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Rhododendron arboreum: Sm., also known as Burans is traditionally used as an anti-
inflammatory, anti-diabetic, hepatoprotective, adaptogenic, and anti-oxidative agent.
It has been used since ancient times in Indian traditional medicine for various liver
disorders. However, the exact mechanism behind its activity against NAFLD is not
known. The aim of the present study is to investigate the molecular mechanism of
Rhododendron arboreum flower (RAF) in the treatment of NAFLD using network
pharmacology and molecular docking methods. Bioactives were also predicted for
their drug-likeness score, probable side effects and ADMET profile. Protein-protein
interaction (PPI) data was obtained using the STRING platform. For the visualisation of
GO analysis, a bioinformatics server was employed. Through molecular docking, the
binding affinity between potential targets and active compounds were assessed. A
total of five active compounds of RAF and 30 target proteins were selected. The
targets with higher degrees were identified through the PPI network. GO analysis
indicated that the NAFLD treatment with RAF primarily entails a response to the fatty
acid biosynthetic process, lipid metabolic process, regulation of cell death, regulation
of stress response, and cellular response to a chemical stimulus. Molecular docking
andmolecular dynamic simulation exhibited that rutin has best binding affinity among
active compounds and selected targets as indicatedby the bindingenergy, RMSD, and
RMSF data. The findings comprehensively elucidated toxicity data, potential targets of
bioactives and molecular mechanisms of RAF against NAFLD, providing a promising
novel strategy for future research on NAFLD treatment.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is an array of
ailments marked by obese liver intrusion, steatosis,
steatohepatitis, and cirrhosis (Remya, 2018; Sahu et al., 2022).
NAFLD may advance from basic steatosis to steatohepatitis and

fibrosis. Its fatal consequences may be cirrhosis or hepatocellular
carcinoma (Singhal et al., 2015). Considering prevalence rates in
the general population spanning from 11.2% to 37.2%, the disease
is on the rise globally as a result of an increase in obesity
(Benedict and Zhang, 2017). Although there are currently no
specific agents designated for the treatment of NAFLD and its
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progressed forms, a number of intriguing agents such as glucose-
lowering drugs, antioxidants, statins and others have been
intensively studied over the past several decades (Mantovani
and Dalbeni, 2021). Primary treatment approaches involve
empirical strategies such as dietary restriction, physical
activity, and weight loss (Nseir et al., 2014; Romero-Gómez
et al., 2017). Thus, there is a hunt for safe and economically
viable alternative forms of therapy in various disciplines of
medicine (Remya, 2018). India is dubbed as a global medicinal
garden due to its abundant biodiversity and substantial collection
of herbal remedies (Verma et al., 2020). NAFLD is one of the
non-communicable diseases for which Ayurveda has enormous
potential in its therapy (Remya, 2018). Within the framework of
Ayurveda, NAFLD is characterized as Yakrit Roga, a liver ailment
that exhibits promise of remedy through the utilization of herbal
medications (Sahu et al., 2022).

Rhododendron arboreum Sm., commonly referred to as
Burans, is a member of the Ericaceae family. This botanical
species holds prestigious distinctions, serving as the national
flower of Nepal, the state tree of Uttarakhand (India), and the
state flower of Nagaland (India). The processed juice of its
flowers, known as rhodojuice or sharbat, has acquired
widespread market popularity. Traditionally the flowers are
used in the treatment of diarrhoea, dysentery, and dyspepsia,
and are highly useful for diseases like diabetes and chronic heart
diseases (Ahmad et al., 2022). Flowers, bark, and foliage of R.
arboreum (Rhododendron arboreum) are utilised to derive
multiple phytochemicals. The different pharmacological
activities of R. arboreum flower, such as anti-oxidant, anti-
diabetic, adaptogenic, antiviral, antifungal, antitumor, anti-
hyperlipidemic, and anti-inflammatory effects are due to the
presence of quercetin, quercetin-3-rhamnoside, rutin,
coumaric acid, phenolic compounds, and amino acids (Qiang
et al., 2011; Srivastava, 2012; Verma et al., 2020). Rutin shows
anti-inflammatory properties by inhibiting the release of
phospholipase A2 (PLA2), LOX (lipoxygenase), neutrophil
glucuronidase, TNF-α (Tumour Necrosis Factor Alpha), IL-6
(Interleukin 6), and IL-1β (Interleukin-1 beta). Further, it also
inhibits the activation of ERK (Extracellular signal-regulated
kinase) and p38 and the expression of iNOS (Inducible nitric
oxide synthase) in lipopolysaccharide (LPS) stimulated cells
(García-Lafuente et al., 2009). Rhododendron arboreum
methanolic extracts demonstrated anti-inflammatory and anti-
nociceptive properties in arachidonic acid-induced hind paw
edema, Freund’s adjuvant-induced paw arthritis and cotton
pellet granuloma model of inflammation (Verma et al., 2010).
Rhododendron arboreum is a well-known plant for its
hepatoprotective effect (Verma et al., 2011). A research study
in rodents indicates the in vivo hepatoprotective activity of the
ethanolic extract of R. arboreum leaves which protects the
rodents from carbon tetrachloride (CCl4)-induced hepatic
injury along with reducing triglyceride and liver cholesterol
levels (Prakash et al., 2008). The ethyl acetate portion of R.
arboreum reduced the increased levels of SGOT (glutamic
oxaloacetic transaminase), SGPT (glutamate pyruvate
transaminase), GST (glutathione S-transferase), γ-GT (γ-
glutamyl transferase), etc., to indicate hepatoprotective effect
against (CCl4)-induced hepatic injury (Verma et al., 2011). No

research work to date has probed the role of R. arboreum in
NAFLD management. The current research work makes an effort
to ascertain the possible phytoconstituents and molecular targets
related to NAFLD in the R. arboreum flower (RAF). Employing
network pharmacology, it highlights how the possible
phytoconstituents interact with the emergent protein targets
and signaling pathways related to NAFLD. The mode of
binding of the phytoconstituents and the protein targets in
molecular docking, along with the binding affinity, indicates
the possible active conformation of the phytoconstituents.

2 Materials and methods

2.1Mining of phytoconstituents and proteins
involved in NAFLD

The RAF’s phytoconstituents were investigated from the
freely accessible literature eBook: “Himalayan Medicinal Plants
Advances in Botany, Production and Research,” “Folk-medicine
and Aromatic Plants of Uttaranchal,” and several additional
references, scientific periodicals mostly open access databases,
and Ayurveda eBooks. The search terms included Himalayan
medicinal plants, R. arboreum known as Burans, Laligurans,
Gurans, folk medicine, ethnopharmacology of Burans, and
Yakrit Roga to explore information. The phytoconstituents,
their Simplified Molecular-Input Line-Entry System (SMILES)
categories, and PubChem Compound Identification (PubChem
CID) were identified and used to develop a database for
screening. Throughout the development of the database,
duplicate phytochemicals were eliminated. Each
phytoconstituent’s canonical SMILES and PubChem CID were
obtained from the PubChem Database (Kim et al., 2016). Using
the BindingDB database webtool (open source license), protein
targets of the desired ligands were identified by hitting the “Find
My Compound’s Target” button under the “Special tools” section
on the left. The biological targets in BindingDB were identified by
their SMILES, which included a 70% similarity filter, considering
existing ligand molecules. Upon entering 0.7 into the similarity
column under the “Find My Compound’s Target” tab, the filter
was activated (Gilson et al., 2016). There are things that are taken
into account by this filter, like how well this existing ligand
matches the target protein’s importance, which gives a good
balance between specificity, sensitivity, similarity, and
diversity. This threshold of a 70 percent similarity filter is
sufficient and preserves the structural framework necessary for
binding sites, as evidenced by prior work (Liu et al., 2007;
Chatterjee et al., 2023). Further, proteins involved in NAFLD
were discovered through the use of the Therapeutic Target
Database (TTD) web tool with an open source license (Li
et al., 2018). By selecting the option “UniportKB/SwissProt”,
the “Primary ID” recognized the target protein by navigating to
the link underneath the “Hits (All Compounds)" segment. The
acquired “Primary ID” grants access to the UniProt database for
the selected target protein. Essentially, the UniProt database
offers gene IDs for each protein present in the molecule
responsible for NAFLD (Apweiler, 2008). With the combined
data from BindingDB and TTD, a network can be created that
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relates a variety of things, including therapeutic linkages and the
interaction between phytoconstituents and proteins. These two
databases were compatible with each other primarily because,
when applicable, there were common identifiers or attribute
names that described similar things, for instance, the term
“target proteins”. Therefore, the linkages were created on the
basis of standardized identifiers: UniProt ID, UniProt Gene, for
proteins and canonical SMILES, and PubChem CID for the
phytoconstituents.

2.2 Drug-likeness prediction and ADMET
characteristics

Phytoconstituents’ drug-likeness score was calculated using the
MolSoft webtool (http://www.molsoft.com/) open source license.
Moreover, the ADMET profiles for each phytoconstituent were
predicted using the admetSAR2.0 webtool open source license.
Additionally, to determine the ADMET profiles for each
phytoconstituent, the SMILES of each phytoconstituent were
entered in the “Draw molecule” tab. Next, on the right of the

admetSAR2.0 webtool interface, the “Predict” tab was chosen
(Yang et al., 2017). In order to check the model’s compound
validity, the authors examined its training sets for certain
characteristics. All compounds were considered acceptable if their
molecular weight and alogP were within the 99% range. Anything
that fell outside of this range or went beyond the limits of training set
was flagged. For properties like atoms, rings, H-bond acceptors, and
donors, only values higher than defined thresholds were flagged.
This approach makes it easier to spot molecules whose
physicochemical characteristics deviate significantly from the
expected ranges in the training dataset. This classification serves
as a warning, suggesting that the model’s predictions may not be as
accurate or that they may not be applicable to the domain of use that
was previously mentioned. Under the heading “In domain,” the
work highlights findings that provide significant credibility and
validation to the data provided. The bioavailability (F30%) and
solubility of the phytoconstituents were predicted using the
SwissADME web tool (licensee owner: Molecular Modeling
Group of the Swiss Institute of Bioinformatics) (http://www.
swissadme.ch). Data on bioavailability and solubility were
obtained by entering the SMILES of each phytoconstituent into
the “Enter a list of SMILES here” section on the right-hand side of
the page and then clicking the “Run” tab below (Daina et al., 2017).

2.3 Prediction of side effects

By searching the SMILES notation of each phytoconstituent, the
ADVERpred web tool (open source license) was utilised to predict
probable side effects (Ivanov et al., 2018). The elimination of molecular
charges fromphytoconstituents, when relevant, was carried out as part of
the process of anticipating any adverse implications. A general goal of de-
ionising phytoconstituents is to standardise input data, streamline
computational analyses, and possibly improve the precision and
dependability of structural feature-based toxicity predictions over
charge-related ones (Khanal et al., 2019; Filimonov et al., 2020;
Agyapong et al., 2021). The potential for adverse effects was
meticulously considered wherever the probability of action (Pa)
exceeded the likelihood of inactivity (Pi) and the Pa value was
greater than the cutoff of 0.70. ProTox-II, which is a free webtool
(https://tox-new.charite.de/protox_II) was used to learn about the
toxicity class, toxic doses (LD50 value), and partition coefficient (Log

TABLE 1 Types of compounds and their targets.

S.No. Compound Compound
type

PubChem
CID

Targeted proteins

1 Lupeol Pentacyclic
triterpenoid

259846 HSD17B1, AR, NR1H4, NR1H3, UGT2B7, FxR

2 Quercetin Flavonols 5280343 HSD17B1, HSD17B2, ADORA3, AKR1B1, AKR1C3, AR, NTRK2, MET, IGF1R, GAA,
MMP9, PPARA, ALOX12, LOX15, PIK3CG, NOX4, ChREBP, NFκB

3 Quercetin-3-
rhamnoside

Flavonols 5280459 ADRA2A, GUSB, CYP3A4, IL2, MMP9, NOX4, ALOX5, TNF, PTPN1, SREBPc, NFκB

4 Rutin Flavonoid glycoside 5280805 ADORA3, AKR1B1, ADRA2A, GUSB, CYP3A4, IL2, MMP9, NOX4, ALOX5, PTPN1,
TNF, ChREBP, FxR, NFκB

5 β -sitosterol Stigmastane sterol 222284 HSD17B1, HMGCR, PRKAB1, AR, NR1H4, GAA, NR1H3, NR1H2, FxR, SREBPc,
NFκB

FIGURE 1
Probable side effects of phytoconstituents (By ADVERpred web
tool) Pa: Probable activity, Pi: Probable inactivity. The side effects were
considered if the probable activity (Pa) is higher than probable
inactivity (Pi).
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TABLE 2 Active compounds, structures and their properties.

S.No. Phytoconstituents Structure Bioavailability (F30%) Log P Solubility (Log S) Solubility class

1 Lupeol 0.55 8.02 −6.74 Poorly soluble

2 Quercetin 0.55 1.99 −3.24 Soluble

3 Quercetin-3-rhamnoside 0.17 0.49 −2.08 Soluble
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TABLE 2 (Continued) Active compounds, structures and their properties.

S.No. Phytoconstituents Structure Bioavailability (F30%) Log P Solubility (Log S) Solubility class

4 Rutin 0.17 −1.69 −0.29 Soluble

5 β -sitosterol 0.55 8.02 −6.19 Poorly soluble

Solubility class: Log S scale.

Insoluble < −10 < Poorly soluble < −6 < Moderately soluble < −4 < Soluble < −2 Very soluble <0 Highly soluble.

Molecular structure is drawn by ChemDraw Professional 15.1 software. The Bioavailability (F30%), partition coefficient (Log P) and solubility (Log S) of the phytoconstituents were predicted by the SwissADME, web tool.
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P) (Banerjee et al., 2018). By accessing the “TOX PREDICTION” tab in
ProTox-II, entering the target SMILES under the “Canonical Smiles” tab,
and selecting the toxicity models of interest, the toxicity of the desired
phytoconstituent was determined. To predict the toxicity of the specified
phytoconstituent, click “Start Tox-Prediction” at the bottom of the page.
Although ProTox-II provides information on chemical substance
toxicity and ADMET characteristics, keep in mind that these
forecasts are based on computer models that act as a preliminary
screening tool. To confirm these predictions before making final
opinions in drug development or chemical risk evaluation,
experimental validation and additional investigations are crucial.

2.4 Pathway and network analysis

In order to identify which pathways were affected by the
phytoconstituents, the STRING (Search Tool for the Retrieval of
Interacting Genes and Proteins) database (Version: 12.0) was
searched for a set of NAFLD-related proteins along with the gene
enrichment analysis. The genes linked to the target proteins were
entered into the “List of Names” section of the STRING database.
From the “Organisms” section, Homo sapiens was chosen to
represent the protein-protein interaction (PPI) among the
genes of NAFLD that were targeted by RAF phytoconstituents
(Szklarczyk et al., 2021). To create a thorough network that
connected phytoconstituents, protein molecules, and the
identified pathways of interest, Cytoscape v3.10.0 was utilised
(Shannon et al., 2003).

2.5 Docking studies

The three-dimensional structure of phytoconstituents was retrieved
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/),
optimized, and saved using Chem3D. The target molecules for
NAFLD were retrieved from the RCSB (Research Collaboratory for
Structural Bioinformatics) (https://www.rcsb.org/) database (Rose et al.,
2017). Discovery Studio Visualizer (v21.1.0.20298) was employed to
facilitate the removal of water molecules and heteroatoms from the
protein structure (Dassault Systèmes, 2016). PyRx–Python Prescription
0.8 software (open source software) was used to predict the binding
affinity of phytoconstituents with NAFLD target receptors (Dallakyan

and Olson, 2015). The identification of active pockets within NAFLD
target receptors was accomplished through blind docking methodology.
Default settings were used for all the calculations. The ligand-protein
interaction was visualized by the discovery studio, which selected the
pose with the lowest binding energy via docking. The docking active
center was prepared with the help of the grid box function within PyRx.
The authenticity of the results generatedwas based on assessing the root-
mean-square deviation (RMSD≤2.5 Å) between the docked ligand and
the original molecule (Qin et al., 2021). PyRx assists in performing user-
friendly virtual screening by helping users with everything from data
preparation to job submission and result analysis. The user-friendly
interface of the PyRx docking wizard oversimplifies the complex drug
discovery process. The essential chemical spreadsheet-like features and
robust visualization engine of PyRxmake it a valuable tool for structure-
based drug design. PyRx is favored due to its superior docking accuracy
as compared to other freely available docking software and webtools
(MVD: 87%, Glide: 82%, Surflex: 75%, FlexX: 58%) (Kumar et al., 2017).

Molecular libraries prepared from the PubChem database
contain 2D structures generated from SMILES. The OpenBabel
tool in PyRx provides files in Structured Data Format (SDF) for
docking. PyRx visualizes results using a TVTK scene, which portrays
molecular structures as ball and stick model. Further, energy
minimization is performed for specific or all molecules with the
help of OpenBabel which has a graphical user interface (GUI)
enabling users to alter energy minimization parameters.

PyRx facilitates the conversion of specific or all molecules into
PDBQT format. The small fragments can be removed with the help
of OpenBabel.StripSalts and partial charges can be selected from
OpenBabel or PyBabel provided by MGLTools. PyRx employs
AutoDock software for performing molecular docking procedures
(Dallakyan and Olson, 2015; Qazi et al., 2021).

2.6 Molecular dynamics simulation

The binding score between protein targets and active
compounds resulting from molecular docking (docking score, 2D
and 3D plot of target protein-active compound interaction
(Figure 7)) was assessed by performing a 100 ns atomistic
molecular dynamics (MD) simulation with the help of the
SiBioLead online molecular dynamics simulation platform
(https://sibiolead.com/) (a GPU-based high-performance cluster

TABLE 3 Active compounds and their toxicity data (Data generated by ProTox-II web tool).

S.No. Phytoconstituents Toxic dose (mg/kg) (Predicted LD50) Toxicity class

1 Lupeol 2000 4

2 Quercetin 159 3

3 Quercetin-3-rhamnoside 5,000 5

4 Rutin 5,000 5

5 β -sitosterol 890 4

Toxicity classes are defined according to the globally harmonized system (GHS) of classification of labelling of chemicals. LD50 values are given in [mg/kg].

Class I: fatal if swallowed (LD50 ≤ 5).

Class II: fatal if swallowed (5 < LD50 ≤ 50).

Class III: toxic if swallowed (50 < LD50 ≤ 300).

Class IV: harmful if swallowed (300 < LD50 ≤ 2000).

Class V: may be harmful if swallowed (2000 < LD50 ≤ 5,000).

Class VI: non-toxic (LD50 > 5,000).
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system running on GROningen MAchine for Chemical Simulations
(GROMACS) software suite). All the default settings recommended
by the platform were used to perform simulations (Sharma et al.,
2021). The GROMACS (Version 2020.4) was utilized to perform
MD simulation (Abraham et al., 2015). The Pre-Processing
Parameters encompass specific settings such as Forcefield (OPLS/
AA), Water model (SPC), Box Type (Triclinic), Neutralization
method using NaCl, and a concentration set at 0.15 M or
150 mM. Energy Minimization Parameters involve utilizing the
Steepest Descents algorithm for energy minimization with a total
of 5,000 steps. Equilibration Parameters entail two types, NVT/NPT
equilibration, with a temperature set to 300 K, pressure at 1 bar, and
an equilibration time of 100 ps. The Simulation Parameters include
the Leap frog integrator for simulation spanning 100 ns, saving a

total of 5,000 frames throughout the simulation duration. The
conformational stability and feasibility of root mean square
deviation (RMSD) were analyzed in a 100 ns simulation. Also,
the residues of the protein play a vital role in achieving a stable
conformation for a protein-ligand complex, which can be gauged by
using the root mean square fluctuation (RMSF) as a parameter.
RMSF measures the average displacement of specific atoms or
groups concerning a reference structure. Higher deviations from
initial coordinates often indicate simulation non-equilibration.
Equilibrated simulations involve stable fluctuation around an
average conformation, making it reasonable to compute structure
subsets’ fluctuations relative to the simulation’s average structure via
RMSF (Martínez, 2015). The RMSF plot shows the residues that
changed significantly during the MD simulation. More oscillations
of the residues are indicated by the peaks in the plot. High values in
RMSF represent the protein’s domain’s flexibility (Ghahremanian
et al., 2022). The potential energy in the MD simulation reflects the
body’s entire intermolecular interaction energy. It also shows the
body’s stability and how interactions occur. The system is more
stable when the potential energy is lower (Levitt et al., 1995). The
radius of gyration (Rg) describes the size of a molecule, or its
compactness. Rg measures the average distance from the
particle’s center of mass, which gives information on the
molecular size and shape’s variation during the simulation. If Rg
is large, the structure is likely to be lengthy, but if Rg is small, the
form is compact. In general, the smaller Rg in MD simulation
implies a more favorable interaction scenario, which is translated
into the establishment of a stable and well-packed structure with
stronger interactions among the components (Rampogu et al.,
2022). The proteins were configured using the ‘Optimized
Potentials for Liquid Simulations’ (OPLS) all-atom (AA) force
field. Similarly, the simple point charge water model (SPC) was
used and assigned atomic partial charges to calculate the
electrostatic potentials. The addition of the active components
was done after structuring the protein, and the charge
neutralization was obtained automatically by integrating
hydrogen atoms and counterions. There are four main steps to
the MD simulation process: energy minimization, gradual heating,
equilibrium, and extended production dynamics. At the outset,
proteins and small molecules had their heavy atoms constrained,
and 5,000 steps were devoted to optimizing water molecules in an
effort to minimize energy. Subsequently, the system underwent a
controlled temperature increase from 0 to 300 K and constant
pressure of 1 bar over a period of 100 picoseconds. In all the MD
simulations, the time step was set to 2 fs. Following the heating
phase, the system was allowed to equilibrate for 100 picoseconds
under the NVT/NPT ensemble conditions. Employing both
consecutive NVT (canonical ensemble) and NPT (isothermal-
isobaric ensemble) equilibration steps was crucial for stabilizing
the system effectively. This sequential equilibration ensured
attainment of a balanced state in temperature and pressure,
crucial for the subsequent production of MD runs. Finally, a
100 nanosecond molecular dynamics simulation was conducted,
comprising a total of 5,000 steps, also under the NVT/NPT
ensemble. A longer simulation time, like the 100 ns duration was
utilized in current MD simulations, is preferred for multiple reasons:
it broadens the sampling of molecular motion, allowing exploration
of slower or infrequent processes; it enhances the likelihood of

FIGURE 2
ADMET (Absorption Distribution Metabolism Excretion and
Toxicity) profile of phytoconstituents (By admetSAR2.0 web tool) The
Heat map depicts ADMET entities of phytoconstituents computed on
the basis of probability data. Graph Pad Prism 9.0 software was
utilized to create the heat map.
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observing conformational changes, aiding in characterizing diverse
states or intermediate structures. Extended durations also facilitate
reaching a stable state, ensuring consistent system properties for
more precise behavioral insights. In essence, longer simulation times
offer a thorough examination of molecular behavior, but their
selection must consider computational constraints and align with
the study’s scientific objectives (Frenkel et al., 1996).

3 Results

3.1 NAFLD-related phytoconstituents
and proteins

Phytoconstituents of RAF were mined from the available
scientific literature. A total of 25 phytoconstituents (nine

anthocyanins, six phenolic acids, and ten flavonoids) were
identified, of which only lupeol, quercetin, quercetin-3-
rhamnoside, rutin, and β–sitosterol were predicted to
modulate the NAFLD protein molecules (Table 1). The
phytoconstituents (lupeol, quercetin, quercetin-3-rhamnoside,
rutin, and β-sitosterol) were assessed for their potential to
influence NAFLD-related protein molecules by analyzing them
in BindingDB at a 70% similarity threshold. Numerous target
proteins were identified to be influenced by these
phytoconstituents, but only those specifically associated
with the pathogenesis of NAFLD were considered, while
others were excluded from the analysis. These bioactives
structurally belonged to the flavonoids, terpenoids, or steroids
category. Target anticipation in BindingDB (70 targets) was
performed employing SMILES at a 70% similarity threshold
with recognized ligand compounds. The proteins associated

FIGURE 3
Lollipop diagram of biological processes of Gene Ontology (GO) enrichment analysis (By ShinyGO v0.741 web tool). The illustrative depiction offers
valuable insights into the dynamic regulatory landscape of biological pathways. More specifically, it focuses on the intricate web of Gene Ontology (GO)
enrichment analysis results, highlighting those pathways that are under the influence of proteins closely associatedwith NAFLD. FDR: False discovery rate.

TABLE 4 Drug-likeness property of phytoconstituents (Data generated by MolSoft web tool).

S.No. Phytoconstituents Molecular
formula

MW NHBA NHBD MolLogP MolLogS BBB
score

DLS

Log
(moles/L)

mg/L

1 Lupeol C30H50O 426.39 1 1 8.35 −6.31 0.21 3.88 −0.22

2 Quercetin C15H10O7 302.04 7 5 1.19 −2.19 1952.89 2.55 0.52

3 Quercetin-3-rhamnoside C21H20O11 448.10 11 7 0.32 −1.80 7,129.44 1.66 0.82

4 Rutin C27H30O16 610.15 16 10 −1.55 −1.75 10775.79 1.21 0.91

5 β -sitosterol C29H50O 414.39 1 1 8.45 −6.34 0.19 3.94 0.78

MW-Molecular weight, NHBA-Number of Hydrogen Bond Acceptor, NHBD-Number of Hydrogen Bond Donor, BBB-Blood-Brain Barrier, DLS-Drug-likeness Score.
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with NAFLD were identified by referencing known targets from
the TTD (50 target proteins). After analysis with Binding DB
(Binding Database), it became apparent that the bioactives
interacted with hundreds of targets implicated in a variety of
disorders. Further screening the targets for NAFLD, the RAF
bioactives were found to interact with around 30 targets
(Supplementary Material).

3.2 Predictive side effects, ADMET profile,
and drug-likeness of compounds

Foreseeable side effects to all four phytoconstituents
(excluding lupeol) are depicted in Figure 1. Nephrotoxicity
and hepatotoxicity risk profiles for anticipated substances are
depicted in Figure 1. Predictions were made for the absorption

rate of phytochemicals, their capacity to cross the blood-brain
barrier, their mutagenicity, their toxicity to fish in the water and
their affinity for binding plasma proteins. The Bioavailability
(F30%), partition coefficient (Log P) and solubility (Log S) of the
phytoconstituents were predicted by the SwissADME web tool
(Table 2). Additionally, the toxicity (LD50) and toxicity class as
per the globally harmonized system (GHS) of classification of
labelling of chemicals of five phytoconstituents (Table 3) were
predicted by ProTox-II web tool. Validation of computational
findings was achieved through the correlation of reported
experimental data on the phytoconstituents with computational
outcomes (e.g., toxicity dose (LD50 values) and toxicity class
result). The toxicity data of the lupeol phytoconstituent, as
reported experimentally (https://pubchem.ncbi.nlm.nih.gov/
compound/259846#section=Disposal-Methods; https://echa.
europa.eu/information-on-chemicals/cl-inventory-database/-/discli/

FIGURE 4
(Continued).

Frontiers in Pharmacology frontiersin.org10

Jangwan et al. 10.3389/fphar.2024.1366279

https://pubchem.ncbi.nlm.nih.gov/compound/259846#section=Disposal-Methods
https://pubchem.ncbi.nlm.nih.gov/compound/259846#section=Disposal-Methods
https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/113575
https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/113575
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1366279


details/113575HYPERLINK "https://echa.europa.eu/information-
on-chemicals/cl-inventory-database/-/discli/details/113575" \o "https://
echa.europa.eu/information-on-chemicals/cl-inventory-database/-/
discli/details/113575"https://echa.europa.eu/information-on-chemicals/
cl-inventory-database/-/discli/details/113575), align with the
predicted LD50 (2000 mg/kg) and toxicity class (Class
4 according to GHS classification). Similarly, the predicted LD50

of quercetin (159 mg/kg), rutin (5,000 mg/kg), and β -sitosterol
(890 mg/kg) phytoconstituents is in accordance with the reported
toxicity data of quercetin (Sullivan et al., 1951; http://www.t3db.ca/
toxins/T3D4758), rutin [(Lambev et al., 1980; https://echa.europa.
eu/information-on-chemicals/cl-inventory-database/-/discli/details/
54624) and β -sitosterol (Paniagua-Pérez et al., 2005)].

The ADMET patterns of particular phytoconstituents are
depicted in the heatmap (Figure 2). Likewise, forecasts for
druglikeness and Blood-Brain Barrier (BBB) scores were made
for all five phytoconstituents, where rutin and β-sitosterol
achieved the highest Drug Likeness Scores (DLS) (Table 4).

3.3 Pathway and network analysis

NAFLD-related proteins were searched for in STRING. The
KEGG database was analysed to uncover the NAFLD-related
pathways. Gene set evaluation revealed 30 pathways that are
regulated by NAFLD-associated proteins (Figure 3). Among
them, “fatty acid biosynthetic process” was identified to score the
highest fold enrichment with “cellular response to chemical
stimulus” and “regulation of biological quality” having the
highest count of gene sets (Figure 3).

Cytoscape v3.10.0 was harnessed to intricately craft the network,
interweaving RAF phytoconstituents, protein targets, genes, and the
pathways that were identified (Figure 4). One hundred seven nodes
spanning forty-three pathways, twenty-nine genes, thirty targets,
and five phytoconstituents were included in the ultimate network.
The protein-protein interaction (PPI) was represented by the
STRING database (Figure 5). After constructing the PPI network,
the key regulatory genes employing the CytoHubba plugin of

FIGURE 4
(Continued).
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Cytoscape v3.10.0 were assessed. The top 10 NAFLD genes
(Figure 6) were selected (TNFα, PPARα (Peroxisome
Proliferator-Activated Receptor Alpha), CYP3A4 (Cytochrome
P450 3A4), MMP9 (Matrix Metalloproteinase-9), AR (Androgen
Receptor), HMGCR (3-hydroxy-3-methyl-glutaryl-coenzyme A
reductase), PTPN1 (Protein Tyrosine Phosphatase Non-Receptor
Type 1), HSD17B1 (17β-Hydroxysteroid Dehydrogenase), AKR1C3
(Aldo-Keto Reductase Family 1 Member C3), and UGT2B7 (UDP
Glucuronosyltransferase Family 2 Member B)) based on degree
method score (Table 5).

3.4 Docking studies

Through Network Pharmacology (CytoHubba plugin), the top
10 NAFLD proteins exhibiting the greatest interaction with RAF

phytoconstituents were identified. In addition, based on a literature
review, seven proteins with a substantial role in NAFLD and also
having a positive interaction with the RAF were incorporated into
the research.

PyRx served as a pivotal tool for the prognostication of
binding affinities between the bioactive constituents of RAF
and their respective target proteins. The RAF bioactives
(Lupeol, Quercetin, Quercetin-3-rhamnoside, Rutin and β
-sitosterol) were docked with 17 common target proteins of
NAFLD whose binding affinity results are depicted in Table 6.
Binding energy is a crucial parameter in molecular docking
studies as it quantifies the strength of interaction between a
protein receptor and a ligand (small molecule). Molecular
docking predicts the binding pose and affinity of a ligand
within a protein’s binding site and estimates the binding
energy associated with this interaction (Pantsar and Poso,

FIGURE 4
(Continued). A graphical depiction of the connections and interactions among phytoconstituents, targets, genes, and pathways in a network format
(By Cytoscape v3.10.0 software) (A) Network representation of interaction between phytoconstituents and targets (B) Network representation of
interaction between targets and genes (C) Network representation of interaction between genes and pathways. Orange color represents active
phytoconstituents of RAF against NAFLD, pink color represents key targets/protein of NAFLD modulated by RAF phytoconstituents, green color
depicts genes of key targets/protein of NAFLD and yellow color depicts pathways mediated by genes involved in NAFLD.
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2018). Out of five phytoconstituent of RAF, rutin exhibited the
overall lowest binding energy in all 17 target proteins of NAFLD
with the lowest binding energy of −11.0 kcal/mol for AKR1C3
(RMSD: 1.934 Å) (Figure 7A) and CYP3A4 (RMSD: 2.165 Å)
(Figure 7B) target proteins. Figure 7A1 illustrates the interaction
between Rutin (Phytoconstituent) and AKR1C3 (Target protein).
Furthermore, Figure 7A2 presents a 2D plot illustrating the
Rutin- AKR1C3 interaction. The amino acid residues involved
in this interaction comprise GLN (B:222), TYR (B55), TYR (B:
216), ASN (B; 167), TRP (B; 227), PHE (B:306), GLY (B; 22). The
intermolecular interactions identified encompass conventional
hydrogen bonds (depicted in green), pi-pi stacked (shown in
pink), carbon hydrogen bonds (displayed in grey), pi-pi T-shaped
(presented in pink), and pi-sigma (also illustrated in pink).

Figure 7B1 showcases the interaction between Rutin
(Phytoconstituent) and CYP3A4 (Target protein).
Additionally, Figure 7B2 provides a 2D plot illustrating the
Rutin-CYP3A4 interaction. The amino acid residues
participating in this interaction include ARG (A:440), ARG
(A:212), ARG (A:105), ARG (372), GLU (A:374), SER (A:119),
PHE (A:215), and ARG (A:106). The identified intermolecular
interactions involve conventional hydrogen bonds (illustrated in
green), pi-pi stacked (depicted in pink), carbon hydrogen bonds
(displayed in grey), pi-anion and pi-cation (presented in yellow),
and pi-alkyl interactions. The inference is based on the
observation that among all the screened phytoconstituents
across 17 target proteins associated with NAFLD (Table 6),
rutin (the ligand) exhibited the lowest average binding affinity

FIGURE 5
Protein-protein interaction (PPI) among genes of NAFLD targeted by RAF phytoconstituents (By STRING database webtool) The illustration portrays
the interaction among proteins associated with NAFLD, as represented in the STRING database. This comprehensive depiction has been derived from
data sourced from the STRING database, which is renowned for its ability to unravel complex protein-protein interactions.
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when compared to the others (Supplementary Material). In
molecular docking studies, a low binding energy signifies a
stronger interaction between a ligand and its receptor. A lower
(more negative) binding energy indicates a more stable and
favourable binding between the ligand and the protein
receptor. This implies that the ligand has a higher affinity for

the protein’s binding site (Meng et al., 2011; Pantsar and
Poso, 2018).

3.5 Molecular dynamics simulation

Molecular dynamics simulations were employed to gain a deeper
understanding of the stability of protein-ligand complexes. In this
investigation, AKR1C3 (6gxk)-Rutin and CYP3A4 (5a1r)-Rutin
complexes were chosen based on docking results and subjected to
a 100 ns molecular dynamics simulation. This extended analysis
aimed to assess the movement, path, structural characteristics,
binding affinity, and any changes in the conformation of
these molecules.

The Root Mean Square Deviation (RMSD) serves as a valuable
metric for evaluating the stability of protein and ligand
conformations, representing the degree of atom position
deviation from their initial states. A reduced RMSD signifies
enhanced conformational stability, and the alterations in RMSD
values for these complexes were examined. As shown in Figure 8A,
the RMSD of the AKR1C3 (6gxk)-Rutin complex fluctuated in the
early stage and stabilized later. Although the RMSD trajectory of the
CYP3A4 (5a1r)-Rutin complex fluctuated, it eventually became
stable (Figure 8E). Based on the RMSD values for both the
ligand and the binding pocket, it can be inferred that the active

FIGURE 6
Top ten core regulatory genes of NAFLD computed by degree method (By Cytoscape v3.10.0 software) The straight lines in the illustration indicate
the interaction among ten genes.

TABLE 5 Top 10 genes ranked by degree method (By CytoHubba plugin
software).

S.No. Gene name Score

1 TNFα 185

2 PPARα 181

3 CYP3A4 169

4 MMP9 151

5 AR 138

6 HMGCR 114

7 PTPN1 107

8 HSD17B1 96

9 AKR1C3 74

10 UGT2B7 60
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sites of small molecules and proteins maintained a state of stability.
This suggests that when the small molecule ligand binds to the
protein, the protein’s conformation remains relatively unchanged,
indicating a stable binding interaction. Reaching the conclusion that
the protein’s conformation remains relatively unchanged upon
binding of the small molecule ligand, suggesting a stable binding
interaction, involves various observations and analyses in molecular
dynamics simulations which includes analyzing ligand-protein
interactions (Figure 7), radius of gyration (Figures 8D, 8H),
energy landscape and potential energy surface (Figures 8C, 8G),
RMSD (Figures 8A, 8E) and RMSF (Figures 8B, 8F). Proteins that
undergo only small structural changes when they bind ligands,
ensuring a stable binding relationship. This provides more
evidence that the binding event takes place with little to no
change to the protein’s overall structure. It is indicated that the
binding is accommodated within the current protein structure
without major modifications when a protein either keeps its
natural structure or goes through little changes following ligand
binding. The fact that the protein’s shape does not change much
after binding suggests that the relationship is stable and that the
ligand fits well with the protein’s structure without making big
changes to it. The results show that the ligands remained stable
inside the cavities throughout the simulation, just as the molecular
docking poses predicted. No noticeable impact of temperature or
pressure on the conformation of the structure was identified.

The RMSF analysis focuses on certain regions of proteins that
exhibit structural deviations from their average, a feature frequently

impacted by ligand interactions. The structural changes that occur
naturally result in mobility patterns that will ultimately determine
ligand interaction (Martínez, 2015). The mobility patterns and
changes in individual residues indicate the strength of flexibility.
The higher levels of RMSF in the residues and residue groups
indicate a high probability of ligand interaction because the
residues are more flexible. In such a scenario, the residues are
likely to change their pattern to accommodate the ligand making
them more likely to resonate with the ligand molecules. The higher
the RMSF, the greater the mobility or conformation changes in the
residues. The increased mobility will lead to effective binding
because the residues have a better chance of accommodating, and
ligands may connect the residues. The lower levels of RMSF in the
residues indicate less flexibility. The reduced flexibility will result in
reduced mobility or adaptability. Their mobility can be minimized,
leading to their inability to attach to the ligand. Figures 8B, F portray
the RMSF of the AKR1C3 (6gxk)-Rutin complex and CYP3A4
(5a1r)-Rutin complex respectively. The area around the active
site of the residues depicts marked variation leading to the
prominent peaks in the residue. The fluctuating peaks outside the
active site of the residues highlight an increased interaction potential
indicating that the ligands successfully adjusted to the binding
region of the target protein. The large peaks of increased
fluctuations beyond the active sites of residues show that the
interaction potential is high suggesting ligands versatility in their
interaction with the protein’s binding pocket. The increased
fluctuations outside the active site indicate the ability of residues

TABLE 6 Binding affinity of potential active compounds in Rhododendron arboreum flower and their key target proteins involved in NAFLD.

Target protein Target proteins (PDB ID) Phytoconstituents
Binding affinity (kcal/mol)

Lupeol Quercetin Quercetin-3-rhamnoside Rutin β -sitosterol

TNFα 7kp9 −9.7 −8.8 −8.6 −8.3 −8.3

PPARα 6kxx −8.3 −8.7 −7.0 −7.1 −7.1

CYP3A4 5a1r −8.7 −8.7 −7.8 −11 −9.6

MMP9 1itv −8.7 −7.7 −8.2 −9.4 −8.5

AR 1e3g −8.0 −9.1 −8.4 −7.9 −7.8

HMGCR 1dq8 −8.8 −8.4 −8.7 −8.7 −7.8

FXR 3gd2 −7.6 −9.3 −8.9 −10.0 −9.0

HSD17B1 1a27 −9.1 −10.2 −9.8 −9.4 −8.1

AKR1C3 6gxk −11.9 −9.4 −10.2 −11 −10.9

UGT2B7 2o6l −9.4 −9.7 −8.4 −9.7 −7.7

PKB 1q61 −7.7 −9.0 −8.3 −7.6 −7.4

NFK-B 1nfk −7.9 −6.8 −7.8 −7.2 −6.8

mTOR 4drh −9.5 −7.9 −8.7 −9.1 −8.4

PI3K 1e8y −9.6 −8.4 −9.4 −10.7 −8.8

HO-1 1s13 −8.2 −7.9 −8.2 −8.5 −7.7

PPARδ 1gwx −8.3 −8.0 −8.2 −7.4 −8.5

NRF-2 2lz1 −8.1 −6.4 −6.1 −7.9 −6.4
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to interact with ligands. These interactions suggest that these
residues have an affinity with the ligands and accompany them
into the protein structure, even though they are not directly involved
in the main binding site as these interactions are beyond the active
sites of the residues. By fitting properly into the larger protein
binding pocket, ligands were able to connect with more residues that
were outside the active site (Sharma et al., 2021). The potential
energy values ranged from −955545.375 kJ/mol to −960189.625 kJ/
mol for AKR1C3 and AKR1C3-Rutin, and from −945826.875 kJ/
mol to −950006.0625 kJ/mol, respectively (Figure 8C). Figure 8G
illustrates that the values for CYP3A4 and CYP3A4-Rutin ranged
from −567295.125 kJ/mol to −568807.875 kJ/mol
and −573403.1875 kJ/mol to −570852.9375 kJ/mol, respectively.
The fluctuations that have been observed can be interpreted as
signs of changes in the structure, stability, or interactions of the
system throughout the simulation. Figure 8D depicts the Rg values
for AKR1C3 and AKR1C3-Rutin, which varied between 2.96 and
5.73 nm and 2.96 and 3.05 nm, respectively. Similarly, the Rg values
for CYP3A4 and CYP3A4-Rutin varied between 2.27 and 2.31 nm
and 2.27 and 2.30 nm, respectively (Figure 8H). The calculated
values during simulation are used to highlight protein compactness.

4 Discussion

NAFLD is a global health problem as it is a chronic liver disease
in clinical practice (Mantovani and Dalbeni, 2021). The comorbidity
of diabetes and obesity makes it a globally more worrying public
health concern (Pouwels et al., 2022). The therapy for NAFLD
should prioritize restoring normal hepatic activities along with
reducing insulin resistance, which is a significant contributor to
the disease’s development.

Network pharmacology and other bioinformatics strategies can
be used as initial monitoring tools for traditional medications in
managing NAFLD. Andrew L. Hopkins predicted in 2007 a
paradigm shift in the pharmaceutical development field with the
emergence of the “network pharmacology” concept (Hopkins, 2007;
Hopkins, 2008). Considerable effort has been directed to the
network pharmacology application in order to elucidate the
molecular mechanisms by which traditional medications function
in the treatment of complex disorders (Khanal et al., 2019).

Rhododendron arboreum has a role in hepatic marker enzyme
pathways, inflammation, and oxidative stress (Srivastava, 2012;
Verma et al., 2020). The precise molecular mechanism by which
R. arboreum helps in NAFLD management remains obscure. As a
consequence, the present study utilizes a network pharmacology
approach to infer the probable molecular mechanisms by which R.
arboreum ameliorates NAFLD. Due to the absence of standardized
dosages, potential adverse effects, pharmacokinetic profiles of
bioactive components, and toxicity data, additional research is
required to validate the effectiveness of Ayurvedic formulations.
Due to these shortcomings, Ayurveda is considered
complementary and alternative medicine and not a major
healthcare system globally. To increase Ayurveda’s universal
acknowledgment, the integration of Ayurveda with evidence-

FIGURE 7
(A) Docking patterns of AKR1C3 target protein-Rutin (A1) Rutin-
AKR1C3, (A2) 2D plot of Rutin-AKR1C3 interaction, (A3) 3D plot of
Rutin-AKR1C3 interaction (B) Docking patterns of CYP3A4 target
protein-Rutin (B1) Rutin-CYP3A4, (B2) 2D plot of Rutin-CYP3A4
interaction, (B3) 2D plot of Rutin-CYP3A4 interaction.
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based scientific approaches must be emphasised. Therefore, the
purpose of the proposed study is to screen a target-specific
standardised herbal hepatoprotective bioactive against NAFLD
from an activity-guided RAF selected by network pharmacology
and molecular docking studies.

FIGURE 8
(Continued).

FIGURE 8
(Continued). Root-mean-square deviation (RMSD), Root-mean-
square fluctuation (RMSF), Potential energy (GROMACS Energies) and
Radius of gyration (total and around axes) plots during molecular
dynamics simulation. (A) The RMSDof AKR1C3 (6gxk)-Rutin Rutin
Ligand displays RMSD graph for Phytoconstituent (Rutin) AKR1C3-
Rutin complex displays RMSD graph for target protein (AKR1C3) with
ligand (Rutin)AKR1C3 Pocket displays RMSD graph for target protein
(AKR1C3) without ligand (B) The RMSF of AKR1C3 (6gxk)-Rutin

(Continued )
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Triterpenoids, flavonoids, steroids, glycosides, and phenols were
the major bioactive compounds of the RAF, which competed for a
decisive role in influencing NAFLD by influencing HO-1 (Heme
Oxygenase-1), NRF-2 (Nuclear Factor Erythroid 2-Related Factor
2), PI3K (Phosphoinositide 3-Kinase), HSD17B1, FxR (Farnesoid X
Receptor), PPARα, MMP9, TNFα, PPARδ (Peroxisome
Proliferator-Activated Receptor Delta), and numerous other
genes, as shown in Table 1. The finding highlights that out of
twenty-five bioactives in RAF only five were found to significantly
modulate NAFLD-associated genes which are highlighted
in Table 1.

Employing Cytoscape v3.10.0, a network of connections among
phytoconstituents, their targets, genes, and putative pathways was
designed (Figure 4). The finding suggests that terpenes, steroids,
phenols, and flavonoids are all viable phytoconstituents that can
interact with a wide variety of protein targets critical to the
pathogenesis of NAFLD. Quercetin (24 connections) and rutin
(15 connections), in particular, showed promise as
pharmacotherapeutic agents for NAFLD because they selectively
targeted maximum protein molecules within the network which is
being interpreted from Figure 4.

Within the realm of NAFLD pharmacotherapy, focusing on lipid
metabolic processes, particularly fatty acid biosynthesis, and targeting
insulin receptors has been identified as a prominent strategy (Eslam
et al., 2020a; Eslam et al., 2020b; Mantovani and Dalbeni, 2021). The
present study predicts rutin for its maximum drug-likeness score (DLS)
and lupeol cannot be considered as the drug due to its negative DLS
(Table 4). Further the probability of rutin to cross the blood-brain
barrier is minimum (Table 4) which suggest rutin has poor
bioavailability (Table 2). Evidence hints that rutin may positively
influence hepatic metabolism in NAFLD by acting on lipid
metabolic processes, fatty acid biosynthesis, and insulin receptors,
and by modulating hepatic homeostasis through participation in
hepatic marker enzymes, lipid biosynthesis, inflammation, oxidative
stress, and the maintenance of the immune response.

Toxicity of the phytoconstituents was predicted (Table 3) which
revealed that almost all the bioactives are safe and toxicity classes are
assigned to each phytoconstituents as per GHS classification of
labelling of chemicals. In general, quercetin is classified as belonging
to the most toxic category (Class 3), where a lower toxicity class
value indicates a greater degree of toxicity for the chemical/
bioactive substance.

The impacts of the RAF on NAFLD were attributed to several
biological processes according to GO (Gene Ontology) enrichment
analysis. These processes included the fatty acid biosynthetic
process, fatty acid metabolism, lipid metabolism, regulation of
cell death, response to an organic substance, cellular response to
chemical stimulus, regulation of stress response, and regulation of
biological quality. Among them, “fatty acid biosynthetic process”
was identified to score the highest fold enrichment with “cellular
response to chemical stimulus” and “regulation of biological quality”
having the highest count of gene sets (Figure 3). Higher the fold
enrichment; more is the contribution of the pathway in disease
pathogenesis. Therefore, the fatty acid biosynthetic process is the
major contributor to the NAFLD pathogenesis. Fatty acids are
notably shipped to the liver from the bloodstream through the
lipolysis of triglycerides in adipose tissue. This process is under the
influence of insulin, which regulates adipocyte activity. Insulin
resistance, characterized by impaired post-receptor signaling in
adipose tissue, plays a significant role in the development of
NAFLD/NASH (Non-Alcoholic Steatohepatitis). It leads to
dysregulated lipolysis, resulting in an excessive influx of fatty
acids to the liver (Lomonaco et al., 2012). De novo lipogenesis
(DNL) from glucose and fructose is the next most important source
of fatty acids. A study using stable isotopes showed that the
heightened hepatic lipid content observed in NAFLD patients is
primarily a result of increased DNL (Donnelly et al.,. 2005).

STRING database was used to depict interaction among NAFLD
target protein/genes (Figure 5) and CytoHubba plugin of Cytoscape
v3.10.0 was used to analyze the core regulatory genes which further
leads to the selection of the top ten genes (Table 5) of NAFLD
influenced by RAF based on the degree method (Figure 6).

Finally, molecular docking was used to evaluate seventeen key
target proteins (TNFα, PPARα, CYP3A4, MMP9, AR, HMGCR,
FXR, HSD17B1, AKR1C3, UGT2B7, PKB (Protein Kinase B), NFK-
B (Nuclear Factor Kappa B), mTOR (Mammalian Target of
Rapamycin), PI3K, HO-1, PPARδ and NRF-2) and active
compounds, including lupeol, quercetin, quercetin-3-rhamnoside,
rutin, β -sitosterol, acquired from available literature, scientific
journals and traditional medicinal books. The binding
affinities reported in the docking findings ranged
from −6.1 to −11.9 kcal/mol, implying that all of the targets
have robust docking potential with bioactive compounds
(Table 6). Binding energy, a pivotal parameter in molecular
docking, quantifies the interaction strength between a protein
receptor and a ligand. This energy estimation predicts the
ligand’s binding pose and affinity within the protein’s site. In
these studies, a lower binding energy indicates a more robust
interaction. A decrease in binding energy signifies a more stable
and favorable ligand-protein binding, indicating higher ligand
affinity for the protein’s binding site (Meng et al., 2011; Pantsar
and Poso, 2018). Rutin exhibited the overall lowest binding
energy in all 17 target proteins of NAFLD with the lowest

FIGURE 8 (Continued)

AKR1C3 portrays RMSF graph for target protein (AKR1C3) without
ligand AKR1C3-Rutin portrays RMSF graph for target protein (AKR1C3)
with ligand (Rutin) (C) Potential energy (GROMACS Energies) of
AKR1C3 (6gxk)-Rutin AKR1C3 portrays Potential energy graph for
target protein (AKR1C3) without ligand AKR1C3-Rutin portrays
Potential energy graph for target protein (AKR1C3) with ligand (Rutin)
(D) Radius of gyration (total and around axes) of AKR1C3 (6gxk)-Rutin
AKR1C3 portrays Radius of gyration graph for target protein (AKR1C3)
without ligand AKR1C3-Rutin portrays Radius of gyration graph for
target protein (AKR1C3) with ligand (Rutin) (E) The RMSD of CYP3A4
(5a1r)-Rutin Rutin Ligand depicts RMSD graph for Phytoconstituent
(Rutin) CYP3A4-Rutin complex depicts RMSD graph for target protein
(CYP3A4) with ligand (Rutin) CYP3A4 Pocket depicts RMSD graph for
target protein (CYP3A4) without ligand (F) The RMSF of CYP3A4 (5a1r)-
Rutin CYP3A4 represent RMSF graph for target protein (AKR1C3)
without ligand CYP3A4-Rutin Complex represent RMSF graph for
target protein (AKR1C3) with ligand (Rutin) (G) Potential energy
(GROMACS Energies) of CYP3A4 (5a1r)-Rutin CYP3A4 portrays
Potential energy graph for target protein (CYP3A4) without ligand
CYP3A4 (5a1r)-Rutin portrays Potential energy graph for target protein
(CYP3A4) with ligand (Rutin) (H) Radius of gyration (total and around
axes) of CYP3A4 (5a1r)-Rutin CYP3A4 portrays Radius of gyration
graph for target protein (CYP3A4) without ligand CYP3A4-Rutin
portrays Radius of gyration graph for target protein (CYP3A4) with
ligand (Rutin).
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binding energy of −11.0 kcal/mol for both AKR1C3 (Figure 7A)
and CYP3A4 target proteins (Figure 7B). Molecular dynamics
simulations were employed to delve deeper into the interactions
between AKR1C3 (6gxk)-Rutin and CYP3A4 (5a1r)-Rutin. The
protein-ligand complexes displayed remarkable stability at 300 K
and 1 bar, and Rutin exhibited strong binding affinity with these
targets, suggesting its potential role in the therapeutic benefits of
RAF for NAFLD treatment (Figure 8). The relationship between
stability and binding affinity lies in their correlation within
protein-ligand complexes. Stability in this context refers to
how the protein-ligand complex is structurally stable as well
as balanced under specified temperature and pressure. The
binding affinity refers to the strength with which the protein
interacts with the ligand. Therefore, the strong binding affinity of
Rutin against the target proteins (AKR1C3 and CYP3A4)
correlates with the remarkable stability of the protein-ligand
complex under specified temperature and pressure. This can
be an indicator of rutin as a possible and efficient drug
candidate for NAFLD treatment. Simulations were made
reliable and robust as a result of a careful approach. Many
simulations of the same system were conducted to ensure
multiple verifications and convergence systematically. This
comprehensive approach to validation ensures that the
computational outcomes align with experimental observations
and further provides credibility to the obtained outcomes,
enabling their reliability and reproducibility. The molecular
structures computed during simulation were obtained from
the PDB format, which allows replication and cross-validation
against available data. This approach validates the accuracy and
reliability of computational models to a certain extent.
Additionally, Discovery Studio was employed to examine the
target protein and ligand structures for any sort of anomaly, such
as absent or incomplete residues, thereby enabling a
comprehensive and accurate molecular structure ranking. The
above-mentioned validation process ensures the reliability and
reproducibility of the simulation’s outcomes.

Following only the foot prints of computational methods for
MD simulations has several constraints, such as being a model-
based computational method they may oversimplify complex
biological systems neglecting certain interactions within the
system which may potentially lead to inaccuracies. The MD
simulation computes its values based on force fields that may
not be able to take into account all molecular interactions within
biological systems. Further, the scope of simulations especially in
the case of larger or more intricate systems is limited by
computational demands and time constraints (although 100 ns
of simulation time was employed in the current research). The
current simulation study has certain limitations for experimental
validation due to the absence of positive controls like reference
compounds such as known inhibitors, agonists, etc., negative
controls for the apo structure, and enzymatic assays. Addressing
these limitations through further research would significantly
contribute to filling existing research gaps and enhancing the
comprehensiveness of future studies. Integrating computational
simulations with experimental validation remains crucial for a
more comprehensive and reliable understanding of molecular
dynamics in biological systems.

Rutin, uncovered as a key flavonoid glycoside in RAF which
interacts with a significant number of protein molecules (number
of protein molecules interpreted from Cytoscape software and by
molecular docking binding energy) that are implicated in the
pathogenesis of NAFLD; however, its bioavailability (BBB score)
is a concern that can be addressed by modifying the
pharmaceutical formulation. From the perspective of network
pharmacology, the present study specifies the active compounds,
the likely targets, genes and pathways that govern the treatment
of NAFLD, thus offering a theoretical foundation for future
experimental research. Keeping in mind the constraints of
network pharmacology, data mining is the only way to
determine the fundamental pharmacological mechanisms for
the treatment of NAFLD. Currently, network pharmacology
utilises various databases for bioactive mining. Numerous
information sources and experimental data may lead to
discrepancies in databases, despite their curation.
Nevertheless, conducting in vitro experiments is essential to
validate these hypotheses.

5 Conclusion

In summary, this study represents the inaugural application of
bioinformatics techniques, encompassing ADMET profiling,
network pharmacology, and molecular docking, for a
comprehensive investigation into the pharmacological and
molecular mechanisms underlying RAF in NAFLD. The
aforementioned bioinformatics and computational analyses
suggested that lupeol, quercetin, quercetin-3-rhamnoside, rutin,
and β-sitosterol may be the principal bioactive compounds of the
RAF that elicit anti-NAFLD effects. In addition, RAF may
ameliorate NAFLD by minimizing pathologic damage,
inflammatory responses, and oxidative stress via multiple
pathways, such as PI3K, HO-1 and NRF-2. The present study
centred on the multi-component and multi-pathway architecture
of the RAF and its mechanism of action. These results are
anticipated to guide the clinical implementation of RAF and its
further development for the therapeutic management of NAFLD. In
addition, the fundamental limitation of ayurvedic consensus was a
lack of toxicity data, side effects, and pharmacokinetic profile, all of
which are meticulously examined and enumerated in this study with
the aid of bioinformatics tools, which strengthens the validity of
results. Nevertheless, this study has limitations, as phytochemicals
and drugs that interact with multiple targets may have reduced
selectivity and specificity. In the current research study, multiple
target proteins are modulated by the majority of phytochemicals,
resulting in either therapeutic or undesirable side effects. The
presence of numerous targets contributes in part to the
substantial failure rates and time and money wasted in the drug
discovery process. As a result, evaluating the selectivity of
compounds becomes a critical aspect of drug development and
repurposing efforts. Also, additional pharmacological and clinical
research is required to confirm the findings. This strategy lays a
cornerstone for future research on the protective mechanisms of the
RAF against NAFLD and the potential uses of network
pharmacology in drug discovery.
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Glossary

ADMET Absorption Distribution Metabolism Excretion and Toxicity

AKR1C3 Aldo-KetoReductase Family 1 Member C3

AR Androgen Receptor

BBB Blood Brain Barrier

BindingDB Binding Database

CYP3A4 Cytochrome P450 3A4

DLS Drug-Likeness Score

FXR Farnesoid X Receptor

GHS Globally Harmonized System of Classification and Labelling of
Chemicals

GO Gene Ontology

HMGCR 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase

HO-1 Heme Oxygenase-1

HSD17B1 17β-Hydroxysteroid Dehydrogenase 1

KEGG Kyoto Encyclopedia of Genes and Genomes

LD50 Lethal Dose

MMP9 Matrix Metalloproteinase-9

MTOR Mammalian Target of Rapamycin

NAFLD Non-Alcoholic Fatty Liver Disease

NASH Non-Alcoholic Steatohepatitis

NFK-B Nuclear Factor Kappa B

NRF-2 Nuclear Factor Erythroid 2-Related Factor 2

Pa Probable activity

Pi Probable inactivity

PI3K Phosphoinositide 3-Kinase

PKB Protein Kinase B

PPARα Peroxisome Proliferator-Activated Receptor Alpha

PPARδ Peroxisome Proliferator-Activated Receptor Delta

PTPN1 Protein Tyrosine Phosphatase Non-Receptor Type 1

PubChem
CID

PubChem Compound Identification

RCSB Research Collaboratory for Structural Bioinformatics

SMILES Simplified Molecular-Input Line-Entry System

STRING Search Tool for the Retrieval of Interacting Genes/Proteins

TNFα Tumor Necrosis Factor Alpha

UGT2B7 UDP Glucuronosyltransferase Family 2 Member B7
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