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The development of resistance to carbapenems in Klebsiella pneumoniae due to
the production of metallo-β-lactamases (MBLs) is a critical public health problem
because carbapenems are the last-resort drugs used for treating severe
infections of extended-spectrum β-lactamases (ESBLs) producing K.
pneumoniae. Restoring the activity of carbapenems by the inhibition of
metallo-β-lactamases is a valuable approach to combat carbapenem
resistance. In this study, two well-characterized clinical multidrug and
carbapenem-resistant K. pneumoniae isolates were used. The sub-inhibitory
concentrations of pantoprazole and the well-reported metallo-β-lactamase
inhibitor captopril inhibited the hydrolytic activities of metallo-β-lactamases,
with pantoprazole having more inhibiting activities. Both drugs, when used in
combination with meropenem, exhibited synergistic activities. Pantoprazole
could also downregulate the expression of the metallo-β-lactamase genes
blaNDM and blaVIM. A docking study revealed that pantoprazole could bind to
and chelate zinc ions of New Delhi and Verona integron-encoded MBL (VIM)
enzymes with higher affinity than the control drug captopril and with comparable
affinity to the natural ligand meropenem, indicating the significant inhibitory
activity of pantoprazole against metallo-β-lactamases. In conclusion,
pantoprazole can be used in combination with meropenem as a new strategy
for treating serious infections caused by metallo-β-lactamases producing K.
pneumoniae.
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Introduction

Klebsiella pneumoniae is a facultative anaerobic Gram-negative
bacterium of the family Enterobacteriaceae. It is non-motile and
capsulated (Rapp and Urban, 2012). K. pneumoniae is recognized as
a significant pathogen that is responsible for a range of clinical
infections affecting various organ systems (Kang et al., 2006; Lila
et al., 2023). Clinical manifestations often include healthcare-
associated pneumonia, urinary tract infections, bloodstream
infections, wound infections, meningitis, and intra-abdominal
infections (Imai et al., 2019). Its ability to form a protective
capsule, adhere to host tissues, and produce toxins contributes to
its virulence (Victor et al., 2007). K. pneumoniae shows a significant
increase in antibiotic resistance by different mechanisms, with
resistance to β-lactamase as a major mechanism (Nordmann
et al., 2009; Martin and Bachman, 2018). This leads to hindering
effective treatment since K. pneumoniae infections are commonly
treated by β-lactamase, including carbapenems and extended-
spectrum cephalosporins (Bradford, 2001; Gasink et al., 2009).
The emergence of multidrug-resistant strains poses a serious
challenge, necessitating comprehensive innovative strategies for
the development of effective treatment strategies (Khayat et al.,
2022a; Alotaibi et al., 2023; Khayat et al., 2023; Nazeih et al., 2023).

Carbapenems are a class of broad-spectrum cell-wall antibiotics
that belong to the β-lactam group, which also includes penicillins
and cephalosporins. These antibiotics are structurally related to
penicillins but possess a broader spectrum of activity against
various bacteria, including both Gram-positive and Gram-
negative pathogens (Breilh et al., 2013). The key features of
carbapenems include their stability against many β-lactamases
and their ability to penetrate bacterial cell walls effectively
(Codjoe and Donkor, 2017). Carbapenems are considered “last-
resort” antibiotics and are often reserved for serious infections
caused by multidrug-resistant bacteria, particularly Gram-
negative bacilli producing extended-spectrum β-lactamases
(ESBLs), AmpC or carbapenemases (Zhanel et al., 2007). They
are commonly used in hospital settings for conditions such as
severe pneumonia, complicated intra-abdominal infections,
complicated urinary tract infections, and septicemia (Hawkey and
Livermore, 2012).

Despite their efficacy, the emergence of carbapenem-resistant
bacteria predominantly among Gram-negative bacilli has been well
documented (Codjoe and Donkor, 2017). Among the members of
Enterobacteriaceae, K. pneumoniae is the most common
carbapenem-resistant Enterobacterales (CRE). CRE was
announced as an urgent global public health threat (Centers for
Disease Control and Prevention, 2019; Rajab and Hegazy, 2023).
Carbapenem resistance in K. pneumoniae is mediated by several
mechanisms. The major mechanism is enzymatic hydrolysis by
carbapenemases. Carbapenemases are grouped into A, D, and B
classes. The Ambler class A includes K. pneumoniae carbapenemase
(KPC), while class D includes the oxacillin enzyme (OXA)
(Spagnolo et al., 2014; Logan and Weinstein, 2017). On the other
hand, class B metallo-β-lactamases (MBLs) can degrade
carbapenems in addition to most penicillins and cephalosporins.
However, this class is stable to β-lactamase inhibitors, and they are
inhibited by metal ion chelators (Queenan and Bush, 2007). MBLs
include New Delhi metallo-β-lactamase (NDM-1) and Verona

integron-encoded MBL (VIM) and acquire activity on imipenem
(Poirel et al., 2000). Carbapenemase inhibitors are of much
importance to restore the activity of carbapenems that are
valuable in treating infections caused by K. pneumoniae because
the classical β-lactamase inhibitors such as clavulanate, sulbactam,
and tazobactam have no activity against K. pneumoniae
carbapenemases (Drawz et al., 2010; Drawz et al., 2014).

Pantoprazole is a proton pump inhibitor (PPI). PPIs are drugs
used to treat stomach acid-related disorders such as gastric ulcer,
non-erosive reflux disease, as a prophylaxis against ulcers caused
by non-steroidal anti-inflammatory drugs, and in combination
with antibacterials for the therapy of Helicobacter pylori (Ward
and Kearns, 2013; Strand et al., 2017). In addition to their
classical uses, PPIs showed other activities against different
types of pathogens. They were active against bacteria such as
Pseudomonas aeruginosa and Staphylococcus aureus (Vidaillac
et al., 2007; Sadiq et al., 2020), fungi such as Candida albicans
and Candida spp. (Siavoshi et al., 2012), parasites such as
Entamoeba histolytica (Pérez-Villanueva et al., 2011), and
viruses such as SARS-CoV-2 (COVID-19) and rhinovirus
(Sasaki et al., 2005; Aguila and Cua, 2020). This study aimed
to investigate the ability of the PPI pantoprazole as a metallo-β-
lactamase inhibitor compared to the well-known inhibitor
captopril (García-Sáez et al., 2003; Klingler et al., 2015; Brem
et al., 2016) to be used for treating CRE infections in
combination with carbapenems.

Materials and methods

Bacterial isolates and chemicals

Two clinical isolates of K. pneumoniae sourced from the
Microbiology and Immunology Department stock culture
collection at the Faculty of Pharmacy, Zagazig University, were
used. The clinical isolates were characterized using 16S rRNA gene
sequencing, and the obtained results were deposited in GenBank
(https://www.ncbi.nlm.nih.gov/) under accession numbers
ON798797 and ON798801 (Abdel-Halim et al., 2022).
Pantoprazole was supplied by Novartis, Egypt. Meropenem was
supplied by AstraZeneca, Egypt. Captopril and dimethyl sulfoxide
(DMSO) were purchased from Sigma Chemical Co. (St. Louis, MO,
United States). Antibiotic disks and bacterial culture media were
obtained from Oxoid, United Kingdom.

Susceptibility test against different
antimicrobial agents

The antimicrobial susceptibility testing of the test isolates was
conducted for various classes of antimicrobial agents using the disk
diffusion method, adhering to the guidelines set forth by the Clinical
and Laboratory Standards Institute (CLSI) (Wayne, 2018). The used
disks were meropenem (MEM, 10 μg), ceftriaxone (CRO, 30 μg),
piperacillin–tazobactam (TZP, 100/10 μg), cefepime (FEP, 30 μg),
cefoperazone (CFP, 75 μg), aztreonam (ATM, 30 μg), gentamicin
(GN, 10 μg), amikacin (AK, 30 μg), trimethoprim–sulfamethoxazole
(SXT, 1.25/23.75 μg), tetracycline (TE, 30 μg), tigecycline (TGC,
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15 μg), levofloxacin (LEV, 5 μg), ofloxacin (OFX, 5 μg),
chloramphenicol (C, 30 μg), and azithromycin (AZM, 15 μg).

Determination of the minimum inhibitory
concentration of meropenem against
test isolates

The minimum inhibitory concentration (MIC) of meropenem
was evaluated using the broth microdilution method according to
CLSI guidelines (Thabit et al., 2022a; Cavalu et al., 2022). MICs were
recognized as the lowest concentrations at which visible bacterial
growth was inhibited.

Effect of the sub-inhibitory concentration of
pantoprazole on bacterial growth

To exclude the growth-inhibiting activity of pantoprazole or
captopril, the effect of a sub-inhibitory concentration of
pantoprazole (2 mg/mL) and captopril (1 mg/mL) on bacterial
growth was evaluated by the turbidity measurement (Khayat
et al., 2022b; Hegazy et al., 2022). In brief, the overnight cultures
of the tested strains were diluted to obtain a turbidity equivalent to
0.5 McFarland standard, followed by 1/100 dilution in the
Mueller–Hinton broth (MHB) containing pantoprazole or
captopril and control MHB without the tested drugs. After
incubation for 18 h at 37°C, turbidities were measured at 600 nm
using a UV-vis microplate reader (Synergy HT, BioTek)
and compared.

Combined disk test

To assess the potential synergy between each captopril or
pantoprazole and meropenem, the combined disk test was
performed (Boonyanugomol et al., 2017). MH agar plates were
prepared containing a final concentration of 2 mg/mL
pantoprazole or a final concentration of 1 mg/mL captopril, and
control plates without pantoprazole were prepared. Adjusted
bacterial suspensions (0.5 McFarland standard) were prepared,
and 100 μL aliquots were delivered and spread on the surface of
the plates. A disk containing 10 mg of meropenem was placed on the
center of the test and control plates. After 18 h of incubation at 37°C,
the diameters of the inhibition zone were measured and
photographed.

Quantitative carbapenemase inhibition
assay in the crude periplasmic extract

Crude periplasmic extracts of isolates were prepared (Bernabeu
et al., 2012). A loopful of the test isolates was inoculated in 10 mL
of MHB that were incubated with shaking at 37°C for 18 h. The
suspensions were centrifuged to harvest the pellets that were
resuspended in 0.5 mL of phosphate buffer (100 mM, pH 7.0)
combined with 50 µM ZnSO4 in a microcentrifuge tube and
sonicated (ultrasonic system UP100H, Hielscher Ultrasonic

Technology, Teltow, Germany) at 40 W for 1.5 min, with a
pulse of 0.5 s. After centrifugation, the supernatants were used
to assess the meropenem hydrolysis activity in the absence or
presence of pantoprazole (2 mg/mL) or captopril (1 mg/mL) at
297 nm using the UV-vis spectrophotometer (Synergy HT,
BioTek) (Denny et al., 2002). Then, 100 µl aliquots were
transferred to a 96-well microtitre plate, and the plates were
incubated with pantoprazole (2 mg/mL) in 0.5% DMSO at 37°C
for 30 min. Meropenem was added (500 μg/mL), and the solutions
were incubated at 37°C for 1 h. The absorbances of solutions
containing pantoprazole or captopril (test) and 0.5% DMSO
(vehicle control) were detected at 297 nm. The percentage of
meropenem hydrolysis inhibition was calculated using the
following formula:

% of inhibition � O.D.of treatment − O.D.vehicle control( )[
/O.D.of treatment] × 100.

Effect of pantoprazole on the susceptibility
of bacteria to meropenem

The influence of the sub-MICs of pantoprazole or captopril on
the MIC of meropenem against the tested bacterial isolates was
evaluated by using the broth microdilution method as previously
described (Khayyat et al., 2021; Elfaky et al., 2022).

Quantitative RT-PCR of metallo-β-
lactamase genes

To analyze the relative expression levels of carbapenemase genes
blaNDM and blaVIM in the K. pneumoniae ON798797 strain in the
absence or presence of 1 mg/mL of pantoprazole, quantitative real-
time-PCR (qRT-PCR) was employed. The primers for the two
metallo-β-lactamase genes were obtained from Integrated DNA
Technologies (IDT) (Coralville, Iowa, United States). The
sequences of the primers are listed in Table 1 (Amira et al., 2016;
Abbas et al., 2019). The housekeeping gene rpoB was used to
normalize the relative expression levels of the tested genes. The
StepOne Real-Time PCR System (Applied Biosystems,
United States) was utilized, and the protocol of the SensiFAST™
SYBR® Hi-ROX One-Step Kit (Bioline, United Kingdom) was
followed (Askoura et al., 2022; Elfaky et al., 2023). The
thermocycling conditions were as follows: 3 min at 95 °C for

TABLE 1 Primers used in the genotypic detection of carbapenemase genes.

Primer Sequence (5′–3′)

blaNDM F GCACACTTCCTATCTCGACATGC

blaNDM R CCATACCGCCCATCTTGTCC

blaVIM F GATGGTGTTTGGTCGCATA

blaVIM R CGAATGCGCAGCACCAG

rpoB F AACCCGCTGTCTGAGATTAC

rpoB R GGCGTTTCGATCGGACATA
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enzyme activation, followed by 40 cycles (denaturation for 15 s at
95 °C, annealing for 30 s at 50–60 C, and extension for 30 s at 72 °C).
The relative gene expression was determined using the comparative
threshold cycle method, as outlined in the reference (Livak and
Schmittgen, 2001; Hatipoglu et al., 2015; Thabit et al., 2022b).

In silico study

The crystal structure of hydrolase enzymes, i.e., K. pneumoniae
apo NDM-1 (Protein Data Bank (PDB) ID: 3SPU) at a resolution of
2.10 Å and VIM-2 (PDB ID: 5YD7) at a resolution of 1.70 Å, was
retrieved from the PDB (https://www.rcsb.org/) in PDB format.
Each of the pantoprazole, captopril, and meropenem structures were
drawn using MarvinSketch of Marvin Suite (http://www.chemaxon.
com) to generate a three-dimensional (3D) conformer for each with
the lowest energy and then saved in Mol2 format (King and
Strynadka, 2011; Chen et al., 2020; Singh et al., 2022).

After the removal of all water molecules, the crystal 3D structure of
the New Delhi metallo-β-lactamase enzyme underwent protonation
with their standard geometry, followed by energy minimization. The
dock module of Molecular Operating Environment (MOE) version
MOE 2019.0102 was utilized (Inc, 2016). The rigid binding pocket of
the protein was accommodated by the three tested compounds through
the flexible ligand mode. Poses were generated during the placement
phase based on ligand conformations. The force field-based scoring
function GBVI/WSA ΔG was employed to estimate the free energy of
binding for the ligand from a specific analysis (Labute, 2008;
Mahomoodally et al., 2018; Bender et al., 2023).

Statistical analysis

All the experimental investigations were conducted in triplicates,
and the mean and standard errors were calculated. One-way ANOVA
statistical test, unless otherwise mentioned, was employed to attest the
significance, where p < 0.05 was considered significant.

Results

Susceptibility to antibiotics

The disk diffusion method was carried out to investigate the one
susceptibility profile of the test isolates (Table 2) to various
antibiotics. Both the two tested K. pneumoniae isolates were
multi-drug resistant (MDR), showing resistance to meropenem.

Determination of the MICs of meropenem
and pantoprazole against test isolates

The MICs of meropenem and the test drug pantoprazole against
the test isolates were determined according to CLSI guidelines, and
the results are shown in Table 3.

The effect of pantoprazole and captopril at a
sub-MIC on bacterial growth and viability

To exclude the possible effect of captopril and pantoprazole on
metallo-β-lactamases due to growth inhibition, the effect of the
drugs on viability was investigated by measuring the turbidities of
suspensions in the presence and absence of sub-minimum inhibitory
concentrations (1/8 MICs) of the tested drugs (2 mg/mL

TABLE 2 Antibiotic susceptibility profile of the clinical isolates of Klebsiella pneumoniae.

Isolate code Anti-microbial agent

MEM CFP CRO TZP FEP ATM OFX LEV AK CN TGC TE SXT AZM C

ON798797 R R R R R R R R S S I R R R S

ON798801 R R R R R R R R R R I I R R R

MEM, meropenem; CRO, ceftriaxone; TZP, piperacillin–tazobactam; FEP, cefepime; CFP, cefoperazone; ATM, aztreonam; GN, gentamicin; AK, amikacin; SXT,

trimethoprim–sulfamethoxazole; TE, tetracycline; TGC, tigecycline; LEV, levofloxacin; OFX, ofloxacin; C, chloramphenicol; AZM, azithromycin.

TABLE 3 Minimum inhibitory concentrations of meropenem and
pantoprazole against tested Klebsiella pneumoniae isolates.

Isolate code Minimum inhibitory
concentration (MIC)

Meropenem Pantoprazole Captopril

ON798797 256 μg/mL 16 mg/mL 8 mg/mL

ON798801 128 μg/mL 16 mg/mL 8 mg/mL

FIGURE 1
Effect of the sub-minimum inhibitory concentration (MIC) of
pantoprazole and captopril on the growth of tested isolates. No
significant difference was found in the growth of the test isolate by
either captopril or pantoprazole; non-significant (ns): p > 0.05.
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pantoprazole and 1 mg/mL captopril). There were no significant
differences between OD600 in control and test samples. This
indicates the lack of the effect of captopril and pantoprazole on
the bacterial growth (Figure 1).

Combined disk test

The possible synergy between meropenem and the tested drugs was
tested by the combined disk test. The inhibition zone produced by
meropenemwas significantly increased from amean diameter of 10 mm
in the control plates to mean diameters of 20 mm for pantoprazole and
16 mm for captopril at 1/8 MICs (Figure 2). Importantly, pantoprazole
significantly potentiates the meropenem activity compared to captopril.

Pantoprazole inhibited the hydrolytic
activity ofmetallo-β-lactamases in the crude
periplasmic extract of test isolates

The effect of both pantoprazole (2 mg/mL) and captopril (1 mg/
mL) was assessed, showing that they significantly inhibited

meropenem hydrolysis by carbapenemase-mediated hydrolysis of
meropenem in the crude periplasmic extract of tested bacterial
isolates. Pantoprazole was more active as an inhibitor of
carbapenemase, showing 25% and 60% inhibition compared to

FIGURE 2
Potentiation of meropenem antibacterial activity against the tested isolates by the combined disk test. A significant increase in the inhibition zone
diameter of meropenem was observed in plates with the tested drugs compared to control plates. *: p < 0.05 and ***: p < 0.001.

FIGURE 3
Inhibition of carbapenemase by pantoprazole and captopril. The
sub-minimum inhibitory concentration of pantoprazole showed
higher inhibiting activities than that of captopril. ***: p < 0.001.
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captopril, which showed inhibition percentages of 20% and 50% in
tested isolates ON798801 and ON798797, respectively (Figure 3).

The synergy between meropenem and
tested drugs

To investigate the potential potentiation of meropenem by
tested drugs, the MIC of meropenem was determined in the
presence of the tested drugs. Pantoprazole at 1/8 MIC decreased
the MIC of meropenem by 4-fold, a lower potentiating effect than
that of captopril at 1/8 MIC (8-fold), as shown in Table 4.

Pantoprazole downregulated metallo-β-
lactamase genes blaVIM and blaNDM

To further confirm the metallo-β-lactamase inhibiting activity of
pantoprazole at the molecular level, the relative expression of the
genes blaVIM and blaNDM in the strain ON798797 was estimated in
the presence and absence of pantoprazole (1 mg/mL) by quantitative

real-time PCR. It was found that pantoprazole downregulated the
expression of both blaVIM and blaNDM by approximately 2-
fold (Figure 4).

Pantoprazole chelation of zinc ions in New
Delhi metallo-β-lactamase and VIM
enzymes in the in silico study

Molecular modeling simulation is traditionally carried out to
explore the interactions of ligands with their respective binding sites
in the crystal structures of the enzymes (Mansour et al., 2023)
Figure 5 (upper panel) shows that the docking results of
pantoprazole against the crystal structure of the New Delhi
metallo β-lactamase receptor displayed a unique type of halogen
bonds (El-Abd et al., 2022) between the backbone of the conserved
amino acid Asn220 and one of the fluorine atoms in the terminal
difluoromethoxy moiety at position 5 of the benzimidazole scaffold.
In addition, an arene–H-bond constructed between the non-
classical Lewis base pyridine ring and the conserved amino acid
Ala215 and the conspicuous hydrophobic/hydrophilic interactions

TABLE 4 Combined effect of meropenem with tested drugs on the susceptibility of Klebsiella pneumoniae isolates.

Isolate code Minimum inhibitory concentration (MIC) (µg/mL)

Meropenem Meropenem + pantoprazole (2 mg/mL) Meropenem + captopril (1 mg/mL)

ON798797 256 64 32

ON798801 128 32 16

FIGURE 4
Downregulation of (A) blaNDM and (B) blaVIM genes by pantoprazole. Pantoprazole downregulated the expression of both genes. ***: p < 0.001.

Frontiers in Pharmacology frontiersin.org06

Abdulaal et al. 10.3389/fphar.2024.1366459

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1366459


expressed by cyan-shaded amino acids from the receptor side and
the blue-shaded moieties from the ligand side improved the overall
recognition and enhanced the ligand/receptor complex stability to
score free-binding energy of −10.3401031 kcal/mol.

Concerning captopril (middle panel), two H-bonds were built
between the mercapto group of the H-bond acceptor and the sp2-
hybridized oxygen atom of the carboxylic group with the backbones
of the conserved H-bond donor amino acids Gly222 and Gln123,
respectively, giving rise to a total binding energy
of −8.00626659 kcal/mol.

Analogously, meropenem (lower panel) exhibited two H-bonds
between the sp2-hybridized oxygen atom in the dimethyl carbamoyl
moiety of the H-bond acceptor and the H-bond donor OH group in
the carboxylic moiety at position 2 and the backbones of the
conserved amino acids Ala74 and His250, respectively, ending up
with a total score of free-binding energy of −10.7858448 kcal/mol.

It is noteworthy that although the three ligands are rich in
H-bond acceptors and donor sites, meropenem and pantoprazole
have achieved higher binding activities than captopril. This may be

attributed to the steric effect, the bulkiness of the moieties, and the
appropriate spacers of the two privileged ligands, meropenem and
pantoprazole, that steered them to well-fit positioning inside the
active site.

On the other hand, upon docking the three ligands against the
crystal structure of the hydrolase enzyme VIM-2 (PDB ID: 5YD7), as
shown in Figure 6, we found that pantoprazole appeared as a
bidentate ligand, with two bonds with Zn++ constructed via its
chelating centers; the sp2-hybridized oxygen atom of the sulfinyl
moiety and sp2-hybridized nitrogen atom of the imidazole ring.
Moreover, the first chelating center formed another H-bond with the
side chain of the H-bond donor-conserved amino acid Tyr134,
ending up with a total free-binding energy of −7.80613756 kcal/mol.

Concerning captopril, it was featured as a monodentate ligand
and formed one chelating bond with Zn++ with its sp2-hybridized
oxygen atom of the carboxylic group. However, the active mercapto
group formed acted as an H-bond acceptor and formed an H-bond
with the side chain of the conserved amino acid Arg109, giving rise
to a total free-binding energy of −7.91857481 kcal/mol.

FIGURE 5
Putative bindingmodes of compounds pantoprazole (upper panel), captopril (middle panel), andmeropenem (lower panel) with the receptor pocket
of apo New Delhi metallo-β-lactamase-1 (NDM-1) crystal structure (Protein Data Bank (PDB) ID: 3SPU).
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Eventually, Zn++ formed two chelating bonds with the ligand
meropenem, the first with the sp2-hybridized oxygen atom of the
carboxylic group and the latter with the sp3-hybridized nitrogen
atom of the pyrrolidine ring. Meropenem is represented as a
bidentate ligand. Furthermore, an H-bond was displayed between
the terminal OH group and the side chain of the H-bond acceptor
amino acid Glu79, augmenting a total free-binding energy of up
to −8.91452599 kcal/mol.

Discussion

The widespread dissemination of carbapenemase-producing K.
pneumoniae within the Enterobacteriaceae family undermines the
effectiveness of carbapenem therapy (Rossolini, 2005). Moreover,
the alternative therapeutic options for serious infections caused by
this bacterium are so limited because they are insensitive to almost
all other classes of antimicrobial agents (Cornaglia et al., 2007;
Almalki et al., 2022; Cavalu et al., 2022). This presents a significant
public health concern due to the high mortality rates associated with
these infections. Currently, only a few antibiotics, such as tigecycline
and polymyxins, are utilized to combat carbapenem-resistant K.

pneumoniae. However, tigecycline, a broad-spectrum tetracycline
derivative, faces challenges in achieving adequate concentrations in
blood, respiratory, and urinary tracts, rendering it unsuitable for
treating infections such as pneumonia, bacteremia, and urinary tract
infections (Barbour et al., 2009; Freire et al., 2010). Polymyxins are
cationic cyclic polypeptides of which polymyxin B and colistin are
used for the therapy against Gram-negative infections (Akajagbor
et al., 2013). However, colistin causes nephrotoxicity and
neurotoxicity that limit its use (Garonzik et al., 2011).

In light of the serious side effects and limitations of tigecycline
and polymyxins, it is vital to search for other alternative therapeutic
options. Two combinations are approved for treating
carbapenemase-producing bacteria, and the first is meropenem/
vaborbactam for complicated urinary tract infections in addition
to pneumonia (Vázquez-Ucha et al., 2020). However, meropenem/
vaborbactam is inactive against class-B or D carbapenemases
(Lomovskaya et al., 2017). The second combination is relebactam
with imipenem. Relebactam could not inhibit class-D OXA-48 β-
lactamases; however, its inhibiting activities against class-A and
class-C β-lactamases are pronounced (Papp-Wallace et al., 2018).

In this study, two clinical K. pneumoniae isolates were found to
be multidrug-resistant and meropenem-resistant. Two drugs were

FIGURE 6
Putative binding modes of pantoprazole (upper panel), captopril (middle panel), and meropenem (lower panel) with the receptor pocket of the
Verona integron-encoded MBL-2 (VIM-2) crystal structure (PDB ID: 5YD7).
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used, and the well-reported metallo-β-lactamase inhibitor captopril
and the proton pump inhibitor pantoprazole were considered a
candidate for metallo-β-lactamase inhibition. They were used at
sub-inhibitory concentrations that did not affect cell growth to
guarantee that any possible effect on metallo-β-lactamases is not
due to the interference with cell growth. Both pantoprazole and
captopril synergized meropenem when combined with it in the
combined disk method, and they reduced its MIC. When
investigated for their activities against the inhibition of hydrolysis
of carbapenem meropenem by the carbapenemase enzyme,
pantoprazole showed a higher ability than captopril to protect
meropenem from hydrolysis mediated by carbapenemase. To
further confirm the action of pantoprazole on metallo-β
lactamases, quantitative real-time PCR was performed to
investigate if pantoprazole can downregulate the genes blaNDM
and blaVIM that encode for the metallo-β-lactamase enzymes.
Interestingly, pantoprazole could decrease the expression of the
tested genes to a significant level. The observed decrease in MBL
gene expression following treatment with pantoprazole substantiates
its inhibitory effect on MBL at the molecular level. This indicates
that its activity is not attributed to chemical interactions or other
factors but rather to the direct interaction with the genes responsible
for encoding MBL enzymes. Consequently, this suggests that
pantoprazole is a suitable candidate for therapeutic intervention
against MBL-producing K. pneumoniae infections.

The proposed mechanism of action of pantoprazole against
metallo-β-lactamases is its ability to chelate metals. Metallo-β-
lactamases have zinc ions in their active sites, which is essential
for activity. As a result, the chelation of zinc can inhibit the action of
metallo-β-lactamases. This was well documented in previous
studies. Captopril was used in this study as a standard metallo-β-
lactamase inhibitor. Captopril was previously found to inhibit
metallo-β-lactamases NDM-1, VIM-1, and IMP-7 through zinc
chelation by merit of its free thiol group (García-Sáez et al.,
2003; Klingler et al., 2015; Brem et al., 2016). Furthermore, the
drug tiopronin, a medication used in the prevention of renal stones
and the treatment of heavy-metal poisoning, is a good inhibitor of
the metallo-β-lactamases NDM-1, VIM-1, and IMP-7 (Brem et al.,
2016). Pantoprazole is a benzimidazole compound. Benzimidazole
compounds were previously found to chelate metal ions (Sánchez-
Moreno et al., 2004; Chkirate and Essassi, 2022). This was further
confirmed by an in silico study that proved the possible strong
binding of pantoprazole with zinc ions in the active site of the New
Delhi metallo-β-lactamase enzyme. Pantoprazole showed binding
affinity more or less similar to that of New Delhi metallo-β-
lactamase to the natural ligand meropenem, reflecting the
possibility of pantoprazole to act as a potent inhibitor of metallo-
β-lactamases. This binding activity is higher than that of the
previously reported metallo-β-lactamase inhibitor captopril.
Moreover, pantoprazole showed a more potent chelation of zinc
ions in the VIM-2 enzyme than did captopril. To summarize the
results of the in silico study, successful chelating centers were found.
These centers are the sp2-hybridized oxygen atom of the sulfinyl
moiety and sp2-hybridized nitrogen atom of the imidazole ring in
pantoprazole, the sp2-hybridized oxygen atom of the carboxylic
group in captopril in addition to the sp2-hybridized oxygen atom
of the carboxylic group, and the sp3-hybridized nitrogen atom of the
pyrrolidine ring in meropenem. As chelation with Zn++ leads to the

formation of a water-soluble complex, chelation not only impedes
the catalytic role for this heavy metal to this hydrolase enzyme but
also enhances the excretion of Zn++, and this is the mainstay of
chelation therapy (Flora and Pachauri, 2010). The overall conclusion
from the docking study is that pantoprazole is a promising inhibitor
of metallo-β-lactamases in terms of bulkiness, steric effect, spacers,
bindingmode and affinity, and the number of chelating centers. This
activity is more pronounced than that of captopril.

In conclusion, pantoprazole can be used in combination with
meropenem to treat serious resistant K. pneumoniae infections due
to its ability to inhibit metallo-β-lactamases. However, the impact of
pantoprazole was not investigated in conjunction with other
carbapenems. It is reasonable to anticipate its potential
effectiveness when used in combination with them. Further
pharmacological studies are needed to prove its efficacy and
safety before clinical application.
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