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Introduction: Depression is a complex psychiatric disorder with substantial
societal impact. While current antidepressants offer moderate efficacy, their
adverse effects and limited understanding of depression’s pathophysiology
hinder the development of more effective treatments. Amidst this complexity,
the role of neuroinflammation, a recognized but poorly understood associate of
depression, has gained increasing attention. This study investigates
hydroxytyrosol (HT), an olive-derived phenolic antioxidant, for its
antidepressant and anti-neuroinflammatory properties based on mitochondrial
protection.

Methods: In vitro studies on neuronal injury models, the protective effect of HT
on mitochondrial ultrastructure from inflammatory damage was investigated in
combination with high-resolution imaging of mitochondrial substructures. In
animal models, depressive-like behaviors of chronic restraint stress (CRS) mice
and chronic unpredictable mild stress (CUMS) rats were examined to investigate
the alleviating effects of HT. Targeted metabolomics and RNA-Seq in CUMS rats
were used to analyze the potential antidepressant pathways of HT.

Results: HT protected mitochondrial ultrastructure from inflammatory damage,
thus exerting neuroprotective effects in neuronal injury models. Moreover, HT
reduced depressive-like behaviors in mice and rats exposed to CRS and CUMS,
respectively. HT’s influence in the CRS model included alleviating hippocampal
neuronal damage and modulating cytokine production, mitochondrial
dysfunction, and brain-derived neurotrophic factor (BDNF) signaling. Targeted
metabolomics in CUMS rats revealed HT’s effect on neurotransmitter levels and
tryptophan-kynurenine metabolism. RNA-Seq data underscored HT’s
antidepressant mechanism through the BDNF/TrkB signaling pathways, key in
nerve fiber functions, myelin formation, microglial differentiation, and neural
regeneration.

Discussion: The findings underscore HT’s potential as an anti-neuroinflammatory
treatment for depression, shedding light on its antidepressant effects and its
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relevance in nutritional psychiatry. Further investigations are warranted to
comprehensively delineate its mechanisms and optimize its clinical application
in depression treatment.
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1 Introduction

Recent World Health Organization (WHO) data indicate a
disturbing 4% global prevalence of depression, with a 5% adult
demographic impact and an alarming 18% rise in incidence over the
past decade (Charlson et al., 2019). Predictions for 2030 suggest
depression as a significant contributor to global disease burden
(McCarron et al., 2021). Symptoms of depression, as defined by both
the ICD-10 and DSM-5, typically include a persistently low mood,
irritability, difficulty in concentrating, psychomotor retardation or
agitation, anhedonia (loss of pleasure or interest in activities), and
disruptions in appetite and sleep patterns (WHO, 1992; American
Psychiatric Association, 2022). Given the complex symptomatology
of depression, treatment often involves a combination of
psychological therapies and pharmacological interventions,
including antidepressants (Malhi and Mann, 2018). While these
antidepressants have substantially enhanced the quality of life for
many individuals, they are not without drawbacks. Both approved
therapies and those under clinical investigation pose significant risks
of severe side effects, including cardiotoxicity, addiction, suicidal
tendencies, sexual dysfunction, and sleep disturbances (Nemeroff,
2020). Consequently, there remains an urgent necessity to develop
safer therapeutic agents for the treatment of depression.

One of the primary obstacles to developing more effective and safer
treatments for depression is the incomplete elucidation of its underlying
molecular mechanisms. To date, research into the mechanisms of
depression has focused on a variety of factors, including
neurotransmitter regulation, neuroplasticity, neurogenesis, and
dysregulation of the hypothalamic–pituitary–adrenal (HPA) axi
(Dean and Keshavan, 2017). Consequently, the majority of
antidepressants development programs have honed in on modulating
neurotransmitter concentrations as a therapeutic strategy (Harmer et al.,
2017). The intricate interplay between neuroinflammation and
depression, characterized by its multifaceted pathogenic mechanisms,
underscores the complexity of this mental health disorder. More
recently, neuroinflammation has emerged as a pivotal contributor to
the pathogenesis of depression, lending notion that anti-inflammatory
agents could serve dual roles in both neuroprotection and the alleviation
of depressive symptoms (Troubat et al., 2021). Beyond traditional
hypotheses, emerging evidence highlights the potential involvement
of inflammatory pathways in the etiology of depression. Recent
studies investigating the anti-neuroinflammatory effects of selective
serotonin reuptake inhibitors (SSRIs), serotonin and noradrenaline
reuptake inhibitors (SNRIs), as well as botanical compounds from
Hemerocallis citrina Baroni and the classic Chinese herb couple Fuzi
andGanjiang (FG) (Liu L.M. et al., 2019; Dionisie et al., 2021; Yang et al.,
2021; Ma et al., 2022). These studies collectively shed light on promising
avenues for developing novel therapeutic strategies targeting
neuroinflammation in depression.

Natural compounds offer a valuable source of anti-inflammatory
pharmacological agents, typically accompanied by minimal side effects.
This insight motivated our exploration of natural products with
prospective neuroprotective properties. Specifically, we investigated
their impact using animal models of depression, thereby enriching
our understanding of the interplay between neuroinflammation and
depressive disorders. Existing research has highlighted the
neuroprotective benefits of dietary supplementation with extra virgin
olive oil (EVOO), showcasing its capacity to mitigate neurodegenerative
diseases, reducing stroke incidence, and enhancing cognitive functions in
humans (Samieri et al., 2011; Rodriguez-Morato et al., 2015; Valls-Pedret
et al., 2015). The multifaceted beneficial effects of EVOO are partially
attributed to hydroxytyrosol (HT), a polyphenolic compound with
diverse bioactive properties, including antioxidant, hypoglycemic,
antiviral and cardioprotective activities (Rietjens et al., 2007; Robles-
Almazan et al., 2018). Numerous in vivo studies have corroborated HT’s
efficacy as an anti-inflammatory and antioxidant molecule, indicating its
potential for preventing or treating chronic diseases (Fuccelli et al., 2018).
Initial evaluations of HT’s neuroprotective potential using dissociated
brain cells (DBC) have shown positive results against oxidative stress
(Schaffer et al., 2007). Further studies have explored HT’s potential in
counteracting neuroinflammation and neurological disorders, including
its role in activating antioxidant enzymes and inducing cytoprotective
gene expression regulated by nuclear factor E2-related factor 2 (Nrf2)
(Cordaro et al., 2021; Fusco et al., 2021). Preliminary studies also have
even touched upon the antidepressant properties of HT, focusing
specifically on its antioxidant mechanisms (Zhao et al., 2021).

Meanwhile, HT has exhibited an exemplary safety profile in animal
studies, showing negligible adverse effects. A 13-week regimen of daily
oral HT administration to rats demonstrated no toxicological
significance, with an NOAEL (no observed adverse effect level) of
500 mg/kg/d suggested (Aunon-Calles et al., 2013). Additional in vitro
evaluations corroborated that HT concentrations within physiologically
plausible ranges are non-genotoxic and non-mutagenic (Auñon-Calles
et al., 2013). Given its remarkable biological functionalities and
favorable safety profile, HT was listed as a novel food (NF) pursuant
to Regulation (EC) No 258/97 by the European Food Safety Authority
(EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) in
2017 (Turck et al., 2017). Collectively, these studies strengthen the
rationale for considering HT as an ideal candidate for exploring the
therapeutic benefits of modulating neuroinflammation in depression.

In this study, we aimed to thoroughly investigate hydroxytyrosol’s
(HT) antidepressant and anti-neuroinflammatory properties using a
variety of depression models in rodents. Our approach involved
creating nerve cell inflammatory injury models to assess HT’s
neuroprotective effects. Additionally, we utilized interleukin-1β (IL-
1β) to induceHT22 inflammatory damage, aiming to elucidate the anti-
inflammatory mechanism of HT at the organelle level. We also
employed structured illumination microscopy (SIM) to scrutinize
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nanoscale morphological alterations in the neuronal mitochondria
induced by HT. Then, our research extended to evaluating HT’s
antidepressant efficacy across different rodent depression models. To
fully understand the antidepressant mechanisms, the BDNF-related
pathway being modulated by HT was verified in CRS-induced
depressive mice. In CUMS-induced depressive rats, target
metabolomics and RNA-seq transcriptomics were employed to
confirm the involvement of the BDNF signaling pathway and to
identify neuro-metabolites influenced by HT treatment. Our study
contributes to exploring strategies for depression treatment based on
neuroinflammation and highlights the potential of HT as a candidate
for antidepressant drug development.

2 Materials and methods

2.1 Chemicals and reagents

Lipopolysaccharide (LPS, L4391-1MG), L-glutamic acid (G8415),
and a hydrogen peroxide solution (30%w/w, H1009) were sourced from
Sigma-Aldrich (United States). Recombinant murine IL-1β (211-11B)
was procured from PEPROTECH (United States). Fluoxetine HCl
(S27345, purity >98%), was obtained from Shanghai Yuanye Bio-
Technology Co., Ltd. Hydroxytyrosol (purity >98%) was synthesized
and purified by the Biopharmaceutical Laboratory of Shandong
Academy of Pharmaceutical Sciences (China). Detailed structural
and chromatographic information for HT is shown in
Supplementary Figure S1.

2.2 Animals and cells

Male ICR (Institute of Cancer Research)mice (22–25 g, 6–8 weeks)
and male SD (Sprague Dawley) rats (200–250 g, 6–8 weeks) were
purchased from Jinan Pengyue Experimental Animal Breeding Co.,
Ltd. (Jinan, China). The rodents were kept in a 12-h/12-h light/dark
cycle and acclimated for 7 days prior to the experiment. All animal
experiments adhered to the guidelines of Committee of the Drug Safety
Evaluation Center (ShandongAcademy of Pharmaceutical Science) and
Association for Assessment and Accreditation of Laboratory Animal
Care (AAALAC).

SH-SY5Y (CL-0208), BV2 (CL-0493) and HT22 (CL-0697) cell
lines were obtained from Procell Biotechnology Co., Ltd. (Wuhan,
China). BV2 and HT22 cells were maintained in MEM (contained
NEAA) medium with 10% (v/v) fetal bovine serum (FBS, Gibco,
United States), while DMEM high-glucose medium with 10% (v/v)
FBS (Gibco, United States) was used for HT22 cells. SH-SY5Y cells
were maintained in MEM/F12 medium with 15% (v/v) FBS (Gibco,
United States) and differentiated with 10 μM retinoic acid (ATRA,
R2625, Sigma) for 3 days, followed by 80 nM Phorbol 12-myristate
13-acetate (TPA, P8139, Sigma) for an additional 3 days (RA/TPA).
Cells were cultured in a 37°C incubator under 5% (v/v) CO2.

2.3 CCK-8 assays

In CCK-8 assays, 1×104 cells were inoculated on 96-well plates and
cultivated for 24 h. Cells were pretreated with 10, 20, 40 and 80 μmol/L

HT for 12 h, followed by induction with 50 μmol/L H2O2, 8 mmol/L
Glu, 10 ng/mL IL-1β for an additional 24 h, respectively. Each well was
then mixed with 10 μL of CCK-8 working solution (40203ES76, Yeasen
Biotechnology Co., Ltd., China) and incubated at 37°C for 1 h.
Absorbance was measured at 450 nm using a multimode microplate
reader (Infinite M200PRO, TECAN, Swiss), and cell viability was
calculated according to the provided manual.

2.4 Griess colorimetric method

1×104 cells were seeded onto 96-well plates and cultured for 24 h.
Cells were pretreated with 10, 20, 40, and 80 μmol/L HT for 12 h and
subsequently induced with 100 ng/mL LPS for 24 h. Standard curves
were established according to the specification, and each well was then
added with 50 μL of Griess Reagent I and Griess Reagent II (S0021M,
Beyotime Biotechnology, China) at room temperature. Absorbance was
measured at 500 nm using a multimode microplate reader (Infinite
M200PRO, TECAN, Swiss), and NO concentration was calculated.

2.5 Flow cytometry for cell apoptosis

Cells were seeded in 6-well plates (Corning, United States) at a
density of 5×105 cells/well and cultured for 24 h. Cells were
pretreated with serum-free medium containing HT doses of
100 or 1,000 ng/mL for 12 h, followed by induction with 10 ng/
mL IL-1β for an additional 24 h. After treatment, cells were washed
twice with stain buffer and suspended in Annexin V Binding Buffer
at a concentration of 1×106 cells/mL. Staining of cells was performed
by adding 5 μL of Annexin V and 5 μL of 7-AAD solution (Biogems,
United States) for 15 min at 25°C in the dark. The apoptosis rate was
analyzed using a Gallios flow cytometer (Beckman coulter,
United States) and FlowJo VX10 software (DB, United States).

2.6 Confocal laser observation of
mitochondrial membrane potential (MMP)

1×105 cells were grown in 35 mm laser confocal culture dishes
with complete medium. MMP was detected using the Mitochondrial
Membrane Potential and Apoptosis Detection Kit (C1071M,
Beyotime Biotechnology, China). Cells were washed twice with
PBS and resuspended in 188 μL binding buffer. Cells were
stained with 2 μL Mito-Tracker Red CMXRos (Ex/Em: 579/
599 nm) and 5 μL of Hoechst 33342 (Ex/Em: 350/461 nm) at
25°C in the dark for 30 min. Cells were then washed twice with
PBS and visualized with a high-speed confocal platform (Dragonfly
200, Andor, UK). The MMP was quantified using ImageJ (Version
6.0) based on the mean fluorescence intensity. Ten visual fields were
randomly selected from each group for statistical analysis.

2.7 Mitochondrial super-resolution imaging
using 3D-SIM

Mitochondria were stained with the Mito-Tracker Deep Red FM
probe (MTDR, 40743ES50, Yeasen Biotechnology Co., Ltd., China),
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which was not affected by MMP. For this process, 1×105 HT22 cells
were inoculated into 35 mm glass-bottom dishes with a thickness of
170 ± 5 μm and cultured for 24 h. Cells were then pretreated with
varying concentrations of HT for 2 h, followed by a 24 h incubation
with 10 ng/mL IL-1β. Cells were washed six times with PBS and
stained with 100 nmol/L MTDR for 30 min at 37°C. Following six
additional washes with pre-warmed phenol-free medium, MTDR
staining was imaged at an excitation of 644 nm and an emission of
665 nm using 3D-structured illumination microscopy (SIM)
(DeltaVision OMX Flex, GE Lifescience, United States).
Mitochondrial morphology was analyzed using the MiNA
module of ImageJ, based on methods previously described
(Valente et al., 2017). Ten visual fields for each group are
randomly selected for statistics under 3D-SIM (n = 10).

2.8 Chronic restraint stress (CRS) model

Sixty ICRmice (Approval No. 2019013PD-02M, Date. 17/05/2019)
were randomly assigned to cages. The CRS protocol was adapted from
prior studies (Campos et al., 2013). Excluding the control group (n =
6 mice), each mouse was restrained daily in a 50 mL tapered-bottom
centrifuge tube (Corning, United States) for 6 h over 21 consecutive
days. On the 22nd day, behavior assays (SPT, TST, and FST) were
employed to identify thirty mice exhibiting depressive-like behaviors,
which were then selected for subsequent grouping and treatment.
Thirty depressed mice were randomly divided into five treatment
groups: model group, Flx group (10 mg/kg BW), HT-low dose
group (HT-L, 50 mg/kg BW), HT-middle dose group (HT-M,
150 mg/kg BW) and HT-high dose group (HT-H, 450 mg/kg BW).
Except for the control group, each group received daily intragastric
administration of 0.5% sodium carboxymethyl cellulose water-soluble
corresponding drugs for 21 consecutive days. The members of the
model group were administered equal volumes of solvent daily. The
experimental design is illustrated in Figure 4A.

2.9 Tail suspension test (TST)

Following minor modifications from prior research (Can et al.,
2012), mice were suspended 50 cm above the ground using adhesive
tape placed 1 cm from the tip of their tails. After acclimating for
2 min, immobility time was recorded over the next 4 min.
Immobility was defined as the absence of limb and body
movement, barring slight head movement. Tests were conducted
in a quiet setting and apparatus was cleaned between tests.

2.10 Forced swimming test (FST)

The procedure of FST was described as reported (Yan et al.,
2010). The FST was conducted using clear, round glass buckets,
measuring 10 cm in diameter and 25 cm in height for mice and
20 cm in diameter and 45 cm in height for rats. Following a 2 min
acclimatization period, immobility time was measured over the next
4 min. Immobility was defined as the absence of all movement,
except that necessary to keep the animal’s head above water. Longer
immobility periods indicated depression-like behavior.

2.11 Sucrose preference test (SPT)

The SPT was performed with slight modifications from previous
methods (Willner et al., 1987). Rodents were given a choice between two
fluids: pure water and 1% sucrose solution. Preference of the sucrose
solution was considered indicative of non-depressed behavior. On the
first day, animals were fed two bottles of 1% sucrose solution in each
cage to accommodate sweetness. On the second day, both bottles of
sucrose solution were replaced with pure water, which were kept in
place for 24 h. On the third day, the SPT test animals were kept in
separate cages for 24 h with two identical bottles, filled with a known
weight of pure water and 1% sucrose solution, respectively. After 12 h,
the positions of the two bottles were exchanged. On the fourth day, pure
water and sucrose solution were weighed to calculate the total liquid
consumption and sucrose preference:

Sucrose preference %( ) � Sucrosewater weight g( ) / Purewaterweight g( )(
+Sucrosewater weight g( )) × 100%

2.12 Nissl staining

Brain tissue samples were fixed in 20 times the volume of 4%
paraformaldehyde for more than 24 h at 4°C. Following paraffin
embedding, 3 µm coron\eqalign{al brain sections were prepared.
After 2 min of hydration in 0.1% cresol violet, sections were
dehydrat-ed twice with xylene for 5 min each time, and then were
treatedwith anhydrous etha-nol twice for 5 min, 75% ethanol for 5 min,
and washed with water for 2 min. The treated slices were stained with
Nissl dye solution (Servicebio, China) for 5 min. The stained sections
were washed with flowing water, and high-resolution images were
captured using a VS120 microscope (Olympus, Japan).

2.13 Inflammatory mediator measurement

The concentrations of mouse TNF-α (EK282/4–96), mouse IL-1β
(EK201B/3–96) and mouse IL-6 (EK206/3–96), rat TNF-α (EK382/
3–96), rat IL-1β (EK301B/3–96) and rat IFN-γ (EK380/3–96) and rat
BDNF (EK3127-96) in brain tissues were quantified utilizing ELISA kits
(MULTISCIENCES, China). The rat TrkB ELISA kit (EK1596) was
obtained from Boster Biological Technology Co. Ltd (China). To
prepare tissue homogenates, brain samples were finely minced and
thoroughly rinsed in PBS. A 100 mg aliquot of the wet tissue was then
homogenized in 500 µL of precooled PBS and centrifuged at 4°C at
12,000 rpm for 20 min The resultant supernatants were transferred into
clean tubes. Data were shown as cytokines (pg)/mg tissue.

2.14 Transmission electron
microscopy (TEM)

To perform transmission electron microscopy, 1 mm3

hippocampus DG region tissues were fixed overnight in electron
microscope fixation solution (Servicebio, China) and dehydrated
with 1% osmium tetroxide (v/v) for 2 h. After acetone penetration,
the tissues were stained with 4.8% uranyl acetate, rinsed, and sliced
with a lead-uranium double dyed copper mesh. The
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microphotographs were acquired using a high-resolution
transmission electron microscope (JEOL, Japan).

2.15 High performance liquid
chromatography (HPLC) assays

HPLC analysis was performed using an SIL-20AC HPLC system
coupled with LC Lab Solutions workstation and RF-20A fluorescence
detector (Shimadzu, Japan). Hippocampal samples were homogenized
twice by shaking at 30 Hz for 90 s using the standard volume of pre-
cooled PBS (100 mg/1 mL, w/v), and then were centrifuged for 10 min
at 4°C and 13,000 rpm. An equal volume of 5% perchloric acid was
added to the brain homogenate or serum to remove the protein. After a
10 min centrifugation at 4°C and 13,000 rpm, 20 μL supernatant were
separated using a reversed-phase C18 column (ZORBAX Eclipse,
250 mm × 4mm, aperture 5 μm, temperature 30°C) and eluted
using an acetonitrile/water solution (12:88, v/v), with a flow rate of
1.0 mL/min. The collected fractions were detected at an excitation of
281 nm and an emission of 316 nm, respectively.

2.16 Western blot analysis

Total protein of the brain or cells was extracted using RIPA Lysis
Buffer (P0013B, Beyotime Biotechnology, China) following the
instructions in the manual. After quantifying the proteins with the
BCA method, samples were denatured via boiling for 5 min. Following
electrophoresis, transmembrane, and blocking, the target proteins were
labeled with primary antibodies: β-actin (1:5000, rabbit polyclonal,
Proteintech, 20536-1-AP), BDNF (1:1000, rabbit polyclonal,
Proteintech, 28205-1-AP), TrkB (1:1000, rabbit polyclonal,
Proteintech, 13129-1-AP), p75NTR (1:1000, rabbit polyclonal,
Proteintech, 55014-1-AP), pCREB (Ser133, 1:1000, rabbit polyclonal,
Affinity, AF3189), pTrkB (Tyr706, 1:1000, rabbit polyclonal, Affinity,
AF3462). HRPConjugatedAffiniPureGoat Anti-Rabbit IgG (H+L) (1:
5000, Boster, BA1054) was used to amplify the signal of the target
proteins. Protein bands were visualized using the Enhanced ECL
Chemiluminescent Substrate Kit (Millipore, United States) and
imaged using a chemiluminescence instrument (Bio-Rad,
United States). Quantitative analysis was performed by measuring
the band intensities using ImageJ software (NIH, United States).

2.17 Chronic unpredictable mild stress
(CUMS) model

The CUMS regimen was adapted from a previously published
study with minor modifications (Antoniuk et al., 2019). The schematic
diagram of the present study was exhibited in Supplementary Figure
S3A. The CUMS model of SD rats (Approval number 20200928DD-R,
Date. 28/09/2020) was conducted over 14 weeks. Excluding the control
group (n = 6 rats), the remaining eighty rats were subjected daily to one
of seven randomly and irregularly assigned stressors: 1) water
deprivation for 12 h, 2) a 45° cage incline for 12 h, 3) wet bedding
(250 mLwater per individual cage) for 24 h, 4) physical restraint for 4 h,
5) cold swimming (4°C) for 10 min, 6) food deprivation for 24 h, and 7)
reversal of the day/night for 24 h. Behavior assays were conducted at the

sixth week to identify forty-two depressive rats for subsequent
experiments. Depressive rats were randomly allocated to 7 groups
(n = 6 per group): the model group, the positive control group (Flx,
7 mg/kg BW), the HT-low dose group (HT-L, 7 mg/kg BW), the HT-
middle dose group (HT-M, 21 mg/kg BW), the HT-high dose group
(HT-H, 63 mg/kg BW), and a resveratrol control group (RSV, 63 mg/kg
BW). Given that RSV is a polyphenolic compound akin to HT and has
been previously reported to manifest antidepressant properties (Moore
et al., 2018; Liu T. et al., 2019), it was included as an additional control to
compare its efficacy and mechanism of action against HT in CUMS-
induced depression. Except for the control group, all groups received
daily oral administration of 0.5% sodium carboxymethyl cellulose
water-soluble corresponding drugs for 6 consecutive weeks. The
model group were administered equal volumes of solvent daily.

2.18 Analysis of neurotransmitters in CUMS
rat brain by targeted metabolomics

A detailed list of 29 neurotransmitters, amino acids, and bioactive
metabolites employed as chemical standards can be found in
Supplementary Table S1. These standards were accurately weighed,
and single standard stock solutions were prepared with acetonitrile. By
mixing each standard solution, we created amaster stock that was used for
gradient dilution series. For the sample solutions’ preparation, the brain
specimens were weighed and homogenized in pre-cooled PBS at a
concentration of 6 times the tissue weight (mg/μL, w/v), then
homogenized twice using a homogenizer at 30 Hz for 90 s. After a
10min centrifugation at 4°C and 13,000 rpm, 900 μL of pre-cooled
acetonitrile was mixed with 100 μL of supernatant for deproteinization.
Acetonitrile, tolbutamide internal standard solution and supernatant were
mixed (1:1:2, v/v/v), then swirled for 5min and centrifuged for 10min at
4°C and 13,000 rpm. Next, a 5 μL aliquot of the resulting supernatant was
reserved for subsequent analysis. A SCIEX Exion liquid chromatography
system was interfaced to a SCIEX Exion LC-TQ5500 system with an
electrospray ionization (ESI) source. An Accucore C18 column
(100mm × 2.1mm, 2.6 μm, Thermo, United States) was used for the
separation of supernatant samples at 40°C. Mobile phase A was formic
acid/acetonitrile/water solution (0.1:10:89.9, v/v/v), while phase B was
formic acid/acetonitrile/water solution (0.1:50:49.9, v/v/v). The
chromatographic procedure was gradient elution at 0.4 mL/min: 20%–
100% B for 0–1min, 100% B for 1–7min, 100%–20% B for 7–7.5 min,
and 20% B for 7.5–11min. After the gradient elution, the equilibration
time was 5min. The mass spectrum conditions were set as follows: ESI
source, positive ionization mode. The ion source temperature and ion
source voltage were 500°C and 5000 V, respectively, with the following
pressures: collision gas, 6 psi; curtain gas, 30 psi; nebulizer gas and auxiliary
gas; 50 psi. The multiple reaction monitoring (MRM) conditions for each
compound are summarized in Supplementary Table S2. Data acquisition
was performed using Phoenix WinNonlin 8.1 (Certara, United States).

2.19 Eukaryotic reference transcriptome
sequencing and bioinformatics analysis of
CUMS rats

Brain tissues of CUMS rats were collected and sent to Shanghai
Personal Biotechnology Co., Ltd. (China) for RNA extraction,
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quality control, and quantitative procedures (Project No.
TR202104261020QTKR). The amplicon library was collected in
equal quantities and loaded onto the Illumina Miseq platform for
PE300 sequencing (Illumina, San Diego, CA, United States).
Bioinformatics project analysis was carried out on the Personal
Biotechnology platform (https://www.genescloud.cn).

2.20 Statistical analysis

Data were collected and presented as the mean ± standard
deviation (mean ± SD). The statistical analysis was conducted
using Graphpad Prism 9 (GraphPad Software, United States).
The ROUT method was developed as a method to identify
outliers from nonlinear regression, and the normal distributions
of data were examined using the Kolmogorov–Smirnov normality
test with Dallal–Wilkinson approximation of the p-value. The
homogeneity of sample variances was validated via the
Brown–Forsythe test for equal variances. Student’s t-test or one-
way analysis of variance (ANOVA) with Tukey’s post hoc analysis
was used to determine significant differences between groups. The
statistical significance was denoted as **p < 0.05, **p < 0.01, ***p <
0.001. For targeted metabolomics analysis of CUMS rats, one-way
ANOVA and post hoc analysis, unsupervised principal component
analysis (PCA), partial least squares discriminate analysis (PLS-DA),
correlation heatmap and clustering heatmap analysis were
performed usingMetaboAnalyst 5.0 (http://www.metaboanalyst.ca).

3 Results and discussion

3.1 Neuroprotective potential of HT
mediated by anti-neuroinflammation in vitro

HT has primarily garnered attention for its antioxidative and
anti-inflammatory properties. In the present work, we examine its
neuroprotective efficacy in counteracting oxidative stress and
neuroinflammation using various neural cell models. Initially,
SH-SY5Y cells were exposed to oxidative stress via 50 μmol/L
H2O2. As depicted in Figure 1A, pretreatment with 10 μmol/L
HT and 20 μmol/L HT significantly ameliorated cell viability by
10.78% (F(9, 20) = 11.34, p = 0.0135) and 13.56% (F(9, 20) = 11.34, p =
0.0165), respectively, compared with the H2O2 treatment
group. Moreover, glutamic acid accumulation has been reported
to generate a plethora of nitrogen, oxygen free radicals and peroxides
(He et al., 2013). HT22 cells, a model often employed for oxidative
stress studies, were subjected to excitotoxic stress induced by
8 mmol/L of glutamate (Glu). Pretreatment with 10 μmol/L HT
(F(9, 20) = 12.87, p = 0.0433) and 20 μmol/L HT (F(9, 20) = 12.87, p =
0.0374) significantly mitigated the Glu-induced decline in cell
viability, implying the neuroprotective effects of HT against
inflammatory insults (Figure 1B). Lipopolysaccharide (LPS) is the
main component of the outer membrane of Gram-negative bacteria,
mediates Nrf2/HO-1 signaling pathway to regulate oxidative stress
response, and causes oxidative stress and apoptosis of nerve cells
(Jang et al., 2022). Given that microglia are central to
neuroinflammation, we evaluated HT’s anti-inflammatory activity
on BV2 microglial cells. These cells were subjected to inflammatory

stress triggered by 100 ng/mL LPS. Intriguingly, pretreatment with
10, 20, 40, and 80 μmol/L HT did not adversely influence BV2 cell
viability (F(9, 20) = 0.37, p > 0.99), nor did 100 ng/mL LPS
(Figure 1C), consistent with a study by Zhang et al., which
reported no significant effect of up to 200 μmol/L HT on
BV2 cell proliferation (Zhang et al., 2020). Crucially, a
physiological concentration of HT (10 μmol/L) potently
suppressed nitric oxide (NO) levels stimulated by 100 ng/mL LPS
(F(9,20) = 52.76, p < 0.01, Figure 1D). However, it is imperative to
consider the physiologically relevant concentrations of HT in vivo.
Current clinical studies suggest that achieving concentrations
greater than 10 μmol/L is challenging (Miro-Casas et al., 2003;
Gonzalez-Santiago et al., 2010; Pastor et al., 2016; Alemán-
Jiménez et al., 2021), potentially due to the relatively low dosage
of HT consumed by humans. Nonetheless, only one study indicated
that repeated consumption of olive oil enriched with HT lead to
plasma concentrations between 10–20 μmol/L (Covas et al., 2006).
More notably, many in vitro studies, including (Zrelli et al., 2011;
Zhang et al., 2020), have investigated the biological activity of HT at
much higher than physiological concentrations (e.g., 25, 50, 100 and
200 μmol/L), which was unreasonable. In summary, our findings
provide compelling evidence that HT exhibits potent
neuroprotective properties, effectively mitigating oxidative stress
and neuroinflammation in different neural cell lines under
in vitro conditions.

3.2 HT mitigates IL-1β-induced
inflammatory damage to the mitochondrial
ultrastructure in HT22 cells

Mitochondria serve critical roles in ATP production, Ca2+

signaling, and redox homeostasis, all of which are vital for neural
signaling and plasticity (Bansal and Kuhad, 2016). Emerging evidence
implicates mitochondrial dysfunction as a contributing factor in
depression across various brain regions (Visentin et al., 2020). This
accentuates the importance of understanding mitochondrial
dysregulation as a basis for developing targeted antidepressant
strategies (Hollis et al., 2022). Given the established link between
neuroinflammation and mitochondrial integrity, we aimed to assess
capacity of HT to protect against inflammation-induced
mitochondrial perturbations. We pretreated HT22 cells with HT
(10, 20, 40 μmol/L) prior to exposure to 10 ng/mL IL-1β for 24 h.
Laser confocal microscopy and structured illumination microscopy
(SIM), were employed to scrutinize mitochondrial membrane
potential (MMP) alterations and morphological changes in the
mitochondrial network, respectively (Figure 3A). Using the Mito-
Tracker RedCMXRos probe, we observed thatHT pretreatment led to
enhanced fluorescence intensity, signifying the preservation of MMP
in comparison to IL-1β-induced HT22 cells (Figures 2A, B). These
observations reinforce our hypothesis that HT safeguards
mitochondrial function against IL-1β-induced degradation.

In terms of regulating mitochondrial function in nerve cells,
previous studies have noted that HT could enhance the expression of
mitochondrial fusion proteins, ATP production and the
hyperpolarization of MMP (Schaffer et al., 2007; Visioli et al.,
2022a; Visioli et al., 2022b). To explore mitochondrial
morphological shifts under inflammatory conditions, we
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employed SIM to capture high-resolution images of mitochondria in
IL-1β and HT-treated HT22 cells. As visualized in Figure 3B, control
HT22 cells exhibited networks of interconnected tubular structures
of mitochondria as previously reported (Liang et al., 2022). In
contrast, IL-1β-treated cells presented a marked shift towards
fragmented, shortened, and punctate mitochondria, features
characteristic of stressed or senescent neurons. Interestingly, pre-
treatment with 10, 20, and 40 μmol/L HT for 2 h followed by co-
incubation with 10 ng/mL IL-1β resulted in more interconnected
mitochondria networks, resembling those in control cells
(Figure 3C). Our quantitative analysis disclosed a substantial 19%
reduction in mitochondrial networks in IL-1β-treated HT22 cells
(F(4, 45) = 8.063, p < 0.001), accompanied by a 14% increase in the
number of individual mitochondria (F(4, 45) = 10.20, p < 0.001)
relative to control cells. Furthermore, HT pre-treatment rectified
these morphological aberrations, including enhancing network
connectivity and reducing individual mitochondria (Figure 3D).
Quantitative mitochondrial strategies (Valente et al., 2017; Shao
et al., 2020) corroborated our findings, further elucidating HT’s anti-

inflammatory activity at the organelle level. These results
compellingly argue that HT pre-treatment confers robust
protection against mitochondrial impairment induced by IL-1β.

3.3 Antidepressant efficacy of HT in CRS-
induced depressive model

Animal models rooted in diverse mechanistic paradigms serve
as pivotal tools for the preclinical evaluation of antidepressants.
Notably, chronic stress is presented as one of the causal factors in
many mental disorders (Hammen, 2005; Tran and Gellner, 2023).
Models of depression induced by CRS and CUMS are widely used
to study the underlying pathophysiology of depression and to
evaluate the efficacy of chronic antidepressant treatments using
behavioral tests (Ménard et al., 2016; Antoniuk et al., 2019;
Moreno et al., 2020; Zhou et al., 2021). The experimental
design of the CRS model is presented in Figure 4A. The
behavioral experiments showed that HT treatment for 3 weeks

FIGURE 1
HT confers protection against nerve cell damage induced by inflammatorymediators. (A)HT ameliorates oxidative damage in SH-SY5Y cells induced
by H2O2. (B) HT mitigates oxidative damage in HT22 cells induced by Glu. (C) HT does not affect BV2 cell viability induced by LPS stimulation. (D) Nitric
Oxide (NO) concentrations in LPS-stimulated BV2 cells are assessed using the Griess colorimetric method. All experiments are independently repeated at
least three times with similar results (n = 3). Data are expressed as themean ± SD and analyzed using one-way analysis of variance (ANOVA) followed
by Tukey’s post hoc analysis. ns, not significant, *p < 0.05 compared with the model group.
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significantly enhanced the sucrose preference in depression-like
mice (Figure 4B) and attenuated the elevated immobility times in
both the FST and tail suspension test (TST) (Figures 4C, D).
Different doses of HT (50, 150 and 450 mg/kg/d) were efficacious
in alleviating depression-like behaviors in mice, exhibiting a dose-
dependent response. These results indicate that CRS significantly
changes the behavioral indicators of the tested mice, and HT
ameliorates these indicators in the FST, TST and SPT. Since the
European Food Safety Authority approved HT as a novel food
(NF) in 2017, the margin of exposure (MoE) for HT has been
calculated to be 200 mg/kg for various demographics, including
adolescents, adults, and the elderly, excluding pregnant and
lactating women (Turck et al., 2017). With respect to the dose
of HT (450 mg/kg/d) employed in CRS-induced depressive mice,
the dose can be translated to 36.6 mg/kg/day in humans, following
the U.S. Food and Drug Administration (FDA) guidelines for
inter-species dose conversion. This affirms that the dosages
used in our study are within a reasonable range based on
recommended human intakes of HT.

Given that depression often correlates with neurotransmitter
depletion, we detected the neurotransmitter levels in hippocampus
depression-like mice. As illustrated in Figures 4E–G, 5-
hydroxytryptamine (5-HT, F(5, 30) = 16.26, p < 0.001), dopamine
(DA, F(5, 30) = 77.78, p < 0.001) and norepinephrine (NE, F(5, 30) =
29.27, p < 0.001) in the hippocampus of the HT-H group were
significantly elevated compared with the model group. Nissl staining
disclosed significant morphological neuronal abnormalities in
depression-like mice, including a reduced number of granular cell
layers and atrophied nuclei in the hippocampal region (Figure 1H
and Supplementary Figure S2A, S2B). Notably, HT treatment for
3 weeks substantially mitigated these neuropathological alterations,
evidenced by an increase density of healthy neurons across the

dentate gyrus (DG), CA1, and panoramic hippocampal regions
(Supplementary Figures S2C–E). In summary, our findings
robustly indicate that HT possesses significant antidepressant
properties, evidenced by its capability to improve behavioral
outcomes and neurotransmitter imbalances, as well as through
the amelioration of hippocampal neuropathology in CRS-
induced mice.

However. one limitation warrants mention: our study relied
solely on a male cohort. This male-centric focus in our
depression model represents a significant constraint. Even
though depression affects women twice as often as men, due
to heightened vulnerability to stress-induced conditions,
research in various fields-ranging from neurobiology and
pharmacology to endocrinology and physiology-still
predominantly involves male subjects (Malhi and Mann,
2018; Markov and Novosadova, 2022). In neuroscience, for
example, the male-to-female ratio of study subjects is 5.5:1
(Beery and Zucker, 2011). Sex differences in stress responses,
depressive-like behavior, learning, memory, levels of
neurotransmitters and neurotrophic factors, neurogenesis,
and synaptic plasticity have important implications for the
vulnerability to depression (Simpson and Kelly, 2012). The
ignore of the application of females in neurobiological
experiments is most often justified by the possible influence
of hormonal fluctuations associated with the reproductive cycle
of females on the measured parameters (McCarthy et al., 2012).
Considering the gender-specific differences in stress responses,
neurogenesis, neurotransmitter levels, and synaptic plasticity
(Simpson and Kelly, 2012), future research should expand
female representation in preclinical trials and animal models
to more comprehensively elucidate the sex-dependent aspects of
depression.

FIGURE 2
HT suppresses IL-1β-induced attenuation of mitochondrial membrane potential (MMP) in HT22 cells. (A) Confocal microscopy is used to evaluate
MMP. Hoechst 33342 (blue color) is applied for nuclear counterstaining. Mitochondria are stained with the Mito-Tracker Red CMXRos probe. Hoechst
33342: Ex, 350 nm, Em, 461 nm; andMito-Tracker Red CMXRos: Ex, 644 nm, Em, 665 nm. (B) ImageJ software is used to quantitatively analyze themean
fluorescence intensity. Data are expressed as mean ± SD and analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc
analysis (n = 10). ***p < 0.001, compared with the untreated HT22 cells.
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3.4 Mitigation of mitochondrial
inflammatory damage and augmentation of
hippocampal BDNF expression by HT in
CRS-induced depressive mice

The increasingly acknowledged role of neuroinflammation as a
contributing factor in the pathogenesis of various neuropsychiatric
disorders, including depression, prompted us to investigate the
antidepressant effects of HT-mediated anti-inflammatory action
(Troubat et al., 2021; Tayab et al., 2022). To this end, we
measured the concentrations of key pro-inflammatory cytokines
in the hippocampus after exposure to CRS. Remarkably, HT
treatment alleviated CRS-induced inflammatory markers.
Specifically, IL-1β, TNFα and IL-6 concentrations were decreased
by 50.07 ± 6.41 pg/mL (F(5, 30) = 30.90, p < 0.001), 61.24 ± 7.46 pg/
mL (F(5, 30) = 22.86, p < 0.001) and 37.09 ± 6.00 pg/mL (F(5, 30) =
21.37, p < 0.001), respectively (Figures 5A–C). This reduction was
accompanied by dramatic inflammatory cytokines (IL-1β, TNFα, IL-
6) release within the hippocampus, aligning with previous report
(Fan et al., 2018). These findings strongly suggest that HT exerts its
antidepressant effect, at least in part, through an anti-
inflammatory mechanism.

Pro-inflammatory factors such as IL-1β are known to induce
mitochondrial damage on neural cells, including neurons, microglial

cells, astrocytes, and oligodendrocytes (Bansal and Kuhad, 2016;
Hollis et al., 2022). To assess the protective effect of HT on
mitochondrial integrity, the nanoscale morphology of
mitochondria was imaged via transmission electron microscopy
(TEM). As shown in Figure 5D, CRS exposure led to discernible
ultrastructural abnormalities in the mitochondria, including chaotic
arrangement, swelling, vacuolization and disruption of cristae in
hippocampus. Conversely, HT treatment significantly ameliorated
these pathological features, resulting in well-structured, fusiform-
shaped mitochondria with intact cristae. Therefore, HT could
alleviate the depressive phenotype by improving the
mitochondrial ultrastructure in the hippocampus.

BDNF plays a critical role in shielding neurons from
inflammatory damage through its receptors TrkB and p75NTR,
which often have opposing functions (Markham et al., 2014).
Activation of the TrkB neurotrophic receptors has been shown to
have antidepressant-like effects, and BDNF levels were found to be
reduced in depression patients and restored to near normal level by
antidepressant treatment (Molendijk et al., 2011;Mikoteit et al., 2016).
To extend our understanding, the levels of BDNF/TrkB pathway-
related proteins were detected. HT treatment notably elevated the
protein levels of BDNF, TrkB and phosphorylated CREB (pCREB), a
transcription factor that, when phosphorylated, limits
proinflammatory responses (F(3, 20) = 19.21, p < 0.001 for BDNF;

FIGURE 3
HT alleviates the inflammatory mitochondrial ultrastructural damage in HT22 cells based on 3D-SIM. (A) Schematic illustration of the experimental
workflow outlining HT’s role in modulating MMP and mitochondrial network dynamics in HT22 cells. (B) The original SIM image of mitochondria is
processed using the MiNA plug-in in ImageJ. (C) Representative mitochondria images of HT22 cells (Scale bar = 5 μm). Magnification images from the
white box areas are shown in the bottom panels (Scale bar = 1 μm). Fluorescence distribution of mitochondria stained with the Mito-Tracker Deep
Red FM probe (MTDR, Ex/Em: 644/665 nm) in HT22 cells. (D) Mitochondrial morphology analyses based on micrographs of HT22 cells after different
treatments. Data are expressed as mean ± SD and analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc analysis (n = 10).
*p < 0.05, **p < 0.01, ***p < 0.001, compared with the untreated HT22 cells.
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FIGURE 4
HT ameliorates depression-like behavior by normalizing neurotransmitter levels and alleviating the decline the number of hippocampal neurons in
CRS-induced mice. (A) Schematic diagram illustrates the experimental design of the CRS depression model. (B) Sucrose preference (%) for each group
assessed via SPT. (C, D) Immobility time (s) measured for each group using the FST and TST. (E–G) Neurotransmitter levels in the hippocampus of mice.
(H) Nissl body staining of the DG region in the hippocampus for each group of mice. Statistical data are displayed with mean ± SD (n = 6 mice per
group) and analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc analysis. ns, not significant, *p < 0.05, **p < 0.01, ***p <
0.001 compared with the model group.
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FIGURE 5
HT mitigates the mitochondrial inflammatory damage and promoted the BDNF expression in the hippocampus of CRS-induced mice. (A–C)
Quantification of inflammatory cytokine IL-1β (A), TNF-α (B) and IL-6 (C) levels in the hippocampus, as detected by ELISA kits. (D) TEM is employed to
visualize mitochondria ultrastructural changes in the hippocampus. (E) Western blot analysis is conducted to examine the impact of HT treatment on
proteins involved in the BDNF/TrkB/CREB signaling pathway. (F–I)Gray scale analysis of the expression of BDNF (F), p75NTR (G), TrkB (H) and pCREB
(I) in the hippocampus. Statistical data are displayed as mean ± SD (n = 6 mice per group) and analyzed using one-way analysis of variance (ANOVA)
followed by Tukey’s post hoc analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant, compared with the model group.
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F(3, 20) = 14.56, p < 0.01 for TrkB; F(3, 20) = 29.68, p < 0.001 for
pCREB).We also observed decreased expression of p75NTR (F(3, 20) =
16.61, p < 0.01) in HT-H-treated mice (Figures 5E–I). Numerous
studies have highlighted distinctions in levels between the truncated,
inactive form of TrkB (TrkB-T) and the phosphorylated active form of
TrkB (TrkB-FL) in individuals with psychiatric disorders (Martinez-
Cengotitabengoa et al., 2016). TrkB-T is situated on the cell
membrane in its inactive state, lacking stimulation from
neurotrophic factors such as brain-derived neurotrophic factor
(BDNF). Primarily serving structural and maintenance roles, TrkB-
T typically does not participate in cellular signal transduction. Upon
binding with BDNF or other neurotrophic factors, TrkB undergoes
phosphorylation, resulting in the formation of the phosphorylated
functional form, TrkB-FL. In this activated state, TrkB-FL exhibits
active tyrosine kinase activity, capable of initiating multiple signaling
pathways critical for neuronal survival, development, learning, and
memory (Lai et al., 2012).

Research has indicated a close correlation between depression
and TrkB phosphorylation levels, with certain antidepressant
medications also inducing TrkB phosphorylation (Rantamäki
et al., 2007; Fred et al., 2019). Therefore, investigating alterations
in the levels of TrkB-T and TrkB-FL following hydroxytyrosol (HT)
treatment is a pivotal step in determining whether HT mediates the
BDNF signaling pathway to exert antidepressant effects. In the study
by Zhao et al., they observed that hydroxytyrosol promotes TrkB-FL
expression and the TrkB-FL/TrkB-T ratio in the brain tissue of
chronic unpredictable mild stress (CUMS)mice, supporting the idea
that HT mediates TrkB activation signaling pathways, thereby
exerting antidepressant effects (Zhao et al., 2021). However, in
our study, we indeed did not further assess the levels of both
TrkB forms and their ratio. We focused solely on measuring the
phosphorylation levels of the downstream transcription factor
CREB, acknowledging this as a limitation in our research. Taken
together, these findings demonstrate that HT protects mitochondria
from damage caused by inflammatory responses in CRS mice. These
protective effects may be in part due to the HT-mediated increase in
BDNF/TrkB protein levels and the phosphorylation of the
transcription factor CREB.

3.5 HT mediates mitochondrial protection
and the BDNF/TrkB/CREB pathway in IL-1β-
treated BV2 microglial cells

Expanding upon previous research that demonstrated the
protective effects of HT on mitochondrial inflammatory damage
and hippocampal BDNF expression in CRS-induced depressive
mice, we sought to elucidate the underlying mechanisms using
BV2 microglial cells as an in vitro model. Given the pivotal role
of these cells in neuroinflammation within the central nervous
system, they serve as an ideal platform for investigating how HT
may counteract such processes. In our in vitro experiments,
BV2 microglial cells were pre-treated with HT for 2 h before
being exposed to 10 ng/mL IL-1β. CCK-8 assays revealed that
100 ng/mL HT significantly mitigated the IL-1β-induced decline
in BV2 cells viability (Figure 6A). Furthermore, Annexin V/7-AAD
flow cytometry results indicated a significant reduction in the
apoptosis rate of BV2 cells with 50 ng/mL and 100 ng/mL HT

(Figure 6B). Understanding that mitochondria are pivotal in
maintaining neurobiological homeostasis, we noted that excessive
amounts of inflammatory cytokines in depressed rodents could
compromise the normal physiological functioning of
mitochondria, thereby inducing neuronal apoptosis. To further
analyze these relationships, we used 100 ng/mL HT to interfere
with the IL-1β-induced decrease in the MMP of BV2 cells.
Remarkably, HT pre-treatment prevented the compromise of
mitochondrial membrane integrity in BV2 cells induced by IL-1β
(Figures 6C, D). These observations underscore the protective
capability of HT against IL-1β-induced microglial damage.
Remarkably, a concentration of 100 ng/mL HT (equivalent to
0.68 μmol/L HT) has been demonstrated to exhibit anti-
neuroinflammatory effects. Compared to the distribution of HT
concentrations in human plasma after ingestion (1.11 ± 0.20 μmol/
L) (Gonzalez-Santiago et al., 2010), achieving such therapeutic levels
appears feasible, suggesting considerable potential for the clinical
application of HT.

Subsequently, BV2 microglial cells were stimulated with IL-1β
and treated with HT to observe the changes in BDNF/TrKB/CREB
pathway proteins. After 24 h of exposure with 10 ng/mL IL-1β,
diminished levels of BDNF (F(2, 15) = 10.60, p < 0.01), TrkB (F(2, 15) =
15.00, p < 0.01), pTrkB (F(2, 15) = 17.40, p < 0.01) and pCREB (F(2,
15) = 11.16, p < 0.01) proteins were effectively restored by HT
(Figures 6E–I). These results indicated that HT suppresses IL-1β-
induced inflammatory damage by affecting the expression of BDNF/
TrkB/CREB protein in BV2 cells. Moreover, 100 mg/kg HT
improved CUMS-induced depressive-like behaviors in mice by
inhibiting microglia activation, alleviating neuroinflammation and
enhancing the BDNF/TrkB/CREB signaling pathway (Zhao et al.,
2021). These findings dovetailed with our own results and paved the
way for future research targeting conditions involving microglial
activation that may benefit from HT treatment. In summary, these
results corroborate that HT protects mitochondria from damage
caused by inflammatory response triggered both in vivo and in vitro.
This protective effect appears to be partially mediated through the
upregulation of BDNF/TrkB protein levels and the phosphorylation
of the transcription factor CREB.

3.6 Targeted metabolomics analysis
revealed the antidepressant mechanism of
HT in CUMS-induced depressive rats

Given the significant antidepressant activities of HT in CRS-
induced depressive mice, we extended our investigation using the
well-established CUMSmodel (Antoniuk et al., 2019; Planchez et al.,
2019; Becker et al., 2021). With this model, we achieved the level of
omics, so as to capture the complex characteristics of the HT playing
an antidepressant role. As depicted in Supplementary Figures
S3B–D, CUMS-exposed rats exhibited depression-like
phenotypes, including reduced sucrose preference, total fluid
consumption, and body weight. However, both Flx and a high
dose of HT (HT-H group) ameliorated these depressive
symptoms, as evidenced by the FST and SPT results
(Supplementary Figures S3E, F). Intriguingly, unlike Flx, HT-H
treatment significantly normalized the body weight of the CUMS
rats (Supplementary Figure S3G). Moreover, HT-H reversed the
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FIGURE 6
HT promotes BDNF expression and protects against inflammatory apoptosis in IL-1β-treated BV2 cells. (A) Cell viability in IL-1β-treated BV2 cells is
assessed using CCK-8 assays. ***p < 0.001, comparedwith 10 ng/mL IL-1β group. ns, not significant, between the HT group and the HT + IL-1β group. (B)
The anti-apoptotic effect of HT on IL-1β-treated BV2 cells is detected using flow cytometry. (C) The effect of HT onMMP is observed using confocal laser
scanningmicroscopy in BV2 cells, cell nuclei were stained with Hoechst 33342 (Ex/Em: 350/461 nm), and themitochondria were stained with Mito-
Tracker RedCMXRos (Ex/Em: 579/599 nm). (D)Quantitativemeasurements of fluorescent intensity are evaluated using ImageJ software. (E)Western blot
analysis is performed to evaluate the effects of HT treatment on the BDNF, TrkB, pTrkB, and pCREB signaling pathway proteins in BV2 cells. (F–I) Gray
scale analysis of the BDNF (F) TrkB (G), pTrkB (H) and pCREB (I) in BV2 cells. All experiments are independently repeated at least six times with consistent
results (n = 6). Data are expressed as mean ± SD and analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc analysis. **p <
0.01, ns, not significant, compared with the control group.
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elevated serum and brain levels of pro-inflammatory cytokines, such
as IL-1β, TNF-α, and IFN-γ (Supplementary Figure S3H).
Consistently, HT-H treatment led to a marked increase in the
concentrations of BDNF and TrkB in the serum and brain of
CUMS rats (Supplementary Figure S4), which aligned well with
our findings using the CRS mouse model. Recent research has
confirmed that dietary HT administered through food
supplements is bioavailable, and its bioavailability increases in
proportion to the administered dose (Visioli et al., 2000; Bender
et al., 2023). These findings not only validate the physiological
relevance of our rodent studies, but also suggest that higher HT
concentrations can be achieved in humans through increased
dosage. In our CUMS model, we established a dose of 63 mg/kg/
d in rats to explore the threshold dosage for efficacy in rodent
models, finding that it effectively improved all behavioral indices.
Although 63 mg/kg/d may not represent the minimal effective dose
for antidepressant activity in rats, the obtained data will inform
future dosage optimization in rodent-based research. While there
are currently no human clinical trials employing HT concentrations
equivalent to those used in our animal studies, is plausible to
speculate that escalating dosages in humans will yield
proportionally increased plasma concentrations, thereby
potentially manifesting the corresponding physiological effects.
Our findings may thus serve as a valuable reference for clinical
trials exploring not only the utility of pure HT as a food supplement
but also its prospective antidepressant properties.

To gain a more nuanced understanding of the biochemical
changes facilitated by HT, we utilized LC-MS/MS-based
metabolomics to detect the levels of twenty-four
neurotransmitters and amino acid metabolites. A metabolite
cluster heatmap effectively differentiated the HT-H group from
the model group, indicating distinct metabolic profiles
(Figure 7A). Correlation analysis showed patterns of similarity
and dissimilarity between the HT-H and model groups (Figures
7B, E). Principal component analysis (PCA) and partial least squares
discriminant analysis (PLS-DA) score plots confirmed the
substantial biochemical differences between the groups (Figures
7C, D). In CUMS rats, the levels of nine key brain metabolites
(Gln, Glu, GABA, Tyr, His, 5-HT, DA, NE, 5-HTP) were
significantly decreased (Supplementary Table S3). Conversely,
HT-H treatment resulted in a marked elevation in the levels of
ten metabolites (Gln, Glu, Trp, Tyr, 5-HT, DA, NE, DOPA, Kyn and
5-HTP), which collectively ameliorated the depression-like features
(Supplementary Table S3). Of particular interest, HT-H treatment
significantly elevated tryptophan levels and suppressed Kyn/Trp
(F(4, 25) = 5.86, p = 0.0256) and QUIN/Trp (F(4, 25) = 7.17, p = 0.0037)
(Figures 7F–H), implicating the inhibition of the TRP-Kyn-QUIN
metabolic pathway in the brain of CUMS rats. These findings align
with previous research implicating this metabolic pathway in major
depression (Yirmiya et al., 2015; Modoux et al., 2021). Taken
together, our data underscore the dual role of HT in both
mitigating inflammatory responses and effecting key metabolic
changes, thereby highlighting its promise as a potent therapeutic
approach for depression.

This section highlighted the metabolomic alterations induced
by HT, particularly its modulatory effects on neuroactive
metabolites within brain tissue. One inherent limitation,
however, is our exclusive focus on the parent compound, HT,

without accounting for its metabolites (such as hydroxytyrosol
sulfates (HTS) and hydroxytyrosol glucuronide (HTG)) in both
normal and depression-like rodent models. Considering the
increased blood–brain barrier permeability characteristic of
depression, HT concentrations in brain tissues are markedly
elevated in chronic unpredictable mild stress (CUMS) models
compared to healthy controls (Medina-Rodriguez and Beurel,
2022; Fan et al., 2023). Therefore, when evaluating the
beneficial effects of the parent compound HT on antidepressant
activity, it is prudent to also consider the role of metabolites like
HTS and HTG (Lopez de las Hazas et al., 2015; Hazas et al., 2018).
Our current study prioritizes the biological activity of HT itself as
an antidepressant agent, specifically its effects on the metabolism
of endogenous neurotransmitters such as dopamine, serotonin,
norepinephrine, and other amino acids, which culminate in the
alleviation of neuroinflammation and exertion of antidepressant
effects. Future investigations will delve into the roles and
mechanisms of these HT metabolites to offer a more
comprehensive understanding of HT’s pharmacological
properties and potential applications.

3.7 Transcriptomic profiling reveals diverse
mechanisms of HT in CUMS-induced
depressive rats

To gain more comprehensive insights into the antidepressant
mechanisms of HT, we employed eukaryotic reference
transcriptomic sequencing to identify differentially expressed
genes (DEGs) in the brains of CUMS rats across various
treatment groups. Compared with the model group, the control
group exhibited 43 upregulated DEGs with at least a 2-fold change
(p < 0.05) and 154 downregulated DEGs with at least a 2-fold change
(p < 0.05) (Figure 8A). Intriguingly, the HT-H treatment group
exhibited 245 DEGs, comprising 86 upregulated and
159 downregulated genes, compared with the model group
(Figure 8A). Volcano plot analysis revealed prominent
upregulation of BDNF, CREB and CREB-regulated transcription
coactivator 1 (CRTC1) in the HT-H group compared with the
model group. Additionally, distinct gene expression patterns were
observed in the fluoxetine (Flx) group, characterized by both up-
and downregulated DEGs (Figure 8B and Supplementary Figure
S5A–C), thus hinting at divergent mechanistic pathways and
potential clinical ramifications for HT and Flx.

Gene Ontology (GO) analysis comparing the control group with
the model group implicated DEGs in fundamental biological
processes and cellular components (Supplementary Figure S5D).
However, the GO term analysis for the HT-H group revealed
significant enrichment in processes such as anatomical structure
development, multicellular organism development, nervous system
development, ensheathment of neurons, axon ensheathment,
myelination, neurogenesis, glial cell development, and glial cell
differentiation, as well as cellular components, such as the myelin
sheath (Figure 8C). DEGs in the Flx group were mainly associated
with synaptic development and signaling (Supplementary Figure
S5F), offering a striking contrast to those observed in the HT-H
group. More interestingly, resveratrol (RSV) was found to influence
not only nervous system development but also ion channel and
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transmembrane transporter activities (Supplementary Figure S5H).
Pathway analysis further differentiated the mechanisms of HT and
Flx (Figure 8D). KEGG pathway enrichment in the HT-H group
revealed interactions with several BDNF-linked pathways, such as

Ras, PI3K-Akt, and MAPK signaling (Almeida et al., 2005). The
control and Flx groups exhibited similar KEGG enrichment patterns
including pathways like ‘long-term potentiation’ and multiple
hormonals signaling pathways (Supplementary Figures S5E, G),

FIGURE 7
Targeted metabolomics analysis elucidates the antidepressant mechanism of HT in CUMS-induced depressive rats. (A) A Cluster heatmap displayes
the identified metabolites in CUMS rats, with each metabolite’s variation represented by a specific color: upregulated in red and downregulated in blue.
Rows correspond to metabolites, and columns represent distinct experimental groups. (B) Correlation analysis elucidates the differences in metabolite
levels between themodel group and theHT-H group. (C) Principal component analysis (PCA) score plot illustrates the separation of brainmetabolite
profiles in CUMS rats. (D) Partial least squares discriminant analysis (PLS-DA) score plot further confirms the distinct brainmetabolite profiles in CUMS rats.
(E) Variable importance in projection (VIP) scores are calculated using PLS-DA; color-coded boxes indicate the relative concentrations of corresponding
metabolites across the experimental groups. (F–H) Comparative effects of Flx, HT or RSV on Trp (F), Kyn/Trp (G) and QIUN/Trp (H) in the brain of CUMS
rats. Data are shown asmean ± SD (n = 6 rats per group) and analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc analysis.
*p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant, compared with the model group.
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FIGURE 8
Transcriptomic profiling reveals diverse mechanisms of HT in CUMS-induced depressive rats (n = 6 rats per group). (A) The bar graph depicts the
number of DEGs (fold change ≥2 or ≤0.5, p < 0.05). Upregulated genes are shown in red and downregulated genes are shown in blue. (B) A volcano plot
illustrates the distribution of DEGs (p < 0.05) regulated by HT-H treatment. The ordinate indicates log10 of the enrichment p-value and the ordinate
indicates log2 of the fold change. Red dots represent the upregulated genes, blue dots represent downregulated genes, and gray dots indicate no
significant change in gene expression. (C) The bar graph presents the top 20 significantly enriched GO terms for DEGs when comparing themodel group
with the HT-H group. GO terms are significantly enriched with Bonferroni corrected p < 0.05, the ordinate represents the enriched GO terms, while the
abscissa represents log10 of the enrichment p-value. (D) The bar graph shows the top 20 significantly enriched pathways of DEGs in the model group
versus the HT-H group, as determined by KEGG pathway analysis. KEGG pathways are significantly enriched with Bonferroni corrected p < 0.05, the
ordinate represents the enriched pathways, and the abscissa signifies log10 of the enrichment p-value.
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yet these were distinctly separate from those enriched in the HT-H
group. For the RSV group, DEGs were chiefly enriched in
metabolism and organismal systems (Supplementary Figure S5I).
Collectively, our findings suggest that HT, Flx, and RSV modulate
depressive-like behavior via disparate mechanistic pathways,
thereby underscoring the need for further, in-depth exploration
to fully elucidate these divergences.

4 Conclusion

In this comprehensive study, we confirmed the consistency of
HT antidepressant activity across rodent species. Daily HT
administration effectively alleviated depression-like behaviors
as measured via the TST, SPT and FST. Concomitantly, HT
normalized neurotransmitter imbalances and suppressed the
overproduction of proinflammatory cytokines. Critically, HT
significantly ameliorated mitochondrial ultrastructure damage,
mechanisms closely aligned with the activation of the BDNF/
TrkB signaling pathway. In vitro assays further
corroborated HT’s neuroprotective effects by demonstrating
its ability to counteract IL-1β-induced neuronal damage,
enhance mitochondrial function, and reestablish dynamic
mitochondrial networks. Transcriptomic evaluations
confirmed the BDNF-mediated anti-neuroinflammatory
mechanisms, and targeted metabolomic analysis illuminated

the kynurenine metabolic pathway of tryptophan as an
additional, putative antidepressant mechanism modulated by
HT. The potential mechanism of action of HT in the
treatment depression is shown in Figure 9. Overall, our
findings underscore the potential of targeting
neuroinflammation as a viable therapeutic strategy for
depression, positioning HT as a promising lead compound for
crafting safer, more effective antidepressants. These insights
extend the growing evidence supporting HT’s antidepressant
efficacy and elevate its significance in the intersection of
nutrition and mental health.
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