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Background: Dysfunction in myocardial energy metabolism plays a vital role in
the pathological process of DilatedCardiomyopathy (DCM). However, the precise
mechanisms remain unclear. This study aims to investigate the key molecular
mechanisms of energy metabolism and potential therapeutic agents in the
progression of dilated cardiomyopathy with heart failure.

Methods: Gene expression profiles and clinical data for patients with dilated
cardiomyopathy complicated by heart failure, as well as healthy controls, were
sourced from the Gene Expression Omnibus (GEO) database. Gene sets
associated with energy metabolism were downloaded from the Molecular
Signatures Database (MSigDB) for subsequent analysis. Weighted Gene Co-
expression Network Analysis (WGCNA) and differential expression analysis
were employed to identify key modules and genes related to heart failure.
Potential biological mechanisms were investigated through Gene Set
Enrichment Analysis (GSEA), Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG), and the construction of a competing
endogenous RNA (ceRNA) network. Molecular docking simulations were then
conducted to explore the binding affinity and conformation of potential
therapeutic drugs with hub genes.

Results: Analysis of the left ventricular tissue expression profiles revealed that,
compared to healthy controls, patients with dilated cardiomyopathy exhibited
234 differentially expressed genes and 2 genes related to myocardial energy
metabolism. Additionally, Benzoylaconine may serve as a potential therapeutic
agent for the treatment of dilated cardiomyopathy.

Conclusion: The study findings highlight the crucial role of myocardial energy
metabolism in the progression of Dilated Cardiomyopathy. Notably,
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Benzoylaconine emerges as a potential candidate for treating Dilated
Cardiomyopathy, potentially exerting its therapeutic effects by targeted
modulation of myocardial energy metabolism through NRK and NT5.

KEYWORDS

bioinformatics, key genes, DCM, heart failure, energy metabolism disorder, NAD+,
molecular docking, potential drugs

1 Introduction

Heart Failure (HF) is a chronic and progressive condition that
manifests as a clinical syndrome with high morbidity and mortality
rates, thereby escalating into a progressively severe public health
concern. Dilated Cardiomyopathy (DCM), characterized by the
dilation of the left ventricle and compromised systolic function,
ranks among the most prevalent causes of HF. It exhibits an
estimated prevalence of around 1 in 250–400 individuals in the
general population (Seferović et al., 2019). The prevalence is slightly
higher in men, with a female to male ratio of approximately 1:1.3 to
1:1.5 (Charron et al., 2018). DCM is mainly characterized by left
ventricular dilatation and contractile dysfunction in the absence of
hypertensive, valvular, congenital heart disease or significant
coronary artery disease (Elliott et al., 2008). The causes of DCM
can be categorized into hereditary and non-hereditary, with
metabolic disorders being one of the most common pathological
underpinnings of non-hereditary DCM (McKenna et al., 2017).
Research has highlighted the involvement of diverse mitochondrial
proteins engaged in energy metabolism and other functions in the
onset and progression of DCM. Mitochondrial dysfunction and
disruptions in energy metabolism are believed to contribute to the
onset of both DCM and HF (Luczak et al., 2020; Sharma et al., 2020).
However, the molecular mechanisms underlying energy metabolism
dysfunction in DCM complicated by HF are still not fully
understood.

NRK, nicotinamide ribosode kinase, including two subtypes
NRK1 and NRK2 (encoded by the Nmrk1 and Nmrk2 genes,
respectively) (Bieganowski and Brenner, 2004), a phosphate
group transferase that can specifically catalyze the synthesis of
nicotinamide riboside (NR) and ATP into nicotinamide
mononucleotide (NMN) (He et al., 2022). NMN, as a precursor
to nicotinamide adenine dinucleotide (NAD), plays an important
role in HF (Zapata-Pérez et al., 2021; Wang et al., 2022). Gene NT5E
encodes the ecto-5′-nucleotidase (CD73), which is a glycosyl-
phosphatidylinositol (GPI) anchored cell surface enzyme that
catalyzes the dephosphorylation of nucleoside 5′-
monophosphates, converting it into adenosine (Minor et al.,
2019). It imports NR from the external environment into the
cell, where NRK converts it into NMN for use in the NAD+

salvage pathway (Sociali et al., 2016). Reduced NAD+ levels or
altered NAD+/NADH redox status have been observed in HF
(Lee et al., 2016; Yoshino et al., 2018; Hu et al., 2020). Studies
suggest that supplementation with NAD+ precursors such as NR or
NMNmay be beneficial for preclinical models or HF patients (Pillai
et al., 2010; Diguet et al., 2018; Zhou et al., 2020; Zapata-Pérez et al.,
2021; Wang et al., 2022). However, a recent study evaluating
published research on human NR supplements found that oral
NR supplementation exhibited minimal associated clinical

efficacy (Damgaard and Treebak, 2023). This suggests that
supplementing with NAD + precursors for the treatment of HF
may require further exploration.

Bioinformatics is regularly used in cardiovascular disease research
and is anticipated to play a major role in predictive medicine
(Khomtchouk et al., 2020; Yu et al., 2023). In this study, a series of
bioinformatics analysis techniques were employed to identify hub genes
and potential therapeutic drugs related to energy metabolism in DCM
with HF, which could provide new insights for the diagnosis and
treatment of patients with DCM complicated by HF.

2 Materials and methods

2.1 Data acquisition and processing

The Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) was accessed via the National Center for
Biotechnology Information to search for the term “Heart Failure”.
Three datasets containing left ventricular samples from patients with
DCM complicated by HF and healthy controls were downloaded
(Supplementary Table S1). Specifically:

A.The GSE116250 dataset, based on the GPL16791, comprised
14 control samples and 37 DCM samples.

B.The GSE57345 dataset, available on both the GPL9052 and
GPL11532, included 139 control samples and 82 DCM samples.

C.The GSE29819 dataset, based on the GPL570, included
6 control samples and 7 DCM samples.

2.2 Gene set enrichment analysis (GSEA)

GSEA was conducted using the ‘clusterProfiler’ R package (Yu
et al., 2012), with visualization facilitated by the ‘ggplot2’ and
‘enrichplot’ packages. The gene expression values of the samples
were analyzed based on the h. all.v7.4. entrez.gmt [Hallmarks] gene
set database. Gene sets meeting the criteria of false discovery rat
(FDR) < 0.25, Nominal (NOM) p-value <0.05, and |Normalized
Enrichment Score (NES)| > 1 were considered significantly enriched.

2.3 Identification of differentially expressed
genes (DEGs)

Identification of DEGs: Differential expression analysis was
performed using the ‘limma’ R package. Genes with
FDR <0.25 and |logFC| > 0.585 were classified as DEGs. The
‘pheatmap’ and ‘ggplot2’ packages were used to create heatmaps
and volcano plots of DEGs for visualization, respectively.
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2.4 Gene ontology (GO) and kyoto
encyclopedia of genes and genomes (KEGG)
functional enrichment analysis

The ‘clusterProfiler’ R package was utilized for GO and KEGG
functional enrichment analyses. These analyses were performed to assess
gene-related biological processes (BP), molecular functions (MF),
cellular components (CC), and gene-related signaling pathways.

2.5 The weighted gene co-expression
network analysis (WGCNA)

To investigate the co-expression relationships among genes and
their associations with phenotypes, the ‘WGCNA’ R package was
utilized for construction (Langfelder and Horvath, 2008). After
outlier samples were removed based on the clustering tree, the
top 5,000 genes with a median absolute deviation (MAD) > 1 were
selected. A correlation matrix between genes was computed to
establish a similarity matrix. To ensure a scale-free network
construction, an appropriate soft threshold was chosen to
transform the similarity matrix into an adjacency matrix. A
topological overlap matrix (TOM) was then created to measure
the average network connectivity of each gene. The dynamic tree
cutting process was used to cluster genes with similar expression
profiles into distinct modules, involving parameter settings such as
minModuleSize and mergeCutHeight within the blockwiseModules
function. Each resulting module was visually distinguished by a
unique color, while genes in the gray module were not assigned to
any other modules.

The gene expression profile of each module was captured by its
first principal component, referred to as the module eigengene (ME).
Using MEs, the correlation between modules and phenotypes was
assessed. The module with the highest absolute correlation
coefficient was identified as the key module for further analysis.
Module membership (MM) represents the correlation coefficient
between a gene’s expression value and the ME of the module,
providing insight into the correlation between the gene and the
module. On the other hand, Gene significance (GS) indicates the
correlation coefficient between a gene’s expression value and the
expression level of the dependent variable, reflecting the correlation
between the gene and the phenotype.

2.6 Energy metabolism-related genes

Twenty-three energy metabolism-related gene sets were
extracted from the Molecular Signatures Database (MSigDB)
v7.5.1, including GOBP_ENERGY_DERIVATION_BY_OXIDATION_
OF_ORGANIC_COMPOUNDS, GOBP_ENERGY_RESERVE_
METABOLIC_PROCESS, GOBP_ATP_SYNTHESIS_COUPLED_
ELECTRON_TRANSPORT,GOBP_GENERATION_OF_PRECURSOR_
METABOLITES_AND_ENERGY, GOBP_AEROBIC_RESPIRATION,
GOBP_GLUCOSE_METABOLIC_PROCESS, GOBP_NEGATIVE_
REGULATION_OF_OXIDATIVE_PHOSPHORYLATION, GOBP_
OXIDATIVE_PHOSPHORYLATION, GOBP_REGULATION_OF_
GENERATION_OF_PRECURSOR_METABOLITES_AND_ENERGY,
GOCC_PROTON_TRANSPORTING_TWO_SECTOR_ATPASE_

COMPLEX, KEGG_FATTY_ACID_METABOLISM, MOOTHA_
MITOCHONDRIA, KEGG_PYRUVATE_METABOLISM, MOOTHA_
VOXPHOS, REACTOME_FATTY_ACID_METABOLISM,
REACTOME_GLUCOSE_METABOLISM, REACTOME_
INTEGRATION_OF_ENERGY_METABOLISM, REACTOME_
PYRUVATE_METABOLISM, REACTOME_PYRUVATE_
METABOLISM_AND_CITRIC_ACID_TCA_CYCLE, WP_ENERGY_
METABOLISM, WP_NAD_METABOLISM, BIOCARTA_ETC.,_
PATHWAY. After removing the overlapping genes, the gene sets
associated with energy metabolism contained 645 genes.

2.7 Receiver operating characteristic (ROC)
curve analysis

The ‘pROC’ R package was utilized to generate ROC curves
(Robin et al., 2011), assessing the diagnostic value of key genes
associated with HF energy metabolism. Genes that achieved AUC
scores in the range of 0.7–1.0 were considered to exhibit excellent
specificity and sensitivity.

2.8 LncRNA/circRNA-miRNA-NRK and
LncRNA/circRNA-miRNA-NT5E regulatory
network analysis

Databases such as ENCORI, miRabel, miRDB, miRwalk, and
TargetScan were employed to predict interactions between non-
coding RNAs and mRNAs. In particular, the ENCORI database was
used to predict interactions involving long non-coding RNAs (lncRNAs)
and circular RNAs (cricRNAs) withmicroRNAs (miRNAs). To visualize
and illustrate the interactions within the competitive endogenous RNA
(ceRNA) network, encompassing lncRNA/cricRNA-miRNA-mRNA
interactions, the Cytoscape software (version 3.8.2) was utilized for
network construction and visualization.

2.9 Single-cell analysis

To investigate the distribution of hub genes across cell groups, a
database was utilized for the analysis and visualization of results. The
initial source of single-cell RNA sequencing data from DCM with
HF was the GSE183852 dataset.

2.10 Molecular docking

The three-dimensional crystal structures of the two targets were
obtained from the Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Database (PDB) (Berman et al.,
2000). Similarly, the three-dimensional structures of the two
compounds were retrieved from the PubChem database. Hydrogen
atoms were added and charges were calculated for both small
molecular ligands and target proteins using AutoDock Tools
1.5.7 software (Morris et al., 2009). Molecular docking was then
performed via AutoDock Vina 1.1.2 (Trott and Olson, 2010), with the
aim of identifying complexes formed between small molecular ligands
and protein receptors, prioritizing configurations with the lowest
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binding energy. The results of the molecular docking procedure were
subsequently visualized using PyMOL 2.5.4 software.

2.11 Statistical analysis

All data processing and analytical procedures were conducted
using the R programming language (version 4.3.0). In the analysis of
mRNA and microRNA expression levels, the unpaired Student’s
T-test was utilized for data conforming to a normal distribution,
while the Wilcoxon rank-sum test was applied to data that did not
follow a normal distribution, and p < 0.05 was considered
statistically signifcant. All other statistical analysis methods were
conducted using corresponding R packages, which have been
introduced in the Materials and Methods.

3 Results

3.1 Data preprocessing and DEGs screening

The bioinformatics workflow of this study is depicted in
Figure 1. Batch effects were eliminated from the GEO dataset to

yield an integrated dataset (Supplementary Figure S1),
comprising 119 samples of DCM with HF and 153 control
samples. To identify changes in gene expression associated
with HF accompanying DCM, we conducted a differential
gene expression analysis. Application of GSEA to normalized
raw data revealed that metabolic pathways and processes were
notably enriched among the pathways and biological processes
(Figures 2A, B). A subsequent differential analysis on gene
expression between HF samples and control samples unveiled
234 DEGs, with 128 being upregulated and 106 downregulated
(Figures 2C, D). These DEGs were then subjected to GO and
KEGG pathway enrichment analysis using the clusterProfiler
packages in the R software environment. The KEGG pathway
analysis (Figure 2E) revealed significant enrichment in pathways
like glycine, serine, and threonine metabolism, as well as
involvement in the phagosome pathway. The enriched GO
terms analysis (Figure 2F) highlighted the association of these
genes with terms such as extracellular matrix organization (GO:
0030198), collagen-containing extracellular matrix (GO:
0062023), and extracellular matrix structural constituent (GO:
0005201). The findings suggest that there may be alterations in
cellular metabolism in patients with HF accompanied by DCM
compared to healthy individuals.

FIGURE 1
Flow chart of the research process.
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FIGURE 2
GSEA of the top 5 enriched pathways, biological process and analysis of DEGs. (A) KEGG pathway enrichment ananlysis. (B) BP enrichment analysis.
(C) Volcanic map of DEGs. (D) Heat map of DEGs. (E) KEGG term analysis of DEGs. (F) GO term analysis of DEGs.
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FIGURE 3
WGCNA consruction and identification of key modules. (A) Sample clustering dendrogramwith tree leaves corresponding to individual samples. (B,
C) Soft threshold β = 7 and s. cale-free topological fit index (R2). (D) Clustered dendrograms were cut at a height of 0.25 to detect and combine similar
modules. (E) Shows the original and combined modules under the clustering tree. (F) Collinear heat map of module feature genes. Red color indicates a
high correlation, blue color indicates opposite results. (G) Clustering dendrogram of module feature genes. (H) Heat map of module-trait
correlations. (I) The scatterplot describing the relationship between MM and GS in midnightblue module. (J) The scatterplot describing the relationship
between MM and GS in brownmodule. (K) The scatterplot describing the relationship between MM and GS in pink module. (L) The scatterplot describing
the relationship between MM and GS in green module.M.
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3.2 Constructing a WGCNA to identify key
modules associated with HF

To identify the gene clusters most closely associated with HF, we
conducted a WGCNA. The application of WGCNA led to the
identification of co-expression modules containing genes that
exhibited both robust co-expression levels and high topological
overlap similarity. Sample clustering was conducted using
Pearson’s correlation coefficient, resulting in the generation of a
sample clustering tree (Figure 3A). To construct a network adhering
to scale-free topology principles, a soft-threshold of 7 was chosen,
guided by an R-squared (R2) value of 0.85. This was followed by the
transformation of the adjacency matrix into a Topological Overlap
matrix (Figures 3B, C), characterizing node similarity while
incorporating weighted correlations.

By setting a clustering height limit of 0.25, 23 modules were
identified after merging closely associated modules (Figure 3D).
These primed and merged modules were visually represented under
the clustering tree (Figure 3E). An assessment of the correlation
between modules revealed no significant association between them
(Figure 3F). The reliability of module delineation was confirmed by
transcription correlation analysis within modules, which showed no
substantial linkage between modules (Figure 3G). Further
investigation using frontal correlations between ME values and

clinical features unveiled intriguing associations. The pink
module displayed a positive correlation with the control group
(r = 0.74, p = 2e−47) and a negative association with HF
(r = −0.74, p = 2e−47). Conversely, the brown module showed a
negative correlation with the control group (r = −0.68, p = 5e−37)
and a positive association with HF (r = 0.68, p = 5e−37). The green
module exhibited a negative correlation with the control group
(r = −0.64, p = 3e−32) and a positive association with HF (r = 0.64,
p = 3e−32). Lastly, the midnightblue module demonstrated a
positive connection with the control group (r = 0.63, p = 1e−31)
and a negative correlation with HF (r = −0.63, p = 1e−31)
(Figure 3H). These clinically meaningful modules, namely, pink,
brown, green, and midnightblue, were found to be highly associated
with HF in the MM versus GS scatter plot (Figures 3I–L). Each
module contained 126, 453, 335, and 94 key genes, respectively. This
suggests that the occurrence of HF is highly correlated with
these 1,008 genes.

3.3 Identification of hub gene expression
levels and diagnostic value

To identify key genes and determine their diagnostic value, we
conducted the following analyses. The intersection of DEGs

FIGURE 4
The expression leve of hub genes. (A) Two hub genes were screened. (B) Expression level of NRK in GSE116250 dataset. (C) Expression level of NT5E
in GSE116250 dataset. (D) Expression level of NRK in GSE57345 dataset. (E) Expression level of NT5E in GSE57345 dataset. (F) Expression level of NRK in
GSE29819 dataset. (G) Expression level of NT5E in GSE29819 dataset.
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associated with energy metabolism and genes from the four modules
correlated with HF led to the identification of two hub genes,
namely, NRK and NT5E (Figure 4A). The expression levels of
these two hub genes were identified through box plots. As

depicted in Figures 4B–E, both NRK (p = 0.00019, p = 2.5e−10)
and NT5E (p = 0.00012, p = 3.8e−12) demonstrated significantly
elevated expression levels in HF compared to the control group. To
corroborate the findings in the training datasets, the expression

FIGURE 5
Validation of hub genes in the diagnostic value. (A) Validation the hub gene NRK in GSE116250. (B) Validation the hub gene NT5E in GSE116250. (C)
Validation the hub gene NRK in GSE57345. (D) Validation the hub gene NRK in GSE57345. (E) Validation the hub gene NRK in GSE29819. (F) Validation the
hub gene NT5E in GSE29819.
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FIGURE 6
The lncRNA/circRNA-miRNA-NRK and lncRNA/circRNA-miRNA-NT5E regulatory networks constructed. (A) The upstream miRNAs of NRK were
predicted by ENCORI, miRWalk, miRDB, Targetscan and miRabel databases and the intersection was taken (14 intersection miRNAs). (B) The miRNAs
targeting NRK were displayed in miRDB and Targetscan database. (C) The lncRNA/circRNA-hsa-miR-139-5p-NRK regulatory network was constructed
by Cytoscape. circRNA, green nodes; lncRNA, wathetblue nodes; miRNA, blue nodes; mRNA, yellow nodes. (D) The upstreammiRNAs of NT5Ewere
predicted by ENCORI, miRWalk, miRDB, Targetscan and miRabel databases and the intersection was taken (14 intersection miRNAs). (E) The miRNAs
targeting NT5Ewere displayed inmiRDB and Targetscan database. (F) The lncRNA/circRNA-hsa-miR-30e-5p-NT5E regulatory network was constructed
by Cytoscape. circRNA, green nodes; lncRNA, wathetblue nodes; miRNA, blue nodes; mRNA, yellow nodes. (G) Expression level of hsa-miR-139-5p. (H)
Expression level of hsa-miR-19b-3p. (I) Expression level of hsa-miR-493-5p. (J) Expression level of hsa-miR-30e-5p. (K) Expression level of hsa-miR-
30b-5p. (L) Expression level of hsa-miR-134-5p. (M) Expression level of hsa-miR-584-5p. (N) Expression level of hsa-miR-382-5p.
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levels of NRK and NT5E were examined in the GSE29819 dataset
(Figures 4F, G).

Subsequently, ROC curve analysis was conducted to evaluate the
diagnostic value of the two hub genes in identifying energy
metabolism disorders in DCM with HF. The AUC values were
computed to assess their sensitivity and specificity. In the
GSE116250 dataset, the AUC of ROC for NRK and NT5E were
0.826 and 0.817, respectively (Figures 5A, B). In the
GSE57345 dataset, the AUC of ROC for NRK and NT5E were
0.762 and 0.739, respectively (Figures 5C, D). The diagnostic value of
the two hub genes was further validated in the GSE29819 dataset.
The AUC values of ROC were 0.857 for NRK and 0.952 for NT5E
(Figures 5E, F). These results suggest that the identified hub genes
possess significant diagnostic efficiency in predicting energy
metabolism disorders in HF with DCM.

3.4 CeRNA analysis

In the realm of energy metabolism disorders associated with
DCM and HF, recent research has underscored the role of lncRNAs
in modulating downstreammRNA expression by targeting miRNAs
(Zhou et al., 2019; Larocca et al., 2020). This study aimed to explore
the ceRNA network that may regulate the expression of NRK and
NT5E in HF with DCM.

To identify miRNAs that may target NRK and NT5E mRNA, we
conducted a comprehensive screening of several databases, including
miRWalk, miRDB, ENCORI, Targetscan, and miRabel. This led to the
identification of 14 miRNAs with potential to target NRK mRNA and
another 14 that could potentially target NT5E mRNA (Figures 6A, D).
The group of NRK-targeting miRNAs included hsa-miR-139-5p, hsa-
miR-19b-3p, hsa-miR-92b-3p, hsa-miR-32-5p, among others
(Figure 6B). On the other hand, the NT5E-targeting miRNAs
comprised of hsa-miR-30e-5p, hsa-miR-30b-5p, hsa-miR-193b-3p,
hsa-miR-193a-3p, and others (Figure 6E). To validate the accuracy
of these predictions, we utilized the GSE209991 dataset from the GEO
database. This dataset includes miRNA data from 10 donors and
10 DCM patients. A differential analysis revealed that several
predicted miRNAs such as hsa-miR-139-5p, hsa-miR-19b-3p, hsa-
miR-493-5p, hsa-miR-30e-5p, hsa-miR-30b-5p, hsa-miR-134-5p,
hsa-miR-584-5p, and hsa-miR-382-5p were downregulated in the
plasma of DCM patients (Figures 6G–N).

Subsequently, we performed predictions in the ENCORI database
for upstream lncRNAs and circRNAs that could potentially interact
with hsa-miR-139-5p and hsa-miR-30e-5p.We discovered 31 lncRNAs
and 50 circRNAs that could competitively bind to NRK with hsa-miR-
139-5p. Additionally, we found 39 lncRNAs and 50 circRNAs that
could competitively bind toNT5Ewith hsa-miR-30e-5p (Figures 6C, F).
These findings suggest the existence of an upstream ceRNA regulatory
network thatmay contribute to the dysregulated expression ofNRK and
NT5E in DCM with HF.

3.5 Expression of NRK and NT5E in HF
with DCM

In an effort to understand the mechanisms underlying DCM
leading to HF, especially those involving the structural and energy

metabolism aspects of myocardial cells, we concentrated on the
expression levels of hub genes in cardiomyocytes (Vignoli et al.,
2022). We conducted a single-cell RNA-seq analysis using the
GSE183852 dataset to examine the expression patterns of NRK
and NT5E in DCM patients with HF. Quality control, data cleaning,
and principal component analysis were carried out as shown in
Supplementary Figure S2.

By utilizing cell type marker genes and relevant literature (Shi
et al., 2021), we successfully annotated a total of 14 distinct cell types
(Figures 7A, B). Notably, we identified and annotated one type of
cardiomyocyte in both the control and HF groups (Figure 7C). We
then analyzed the expression of NRK and NT5E in cardiomyocytes
from both groups. The results revealed that the expression levels of
NRK and NT5E were significantly lower in most cardiomyocytes of
the HF group compared to those in the control group (Figure 7D).
This finding suggests a potential dysregulation of NRK and NT5E
expression in cardiomyocytes associated with DCM with HF.

3.6 Potential drugs

Aconiti Lateralis Radix Praeparata is a traditional Chinese
medicinal herb that has been used extensively in China,
especially within the realm of traditional Chinese medicine, for
the treatment of various diseases. Aconiti Lateralis Radix Praeparata
and its active components are primarily used in the management of
rheumatoid arthritis and cardiovascular diseases (Ameri, 1997; Lu
et al., 2017; Zhang et al., 2017; Wen et al., 2019a; Wen et al., 2019b;
Wen et al., 2020; Xu et al., 2020; Li et al., 2021). Aconiti Lateralis
Radix Praeparata contains a diverse array of alkaloids, including
aconitine, mesaconitine, hypaconitine, benzoylaconine,
benzoylmesaconine, and benzoylhypaconine, among others (Lei
et al., 2021). These alkaloids are known for their significant
pharmacological effects on the cardiovascular system. In recent
years, it has garnered widespread attention in modern
pharmacological research, particularly for its potential in treating
heart failure. Studies have suggested that aconite could benefit
patients with heart failure by improving cardiac function and
regulating cardiac metabolism. Although various active
components have been identified in aconite, the mechanisms by
which it addresses energy metabolism disorders in heart failure are
not yet fully elucidated. To identify potential drugs targeting NRK
and NT5E, a virtual molecular docking analysis was conducted. We
have conducted molecular docking simulations with active
components of aconite and the enzymes NRK and NT5E.
Benzoylaconine exhibited a binding energy of −7.9 kcal/mol with
NRK and −7.5 kcal/mol with NT5E. It interacts with the amino acid
residues GLN-135 of NRK, and VAL-258 of NT5E (as shown in
Figures 8A, B). Research has confirmed that benzoylaconine can
improve mitochondrial function, thereby ameliorating heart failure
(Deng et al., 2019; Chen et al., 2022).

Typically, a binding energy less than 0 between a small molecule
ligand and its target protein receptor implies spontaneous binding. If
the binding energy is lower than −5.0 kcal/mol, it suggests a strong
affinity of the small molecule towards the target protein. Given that
NRK and NT5E both demonstrate strong affinity for
Benzoylaconine, it suggests that Benzoylaconine holds promise as
a potential therapeutic agent for HF with DCM.
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4 Discussion

DCM can lead to varying degrees of HF (Lesizza et al., 2019),
placing a significant burden on clinical management. However, the
pathogenesis of DCM remains incompletely understood, and effective
therapeutic strategies are lacking. In this context, enhancing our
understanding of the pathogenic mechanisms underlying dilated
cardiomyopathy is of utmost importance, with an urgent need to
identify potential therapeutic targets and treatment modalities.

In this study, we employed gene expression profiles from DCM
combined with HF patients sourced from the GEO database.
Utilizing various bioinformatics methodologies, we screened for
genes associated with cardiac energy metabolism in the context
of DCM combined with HF. Preliminary analysis was conducted to
assess their roles in DCM development and their potential as
therapeutic targets. Our research, conducted through GSEA
analysis of the original dataset, revealed significant enrichment in
‘metabolic pathways’ and ‘metabolic processes’. Further
investigation included DEGs, as well as KEGG and GO analyses,
which unveiled enriched pathways such as “taurine and hypotaurine
metabolism”, “arachidonic acid metabolism”, and “glycine, serine,
and threonine metabolism”, all closely related to myocardial
metabolism (West et al., 2016; West et al., 2016). Previous
studies have also indicated a connection between DCM and
myocardial energy metabolism disturbances. To identify key
genes associated with myocardial energy metabolism disturbances
in DCM, we extracted energy metabolism-related genes from the
database and applied WGCNA to the dataset. This allowed us to
pinpoint four highly correlated modules associated with HF. The

intersection of these modules’ genes, DEGs, and myocardial energy
metabolism genes pointed to two central genes: NRK and NT5E.

NRK and NT5E play a crucial role in NAD+ synthesis. Lowered
levels of NAD + or changes in the NAD+/NADH redox balance have
been noted in HF (Lee et al., 2016; Yoshino et al., 2018; Hu et al., 2020).
Research indicates that adding NAD + precursors like NR or NMN
could be advantageous for preclinical models or patients with HF (Pillai
et al., 2010; Diguet et al., 2018; Zhou et al., 2020; Zapata-Pérez et al.,
2021; Wang et al., 2022). However, a recent study evaluating published
research on human NR supplements found that oral NR
supplementation exhibited minimal associated clinical efficacy
(Damgaard and Treebak, 2023). This conclusion does not provide
evidence supporting NAD+ as a treatment for HF and, to some extent,
challenges the value of NAD+ in HF therapy. In fact, the premise of
supplementing NAD+ precursors for HF treatment assumes a
deficiency of NAD+ in the presence of otherwise normal
physiological function. Not all HF patients may only lack NAD+

precursors; some may experience issues in the conversion of NAD+

precursors to NAD+. Therefore, exclusively using NAD+ precursors for
the treatment of all HF subtypes may be an incomplete consideration.

Transcriptome analysis reveals that NRK andNT5E are upregulated
in HF, consistent with existing research (Ren et al., 2018; Byun et al.,
2019). However, few researchers have explored the upregulation
mechanism of NRK in DCM (Shahzadi et al., 2022). Historically,
researchers have not paid much attention to the imbalance of NRK
and NT5E in HF, as their positive roles implied that attention should be
directed towards downregulation. It is well-known that the conversion of
NMN to NAD+ relies largely on NRK (Tempel et al., 2007). The loss of
NRK expression in tissuesmay hinder the effectiveness of supplementing

FIGURE 7
Single-cell RNA-sequencing analysis. (A) Clusters annotation and cell types identification via UMAP. (B) The expression of the top five marker genes
with themost prominence in various types of cells. (C)UMAP projection of cardiomyocytes in control and DCMwith HF. (D)Distribution of NRK and NT5E
in cardiomyocytes of control and DCM with HF.
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NAD+ precursors to raise NAD+ levels, while NT5E provides NR as the
conversion substrate for NRK, underscoring the critical roles of NRK
and NT5E in NAD+ supplementation therapy for HF. Single-cell
sequencing analysis reveals a downregulation of NRK and NT5E
levels in cardiomyocytes, in stark contrast to the expression levels in
the total heart cells. This observation may genuinely shed light on the
true underlying cause of NAD+ deficiency in HF. The physiological
function of the heart heavily depends on cardiomyocytes. However,
previous research has often focused on non-cardiomyocyte cells or the
heart as a whole (Zhou et al., 2020; Tong et al., 2021). Due to
compensatory mechanisms, NRK and NT5E levels may not decrease
throughout the entire heart, and they might even increase in other cell
types within the heart, potentially leading researchers to overlook the
imbalance of NRK and NT5E. This, to some extent, explains why the
therapeutic effects of uniformly supplementing NAD+ precursors to HF
patients have been questioned. The compensatory upregulation of NRK
and NT5E levels in non-cardiomyocyte cells may result in a higher
conversion of NAD+ precursors to total NAD+ after supplementation,
which could explain why raising total NAD+ levels through precursor
supplementation only leads to a limited improvement in HF.

ROC analysis has highlighted the critical roles of NRK and
NT5E in the energy metabolism of DCM combined with HF,
indicating their potential clinical value in treatment. The decrease
in NRK and NT5E levels in cardiomyocytes, accompanied by
compensatory upregulation in other heart cell types, suggests that
evaluating the diagnostic value of these two genes using heart cells
instead of cardiomyocytes is feasible. Subsequently, a comprehensive
ceRNA network was constructed using an online search database,
pairing lncRNAs, miRNAs, and mRNAs. Three miRNAs targeting

NRK mRNA and five miRNAs targeting NT5E mRNA were
identified. The top two miRNAs targeting NRK and NT5E were
selected to predict their interactions with lncRNAs and circRNAs,
revealing that 31 lncRNAs and 50 circRNAs competitively bound to
hsa-miR-139-5p to regulate NRK, and 39 lncRNAs and 50 circRNAs
competitively bound to hsa-miR-30e-5p to regulate NT5E. This
emphasizes the complexity of the regulation of NRK and NT5E in
myocardial energy metabolism in HF.

In China, Aconiti Lateralis Radix Praeparata is a commonly
used traditional Chinese medicine for treating heart failure (Lu
et al., 2017; Wen et al., 2019b; Wen et al., 2020; Xu et al., 2020),
but its exact target sites and mechanisms of action have not been
fully elucidated. This study, for the first time, conducted docking
simulations of Aconiti Lateralis Radix Praeparata’s active
components with NRK and NT5E, selecting the complexes
with the lowest binding energies. These small molecules may
hold potential in treating energy metabolism disorders
associated with heart failure and could serve as potential
therapeutic drugs.

However, the mechanisms underlying the dysregulation of NRK
and NT5E in HF, as well as potential therapeutic drugs, are based on
data analysis and virtual molecular docking results. Further in vivo
and in vitro experiments are necessary to validate these findings.

5 Conclusion

In this study, we have identified two genes associated with
myocardial energy metabolism in DCM with HF and have also

FIGURE 8
Molecular docking simulations. (A) Benzoylaconine interacts with the amino acid residue GLN-135 of NRK. (B) Benzoylaconine interacts with the
amino acid residue VAL-258 of NT5E.
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identified potential candidate small molecules for treating energy
metabolism disorders in HF. The research findings underscore the
crucial role of energy metabolism dysfunction in the pathogenesis of
DCM with HF. Benzoylaconine holds promise as a therapeutic drug for
addressing energy metabolism disorders in DCM with HF by targeting
NRK and NT5E. These discoveries provide valuable insights for future
research directions and potential therapeutic interventions.
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