). To date, two main classes of macrophages have been
identified based on their markers: classically activated
M1 macrophages, which play a proinflammatory role, and
alternatively activated M2 macrophages, which have anti-
inflammatory functions (Murray, 2017). It has become clear that
a balance in M1/M2macrophage polarization is of great significance
for the maintenance of immune homeostasis. During the acute
phase of inflammation, macrophages are predominantly activated
to differentiate into M1 macrophages, which might facilitate the
elimination of pathogens through a burst in cytokine production.
Following pathogen elimination, macrophage switching leads to an
increase in M2 macrophages, which release anti-inflammatory
cytokines and growth factors to favor the repression of
inflammation and tissue recovery (Wynn et al., 2013). Dynamic
changes in macrophage polarization determine the progression and
outcome of various inflammatory diseases; therefore, appropriate
regulation of macrophage polarization is necessary (Li et al., 2019).
An imbalanced M1/M2 macrophage ratio leads to organ damage in
multiple autoimmune disorders, including RA, and therapies that
contribute to promoting macrophage polarization from the M1 to
the M2 phenotype might be new strategies for alleviating
inflammation in patients with RA (Cutolo et al., 2022).

Curcumin, the primary active component of turmeric, is a
natural compound. It has been extensively demonstrated to
possess anti-inflammatory, antioxidant, immunomodulatory and
anticancer properties in both experimental and clinical studies
(Xu et al., 2018). Curcumin has shown strong therapeutic
potential, especially in autoimmune diseases, such as RA and
systemic lupus erythematosus (SLE) (Yang et al., 2019; Chamani
et al., 2022; Kou et al., 2023). A large number of investigations have
indicated that curcumin modulates macrophage polarization and
function to alleviate inflammation and therefore can be used to treat
inflammation-related diseases (Gao et al., 2015; Karuppagounder
et al., 2016; Abdollahi et al., 2023).

In this review, we focus on macrophage polarization and its
critical role in the pathogenesis of RA, primarily highlighting the
dysregulation of the M1/M2 macrophage balance induced excessive
inflammatory responses that are mediated by proinflammatory
cytokines and chemokines. Moreover, the therapeutic effect of
curcumin on RA is also analysed, particularly the modulatory
effect of curcumin on macrophage polarization, which leads to
the suppression of proinflammatory cytokine secretion, the
switching of M1 macrophages to M2 macrophages, and the
inhibition of macrophage migration. There are few
comprehensive reviews explaining the regulatory effects of
curcumin on macrophage polarization in the context of RA. A

thorough understanding of the effect and mechanism of action of
curcumin will aid in the development of new strategies for
treating RA.

2 Functions of macrophage
polarization in rheumatoid arthritis

Macrophage polarization refers to the process by which
macrophages acquire distinct functional phenotypes in response
to a specific microenvironment. Depending on their different
activation states, macrophages are involved not only in the
progression of inflammation but also in its resolution (Mosser
and Edwards, 2008). In RA, the inflammatory process is
mediated and sustained by M1 macrophages both in peripheral
blood and synovial tissue. In contrast, alternatively activated
M2 macrophages contribute to vasculogenesis and tissue
remodelling (Cutolo et al., 2022).

2.1 M1 macrophage biology

The mechanisms underlying macrophage phenotype
modulation and function have not yet been elucidated. Briefly,
upon pathogen invasion, macrophages rapidly recognize
pathogen-associated molecular patterns (PAMPs) through pattern
recognition receptors (PRRs) such as Toll-like receptors (TLRs) and
secrete proinflammatory cytokines to clear pathogens while
recruiting other immune cells to infected sites by producing
chemokines. Therefore, during infection, peripheral blood-derived
macrophages are polarized to acquire the M1 phenotype
(Figure 1A). However, M1 macrophage activation must be tightly
regulated; otherwise, excessive inflammation induced by
M1 macrophages could cause tissue destruction, resulting in
autoimmune disorders (Ma et al., 2019).

The polarization of macrophages towards the M1 phenotype is
typically induced by T helper type 1 (Th1) cell-produced cytokines,
such as interleukin (IL)-12, IL-18, tumor necrosis factor (TNF)-α
and interferon (IFN)-γ. In addition, PAMPs such as
lipopolysaccharide (LPS) are known to promote M1 phenotype
differentiation (Yunna et al., 2020) (Figure 1B).

M1 macrophages secrete an array of proinflammatory cytokines,
including IL-1, IL-6, IL-12, TNF-α and various chemokines, including
CCL-2, which are also known as monocyte chemoattractant protein-1
(MCP-1), CXCL1-3, CXCL5 and CXCL8-10. In addition, these cells
produce reactive oxygen species (ROS) and inducible nitric oxide
synthase (iNOS) (Shapouri-Moghaddam et al., 2018) (Figure 1B).
Hence, M1 macrophages exhibit robust antimicrobial activity and
mediate ROS-induced tissue damage.

2.2 M2 macrophage biology

Corresponding to the M1 phenotype, M2 macrophages, which
were identified in the early 1990s (Stein et al., 1992), are induced by
Th2 cell-produced cytokines, such as IL-4, IL-10 and IL-13.
Macrophages with this phenotype produce IL-10, transforming
growth factor (TGF)-β and epidermal growth factor (EGF),
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which contribute to inflammation resolution and wound healing
(Yunna et al., 2020). The arginase-1 (Arg-1) enzyme, which can
degrade L-arginine (a substrate of iNOS), eventually leading to the
suppression of T-cell responses, has also been detected in

M2 macrophages (Rath et al., 2014). Furthermore,
M2 macrophages recruit granulocytes, Th2 cells and regulatory
T cells by secreting the chemokines CCL17, CCL18, CCL22 and
CCL24 (Porta et al., 2015) (Figure 1B).

FIGURE 1
Schematic diagram of macrophage response during the induction and resolution of inflammation. (A). Pro-inflammatory response of macrophages
in the context of infection. When pathogens invade the body, PAMPs are recognized by corresponding PRRs, which induce macrophage polarization
toward M1 phenotype. Activated M1 macrophages produce proinflammatory cytokines to clear the pathogens and chemokines that recruit more
immune cells such as neutrophils and T cells migrating to the infected site, which can amplify inflammatory response thereby remove pathogens
rapidly. (B). Polarization of M1 and M2macrophages. Left: Macrophages are induced to M1 phenotype by the Th1 cytokines (e.g., IL-12, TNF-α, IFN-γ) and
LPS. M1 macrophages produce proinflammatory cytokines (IL-1β, IL-6, TNF-α), chemokines (MCP-1, CXCL1-3, 8-10), iNOS and ROS via the activation of
multiple transcription factors (NF-κB, STAT1, IRF5, HIF-1α). Right: M2 macrophage differentiation is stimulated by Th2 cytokines (e.g., IL-4, IL-10, IL-13).
M2 macrophages secrete anti-inflammatory cytokines (IL-10), growth factors promoting tissue repair (TGF-β, EGF), chemokines (CCL17-18, 22, 24) and
Arg-1 through the activation of various transcription factors including STAT3/6, IRF4, HIF-2α and PPAR-γ.
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The markers expressed on the M2 macrophage surface include
scavenger receptors (CD163 and CD204) (Law et al., 1993; Kaku
et al., 2014), mannose receptor-1 (CD206) (Porcheray et al., 2005),
and Mer tyrosine kinase (Mertk) (Zizzo and Cohen, 2015) (Figure
1B). The main function of CD163 is the removal of haemoglobin-
haptoglobin complexes from circulating blood during intravascular
haemolysis (Kristiansen et al., 2001). Moreover, CD163 participates
in the immunomodulatory process during inflammation, which
includes but is not limited to sensing bacteria, binding TNF-like
weak inducer of apoptosis (TWEAK) and producing antioxidative
substances (Fabriek et al., 2009; Moreno et al., 2009). CD206 is a
mannose scavenger receptor that is critical for collagen
internalization and degradation (Madsen et al., 2013). Notably,
Mertk is essential for the phagocytosis of apoptotic cells by
macrophages and functions as a negative regulator of
inflammation by binding to its ligand, either growth arrest-
specific gene 6 (Gas6) or Protein S (Giroud et al., 2020).

According to their different stimuli and functions,M2macrophages
are further categorized into four subsets: M2a, M2b, M2c and M2d
macrophages (Hao et al., 2012). M2a macrophages are activated by IL-
13 and IL-4 along with the Th2 cell immune response. M2b
macrophages are induced by immune complexes, TLR agonists or
IL-1 receptor ligands and play immunomodulatory roles. M2c
macrophages are triggered by glucocorticoids and IL-10 and are
involved in tissue remodelling. In addition, M2c macrophages
express high levels of Mertk, which facilitates their efficient
phagocytosis of apoptotic cells. M2d macrophages also known as
tumor-associated macrophages (TAMs), are activated by growth
factors and exert immunosuppressive effects (Murray and Wynn,
2011; Wang et al., 2019). Each subset has its own biomarkers:
CCL17 is a biomarker of M2a macrophages; CCL1 is a biomarker
of M2b macrophages; CXCL13 is a biomarker of M2c macrophages
(Tsuchimoto et al., 2015); and CD206, Ym1, Fizz1, dectin-1, and
arginase-1 are biomarkers of M2d macrophages (Ferrante et al., 2013).

2.3 Role of M1/M2 macrophages in RA

2.3.1 Humans
In RA patients, abundant macrophages are widespread in the

peripheral blood, synovial fluid and synovial tissue (Roszkowski and
Ciechomska, 2021), playing important roles during the initial, active
and remission phases of RA.

Blood monocytes are the circulating precursors of macrophages
and osteoclasts in RA. Three subsets of monocytes, namely, classical
monocytes (CD14++CD16−), intermediate monocytes
(CD14++CD16+), and non-classical monocytes (CD14+CD16++),
were identified according to CD markers (Ziegler-Heitbrock
et al., 2010; Kapellos et al., 2019). Classical monocytes seem to
differentiate into osteoclasts and cause bone erosions in RA synovial
joints (Komano et al., 2006). The number of intermediate monocytes
that are prone to differentiate into M1-macrophages increases in
both the peripheral blood and synovia of RA patients. These cells
contribute to synovial inflammation by secreting pro-inflammatory
cytokines, such as TNF-α, IL-1β and IL-6 (Amoruso et al., 2016).
Non-classical monocytes are involved in the early inflammatory
response, while later on polarize into resident M2 macrophages and
participate in the resolution of inflammation (Thomas et al., 2015).

CD14+ monocytes were purified from the peripheral blood of
RA patients and healthy controls, and the expression of macrophage
polarization markers was evaluated. The results showed that there
was no significant difference in the expression of M1 or M2 markers
between the two groups, indicating that there was a mixture of
M1 and M2 macrophages in the peripheral blood of RA patients
(Quero et al., 2017; Zhao et al., 2017).

The synovium is the main site of joint inflammation in RA
patients, where inflammatory mediators produced by various cells
lead to cartilage destruction, pannus formation and bone erosion.
Healthy synovial tissue is composed of a lining-layer enriched with
resident macrophages and fibroblast-like synoviocytes (FLSs),
alongside a sublining connective tissue containing blood vessels,
fibroblasts, adipocytes, and a limited number of resident
macrophages (Smith et al., 2003). The macrophages populated in
the lining layer predominantly express M2 markers (CD163,
CD206 and MerTK) and are involved in the maintenance of
synovial homeostasis. Conversely, an increase in macrophages in
the sublining layer serves as an early hallmark of synovitis in RA.
These cells have heterogeneous phenotypes, with a coexpression of
both M1 and M2 markers (Ambarus et al., 2012), thereby indicating
a clear distinction between tissue-resident (lining) and infiltrating
(sublining) macrophage phenotypes.

Prolonged M1 macrophage activation and an increased M1/
M2 macrophage ratio have been found in RA patients. Excessive
proinflammatory cytokines and ROS produced by M1 macrophages
induce tissue injury during the active phase of RA (Fukui et al.,
2017). The activation of TLR4-triggered nuclear factor (NF) -κB
signalling mediates the inflammatory response of M1 macrophages
by producing IL-1β, IL-6, IL-12 and TNF-α in both monocyte-
derived and synovial resident macrophages (Brizzolara et al., 2013).
In the early stage of RA, these mediators facilitate the recruitment of
monocyte-derived macrophages from the peripheral blood into
synovial tissue, thereby perpetuating inflammation. Furthermore,
an increase in ROS production occurs in inflamed joints, which
exacerbates oxidative tissue damage. The presence of
M1 macrophages in RA synovitis can indicate disease activity, so
a decrease in M1 macrophages at the target organ level may be a
good biomarker of therapeutic response (Tardito et al., 2019).

In contrast to patients with active disease, the synovial tissue of
RA patients in remission is characterized by a greater presence of
M2 macrophages. Some of the metabolic pathways activated in
M2 macrophages contribute to the anti-inflammatory effect of these
cells in RA. IL-10, IL-12 and TGF-β1 secreted by M2 macrophages
inhibit the production of proinflammatory factors and limit
inflammation. In addition, promoting the transformation of
macrophages from the M1 to the M2 phenotype in RA helps to
inhibit the formation of osteoclasts and weaken the erosion of
articular cartilage and bone, and consequently improve the
condition of patients, which may shed light on discovering new
drugs for treating RA (Chandran and Goel, 2012; Tsuchimoto et al.,
2015; Cutolo et al., 2022).

2.3.2 Mice
Studies on murine models of RA illustrate mouse counterparts

of human monocytes, which include Ly6C++CD43+ monocytes
(equivalent to human classical monocytes), Ly6C++CD43++

monocytes (equivalent to intermediate monocytes) and Ly6C−
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monocytes (equivalent to non-classical monocytes) (Ingersoll et al.,
2010). Both Ly6C++CD43+ and Ly6C++CD43++ monocytes promote
sterile joint inflammation. Similar as in humans, non-classical
monocytes (Ly6C−) initially differentiate into M1 macrophages
contributing to the progression of joint inflammation and later
on, polarized into M2 macrophages, promoting inflammation
resolution (Misharin et al., 2014).

Macrophages in the lining layer that selectively express
CX3CR1 form a protective epithelial-like barrier that is
responsible for the maintenance of tissue hemeostasis. Using K/
BxN serum-transfer arthritis (STA) and collagen-induced arthritis
(CIA) mouse models, rapid changes in morphology and spatial
orientation without the proliferation of CX3CR1+ macrophages
were observed at the onset of inflammation. In contrast, the
number of CX3CR1− interstitial macrophages, which also express
MHCII, increases rapidly, and these cells may actively contribute to
joint inflammation (Culemann et al., 2019).

2.4 Mechanisms underlying macrophage
polarization

2.4.1 Transcriptional modulation
The signalling pathways related to macrophage polarization have

not yet been fully elucidated. Nevertheless, transcription factors such as
NF-κB, the STAT family, IFN regulatory factors (IRFs), hypoxia-
inducible factors (HIFs) and peroxisome proliferator-activated
receptor (PPAR)-γ have been demonstrated to be key regulatory
molecules of this process (Xue et al., 2014). Specifically, the
M1 phenotype is regulated by STAT1, IRF5 and HIF-1α, whereas

STAT3, STAT6, IRF4, HIF-2α and PPARγ are involved in
M2 macrophage polarization (Lawrence and Natoli, 2011) (Figure 2).

Multiple signalling pathways including the NF-κB (Simmonds
and Foxwell, 2008), mitogen-activated protein kinases (MAPKs),
Notch (Keewan and Naser, 2020), and phosphatidylinositol-3-
kinase (PI3K)/Akt (Qi et al., 2019) pathways, have been reported
to participate in the regulation of macrophage polarization in RA.
NF-κB is a pivotal transcription factor that participates in
inflammatory response of macrophages, and activation of NF-κB
signalling strongly promotes M1 macrophage polarization (Lin
et al., 2020). It was confirmed that punicalagin inhibited
M1 phenotype polarization through the suppression of NF-κB
signalling, which eventually alleviated joint inflammation,
cartilage damage and systemic bone destruction in CIA mice (Ge
et al., 2022). Similar results were obtained in another study using
Lonicerin as a therapeutic compound. In vivo and in vitro studies
revealed that Lonicerin significantly decreased M1 marker levels by
attenuating the activation of the NF-κB signalling pathway, which
contributes to M1 macrophage polarization and inflammasome
activation (Yang et al., 2023).

Another important pathway involved in M1 macrophage
polarization is MAPKs signalling, which includes the ERK1/2,
JNK, and p38 kinases. Downregulation of the phosphorylation
levels of ERK, JNK, and p38 by nintedanib inhibited
M1 macrophage polarization in the inflamed synovium (Yan
et al., 2023).

Notch signalling, which is associated with multiple cellular
processes, including survival, proliferation, differentiation and
metabolism, has been implicated to favor M1 macrophage
polarization, which leads to the overexpression of TNF-α, IL-6,

FIGURE 2
A schematic view of curcumin’s immunomodulatory effects on macrophages in RA. In the progression phase of RA, curcumin inhibits
M1 macrophage polarization and subsequent production of inflammatory mediators, including pro-inflammatory cytokines and chemokines. Moreover,
themigration of M1macrophages is also suppressed. Whereas in the remission phase of RA, curcumin favors inflammation resolution and tissue recovery
via promoting M2 macrophage polarization.
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andMCP-1. On the other hand, emerging evidence indicates the role
of Notch signalling in the pathogenesis of RA (Nakazawa et al., 2001;
Keewan and Naser, 2020). A study using (TNF-)-transgenic/(Hes-
1)-GFPmice identifiedM1macrophages derived from bone marrow
as the main cells with active Notch signalling in the inflamed joints
of RA mice, while thapsigargin, a Notch inhibitor, reduced TNF-
induced M1 macrophage polarization and alleviated joint lesions by
switching M1 macrophages to M2 macrophages (Sun et al., 2017).

Increasing evidence suggests that the PI3K/Akt pathway also
plays pivotal roles in macrophage polarization. PI3K regulates a host
of cellular functions, including cell viability, metabolism, motility,
and proliferation through the activation of downstream kinases. Akt,
which is composed of three members (Akt1, Akt2, and Akt3), is the
most prominent effector of PI3K (Ersahin et al., 2015). Several
compounds inhibiting PI3K/Akt signalling have therapeutic effects
on the progression of RA. Cassiaside C naphthopyrone prevents
LPS/IFN-γ-induced M1 macrophage polarization through the
inhibition of PI3K/AKT/mTORC1 signalling (Kim et al., 2022).
Hesperidin inhibits synovial cell inflammation and macrophage
polarization through suppression of the PI3K/AKT pathway in
an adjuvant-induced arthritis (AIA) mouse model (Qi et al., 2019).

2.4.2 Epigenetic modulation
In addition to transcriptional regulation, increasing evidence has

shown that epigenetic modifications, including DNA methylation,
RNA methylation, noncoding RNA actions, and histone
modification, play important roles in the modulation of
macrophage polarization. DNA methyltransferase (DNMT) 1 is
related to proinflammatory gene expression and M1 macrophage
activation. Another DNMT, DNMT3b, is also involved in the
polarization of M1 macrophages, which has been confirmed by
result demonstrating that the knockdown of DNMT3b leads to the
switch of M1macrophages intoM2macrophages (Yang et al., 2014).
Therefore, DNMT inhibitors (DNMTis) such as 5-azacytidine can
be utilized for inflammatory disease treatment. In recent years, RNA
epigenetic modifications have been highlighted as a novel class of
epigenetic regulatory events. N6-methyladenosine (m6A) is the
most abundant epigenetic modification of mammalian mRNAs.
Notably, the m6A-catalytic enzyme methyltransferase like 3
(METTL3) promotes M1 polarization of mouse macrophages by
directly methylating STAT1 mRNA (Liu et al., 2019). METTL3 is
also involved in bone repair by targeting histone deacetylase 5
(HADC5) to affect macrophage polarization (Lei et al., 2021). It
has been demonstrated that depletion of the m6A demethylase fat
mass and obesity-associated protein (FTO) inhibits the NF-κB
signalling pathway and reduces the mRNA stability of PPAR-γ
and STAT1 via YTHDF2-mediated degradation, thereby
significantly suppressing the polarization of M1 and
M2 macrophages simultaneously (Gu et al., 2020). The m6A
reader insulin-like growth factor 2 messenger RNA (mRNA)-
binding protein 2 (IGF2BP2) can bind to TSC1 and PPARγ
directly to skew M1 macrophages towards M2 activation via the
TSC1-mTORC1 pathway and PPARγ mediated fatty acid uptake
(Liu et al., 2021). A recent study indicated that the m1A “reader”
YTHDF3 may participate in modulating macrophage polarization,
which promotes aortic inflammation and influences abdominal
aortic aneurysm progression by regulating the expression of its
target genes (Wu et al., 2022). Emerging evidence has shown that

miRNAsmodulate macrophage polarization and subsequently affect
inflammation (Liu and Abraham, 2013). MiR-9, miR-127, miR-155
and miR-125b have been shown to promote M1 polarization, while
miR-124, miR-223, miR-34a, let-7c, miR-132, miR-146a and miR-
125a-5p induce M2 polarization in macrophages by targeting
various transcription factors (Essandoh et al., 2016). Histone
acetylation occurs when macrophages are stimulated by TLR
activation, after which the expression of multiple
proinflammatory cytokine genes is upregulated. Similarly,
trimethylation of histone 3 lysine 4 on cytokine gene promoters
has also been shown to be induced in M1 macrophages via TLR
stimulation, suggesting that histone modification is triggered during
the process of M1 macrophage activation leading to inflammatory
gene expression (Takeuch and Akira, 2011).

2.4.3 Metabolic modulation
The metabolism of macrophages is closely related to their

phenotype. From a metabolic perspective, M1 macrophages rely
mainly on glycolysis, which can meet the requirements of
biosynthetic intermediates in the inflammatory response. In
contrast, M2 macrophages are more dependent on oxidative
phosphorylation, which supports anti-inflammatory processes
(Viola et al., 2019). It has been demonstrated that Cassiaside C
can dampen M1 polarization of macrophages by downregulating
glycolysis (Kim et al., 2022). The existing evidence suggests that
macrophages of RA patients have a distinctive metabolic signature
that favors aerobic glycolytic metabolism (Jutley et al., 2021).
Therefore, metabolic reprogramming through the inhibition of
glycolysis in M1 macrophage may be an effective strategy to
switch the polarization to the M2 phenotype in RA treatment
(Freemerman et al., 2014). Berberine, an isoquinoline alkaloid
isolated from Chinese herbs, was found to inhibit
M1 macrophage polarization to ameliorate joint inflammation in
CIA mice through the activation of AMP-activated protein kinase to
switch glycolytic reprogramming (Cheng et al., 2023).

3 Therapeutic effect of curcumin on RA

3.1 Biological activities of curcumin

Curcumin is a natural compound isolated from the rhizome of
the plant Curcuma longa (turmeric) that has been used to treat
inflammation, cancer and neurodegenerative diseases such as
multiple sclerosis (MS) and Parkinson’s disease for centuries.
Intensive studies carried out within the past 3 decades confirmed
that the anti-inflammatory and antitumour properties of turmeric
are attributable to its active component, curcumin (Arora et al.,
1971). A large number of studies including both animal model
experiments and clinical trials, have verified the anti-inflammatory
and immunomodulatory properties of curcumin (Ferguson et al.,
2021; Peng et al., 2021; Chamani et al., 2022). Curcumin regulates
the functions of various immune cells, including macrophages
(Mohammadi et al., 2019), dendritic cells (DCs) (Rahimi et al.,
2021), B cells (Mohammadi et al., 2022) and T cells (Rahimi et al.,
2019), thereby modulating both innate and adaptive immunity
(Shehzad and Lee, 2013). The anti-inflammatory activity of
curcumin is due to its suppression of multiple signalling
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molecules, including NF-κB, activated protein (AP)-1, MAPKs, and
protein kinase C (Kahkhaie et al., 2019). In addition, curcumin is a
potent inhibitor of reactive-oxygen-generating enzymes, such as
lipoxygenase, cyclooxygenase (COX), xanthine dehydrogenase and
iNOS (Rao, 2007). As shown inmacrophages, curcumin inhibits LPS
and IFN-γ-induced nitric oxide production (Brouet and
Ohshima, 1995).

Curcumin has been demonstrated to be safe even when it is
administered at high doses. A phase 1 human trial in which as much
as 8000 mg of curcumin per day was administered for 3 months to
patients with high-risk or premalignant lesions reported no toxic
effects (Cheng et al., 2001). No serious side effects were reported in
RA patients receiving 500 mg of curcumin per day over a period of
8 weeks (Chandran and Goel, 2012). Curcumin treatment has no
obvious toxic effect on liver or kidney functions; therefore, curcumin
is generally recognized as a safe compound by the U.S. Food and
Drug Administration (Xu et al., 2018).

However, there is a problem in the application of curcumin; that
is, it shows poor aqueous solubility and chemical instability, leading
to low bioavailability (Anand et al., 2007). Several strategies have
been developed to enhance curcumin bioavailability, including
delivery via nano/microparticles, lipid-based nanocarriers,
adjuvants with piperine, solid dispersions, etc (Ma et al., 2019).
The efficacy of curcumin delivery via nanotechnology has been
assessed in preclinical and clinical trials established to evaluate
treatments for RA (da Silva et al., 2019; Javadi et al., 2019).

3.2 Curcumin in the treatment of RA

The immune system has evolved to react only to foreign antigens
while maintaining tolerance to self-antigens (Goldrath and Hedrick,
2005). However, under certain conditions, dysregulation of the
immune system, which induces prolonged chronic inflammation,
results in the development of inflammatory diseases, including RA.
Abnormally activated immune cells such as Th1 cells and
M1 macrophages produce large quantities of cytokines,
chemokines, ROS, and other inflammatory molecules; moreover,
apoptotic cells cannot be eliminated in a timely manner, ultimately
resulting in tissue damage (O’Shea et al., 2002). Therefore, the
treatment strategy for RA mainly involves suppressing the
inflammatory response and promoting of tissue repair. Recent
studies have described the effectiveness of using neutralizing
antibodies against cytokines or drugs that modulate the
polarization of macrophages to control the progression of RA
(Hurlimann et al., 2002; Fischer et al., 2015; Yang et al., 2020).

3.2.1 Cultured cells
Numerous in vitro studies have addressed the potent inhibitory

effect of curcumin on the inflammatory response of synovial
fibroblasts (Pourhabibi-Zarandi et al., 2021) and immune cells
(Mohammadian Haftcheshmeh et al., 2021). Curcumin has been
confirmed to inhibit PGE2 production, COX-2 expression, and
matrix metalloproteinases (MMPs) secretion by suppressing NF-
κB transcriptional activity in FLSs (Moon et al., 2010). Pre-treatment
of RA FLSs with curcumin before stimulation with TNF-α
significantly reduced the expression of IL-6, IL-8, MMP-1, and
MMP-3 at the protein level (Ahn et al., 2015). A study using

RAW264.7 cells indicated that bisdemethoxycurcumin could
inhibit LPS-induced proinflammatory cytokine production and
cell migration (Sun et al., 2024). Another in vitro study reported
that curcumin treatment suppressed the differentiation of naive
CD4+ T cells into Th1 cells through the inhibition of IL-12 (Kang
et al., 1999) and IL-18 (Yadav et al., 2015) produced by
macrophages.

3.2.2 Animal models
An increasing number of studies have confirmed the

effectiveness of curcumin in treating animal models of RA, in
which uncontrolled inflammation is a major player. A study
showed that curcumin attenuated the degree of joint swelling and
further promoted the development of joint histopathology in CIA
rats, which are models of RA (Wang et al., 2019). Another study
suggested that curcumin treatment alleviated the main symptoms
associated with the pathogenesis of CIA, such as inflammation and
synovial hyperplasia. The underlying mechanisms may involve the
inhibition of mTOR signalling by curcumin and the subsequent
production of proinflammatory cytokines, including IL-1β, TNF-α,
MMP-1, and MMP-3 (Dai et al., 2018).

3.2.3 Humans
In recent years, an increasing number of randomized clinical

trials have been conducted to assess the efficacy and safety of
curcumin treatment in patients with RA. Treatment with 500 mg
of curcumin twice daily for 8 weeks dramatically improved the
Disease Activity Score 28 (DAS-28) and American College of
Rheumatology (ACR) score (ACR-20, 50 and 70), which were
significantly better than those of patients in the diclofenac
sodium group (Chandran and Goel, 2012). A novel curcumin
formulation with increased bioavailability significantly improved
the DAS-28 score, erythrocyte sedimentation rate (ESR), C-reactive
protein (CRP) level, visual analogue scale (VAS) score, rheumatoid
factor (RF) level, and ACR response at a dose as low as 250 mg
(Amalraj et al., 2017). Similar results were acquired when using
another novel hydrogenated curcuminoid formulation,
CuroWhiteTM, once daily for 3 months (Jacob et al., 2019). A
randomized controlled trial which investigated the effect of
curcumin supplementation on metabolic parameters,
inflammatory factors, visfatin levels, and obesity values in women
with RA, revealed that the homeostatic model assessment for insulin
resistance, the ESR, serum levels of CRP and triglycerides, weight,
body mass index, and the circumference of patients decreased
significantly in the curcumin group, indicating a modulatory
effect of curcumin on metabolism and inflammation
(Pourhabibi-Zarandi et al., 2022). More importantly, no
significant side effects were observed in the patients in these
studies. Accumulating systematic reviews have thoroughly
analysed clinical trials that were carried out in recent years to
evaluate the efficacy and safety of curcumin for the treatment of
RA (Zeng et al., 2022b; a; Kou et al., 2023; Long et al., 2023). A meta-
analysis of 10 clinical trials covering 539 RA patients indicated that
curcumin supplementation improved the ESR, CRP, DAS, RF, VAS,
tender joint count and swollen joint count in these patients. Similar
results were obtained in another systematic review, in which
curcumin was found to significantly improve morning stiffness,
walking time, and joint swelling in RA patients. Several mechanisms,
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including the inhibition of MAPK, ERK1/2, AP-1, and NF-κB have
also been reported (Pourhabibi-Zarandi et al., 2021). Overall, the
results suggest that curcumin is an effective and safe drug for
RA therapy.

3.3 Modulation of macrophage function and
polarization by curcumin in RA

The alleviation of RA by curcumin might be associated with the
inhibition of proinflammatory cytokines produced by
M1 macrophages, which is mediated by multiple transcription
factors, such as NF-κB, AP-1 and the STAT family (Abdollahi
et al., 2018).It has been reported that curcumin regulates
inflammatory reactions by inhibiting COX-2 activity, which
suppresses the secretion of the proinflammatory cytokines TNF-
a, IL-1, and IL-6 (Kunnumakkara et al., 2017) (Figure 2).

Moreover, curcumin has been found to induce the polarization
of macrophages, which switch from the M1 to the M2 phenotype,
thereby alleviating the progression of RA. A study using an AIA
model indicated that the administration of curcumin either alone or
in combination with methotrexate apparently alleviated paw
inflammation in rats, and this mechanism might be related to the
suppression of M1 macrophage polarization and the promotion of
M2 macrophage differentiation (Abd-Elhalem et al., 2023)
(Figure 2). An in vitro study revealed that curcumin inhibited
M1 macrophage polarization via the JAK-STAT pathway, thereby
further reducing inflammation-mediated apoptosis of osteocytes
(Jin et al., 2020). The modulatory effect of curcumin on
macrophage polarization has also been demonstrated in other
autoimmune diseases. For example, curcumin inhibited LPS-
induced neuroinflammation by promoting the differentiation of
microglia, which are macrophages that reside in the central
nervous system (CNS), and play pivotal roles in CNS
autoimmune diseases such as MS and neuromyelitis optica,
towards the M2 phenotype, and this effect was attributed to the
suppression of the TREM2/TLR4/NF-κB pathways by curcumin
(Zhang et al., 2019). Curcumin ameliorated experimental
autoimmune myocarditis by upregulating the expression of
classical M2 markers, including the macrophage mannose
receptor, Arg-1 and PPAR-γ. The induction of M2 macrophage
polarization was mediated by increasing IL-4 and IL-13 expression
and promoting STAT6 phosphorylation (Gao et al., 2015).

In addition to its effect on macrophage polarization, curcumin
appears to regulate macrophage migration (Figure 2). When
pathogens invade the body, monocytes/macrophages need to
travel to the infected site timely, where they facilitate the rapid
removal of pathogens via direct phagocytosis and proinflammatory
cytokine secretion. The inhibition of macrophage migration could
also serve as a potential anti-inflammatory strategy for treating RA.
The migration of monocytes/macrophages is mediated by various
chemokines, such as MCP-1 and macrophage inflammatory
protein-1β. As a key mediator of inflammatory processes, MCP-1
modulates the migration and tissue infiltration of circulating
monocytes/macrophages through its receptor CCR2. In this
regard, MCP-1 may be a potential target in anti-inflammatory
therapies (Melgarejo et al., 2009). The nanoemulsion curcumin
significantly reduced macrophage recruitment via the inhibition

of NF-κB p65 subunit phosphorylation and MCP-1 expression
(Young et al., 2014). Bisdemethoxycurcumin, a curcumin
derivative, has been shown to reduce LPS-stimulated migration
in macrophages (Sun et al., 2024).

4 Conclusion and perspectives

As a natural compound, curcumin is favorable for improving
symptoms in RA patients due to its potent efficacy, affordability,
and minimal side effects. The therapeutic potential of curcumin in
halting RA progression has been confirmed, which might be associated
with the inhibition of cytokines induced by M1 macrophages, the
promotion of macrophage polarization towards theM2 phenotype, and
the suppression of macrophage migration. Despite these promising
findings, several challenges remain with regard to clinical application,
such as determining the effective dosage for different phases of RA and
enhancing bioavailability to improve therapeutic outcomes. Therefore,
further randomized clinical trials are imperative to establish the optimal
dosages and administration methods of curcumin for RA treatment in
the future.

Although the therapeutic effects of curcumin on RA development
have been demonstrated, the underlying mechanisms have not been
fully elucidated and are worthy of further investigation. Previous studies
have focused mainly on the regulation of transcription factors such as
NF-κB and STATs, and the inhibition of downstream inflammatory
cytokine production (Bright, 2007; Chamani et al., 2022). The
polarization of macrophages plays significant roles in the initiation,
progression and remission of RA. However, relatively few studies have
focused on the mechanism underlying the ability of curcumin to
modulate the polarization of macrophages, especially through the
promotion of M2 macrophage differentiation, which probably
functions as an upstream regulator and plays a fundamental role
during the process. Future studies should delve into this aspect to
better understand the mechanism of action of curcumin before it is
applied in the treatment of RA patients.

As mentioned above, epigenetic regulation plays crucial roles in
macrophage polarization, highlighting epigenetic modifications as
noteworthy targets in the treatment of RA. Our previous study
established a transcriptional map of m6A in peripheral blood
mononuclear cells (PBMCs) from RA patients, demonstrating a
significant correlation between changes in RNA methylation and
RA-related genes (Fan et al., 2022). Furthermore, our latest study
investigated the role and regulatory mechanisms of hypoxia-induced
expression of the m6A demethylase alkB homologue 5 (ALKBH5) in
RA FLSs, revealing that the HIF1α/2α-ALKBH5-CH25H axis may
be crucial for FLS aggression and inflammation (Fan et al., 2024).
These findings underscore the link between epigenetic modulation
and RA pathogenesis. In addition, curcumin has been reported to
ameliorate several diseases via epigenetic regulation, encompassing:
(1) suppression of DNMTs; (2) regulation of histone
acetyltransferases and histone deacetylases; and (3) regulation of
miRNAs (Boyanapalli and Kong, 2015). Several studies have shown
that curcumin can be used in cancer treatment to reverse DNA
methylation, alter histone modifications and target miRNA
expression (Shu et al., 2011; Bao et al., 2012; Yu et al., 2013).
Nevertheless, relatively few studies have been conducted to
explore the therapeutic mechanism underlying the effects of
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curcumin in RA from the perspective of epigenetic regulation, which
is a novel and promising field that deserves more attention.
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Glossary

ACR American College of Rheumatology

AIA Adjuvant-induced arthritis

ALKBH5 AlkB homologue 5

AP Activated protein

Arg-1 Arginase-1

CIA Collagen-induced arthritis

CNS Central nervous system

COX Cyclooxygenase

CRP C-reactive protein

DAS-28 Disease Activity Score 28

DNMT DNA methyltransferase

EGF Epidermal growth factor

ESR Erythrocyte sedimentation rate

FLSs Fibroblast-like synoviocytes

FTO Fat mass and obesity-associated protein

Gas6 Growth arrest-specific gene 6

HADC5 Histone deacetylase 5

HIFs Hypoxia-inducible factors

IFN Interferon

IGF2BP2 Insulin-like growth factor 2 messenger RNA -binding protein 2

IL Interleukin

iNOS Inducible nitric oxide synthase

IRFs IFN regulatory factors

LPS Lipopolysaccharide

m6A N6-methyladenosine

MAPKs Mitogen-activated protein kinases

MCP-1 Monocyte chemoattractant protein-1

Mertk Mer tyrosine kinase

METTL3 Methyltransferase like 3

MMP Matrix metalloproteinases

MS Multiple sclerosis

PAMPs Pathogen-associated molecular patterns

PBMCs Peripheral blood mononuclear cells

PI3K Phosphatidylinositol-3-kinase

PPAR Peroxisome proliferator-activated receptor

PRRs Pattern recognition receptors

RA Rheumatoid arthritis

RF Rheumatoid factor

ROS Reactive oxygen species

SLE Systemic lupus erythematosus

STA Serum-transfer arthritis

TAMs Tumor-associated macrophages

TGF transforming growth factor

Th1 T helper type 1

Th2 T helper type 2

TNF Tumor necrosis factor

TLRs Toll-like receptors

TWEAK TNF-like weak inducer of apoptosis

VAS Visual analogue scale
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