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Intra-Target Microdosing (ITM), integral to Phase 0 clinical studies, offers a novel
approach in drug development, effectively bridging the gap between preclinical
and clinical phases. This methodology is especially relevant in streamlining early
drug development stages. Our research utilized a Physiologically Based
Pharmacokinetic (PBPK) model and Monte Carlo simulations to examine
factors influencing the effectiveness of ITM in achieving target engagement.
The study revealed that ITM is capable of engaging targets at levels akin to
systemically administered therapeutic doses for specific compounds. However,
we also observed a notable decrease in the probability of success when the
predicted therapeutic dose exceeds 10 mg. Additionally, our findings identified
several critical factors affecting the success of ITM. These encompass both lower
dissociation constants, higher systemic clearance and an optimum abundance of
receptors in the target organ. Target tissues characterized by relatively low blood
flow rates and high drug clearance capacities were deemed more conducive to
successful ITM. These insights emphasize the necessity of taking into account
each drug’s unique pharmacokinetic and pharmacodynamic properties, along
with the physiological characteristics of the target tissue, in determining the
suitability of ITM.

KEYWORDS

phase 0, PBPK, modeling and simulation, pharmacokinetics, target engagement,
microdose study

Introduction

Microdosing, a component of Phase 0 studies, is a technique that can be used in the early
stages of human drug development. On entering the systemic circulation this microdose is
typically too small to cause any therapeutic effect or side effects, but is large enough to help
characterize its metabolism and pharmacokinetics, using very highly sensitive analytical
techniques (Sugiyama and Yamashita, 2011; Lappin et al., 2013; Burt et al., 2016; Burt et al.,
2020). Microdoses can be administered and analyzed prior to Phase 1, potentially
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conserving valuable resources and facilitating decision making.
According to Lappin et al. (Lappin et al., 2013), the linear
scalability of microdoses to therapeutic doses has been observed
in 27 out of 35 microdose trials, and is particularly attractive when
alternative methods of preclinical prediction are considered
problematic. The permitted dose of the human microdose is
defined by regulation. It is: “Less than 1/100th of the dose (scaled
on a mg/kg body weight basis) calculated to yield a pharmacological
effect of the test substance based on primary pharmacodynamic data
obtained from in vitro or in vivo non-clinical studies, with a
maximum (adult) dose of up to 100 micrograms.” (International
Conference on Harmonization, 2009)

Instead of giving a microdose of a new chemical entity
systemically, Intra-Target Microdosing (ITM) involves
administering a microdose directly into the specific area or
“target” in the body where the drug is intended to act, via an
incoming artery or direct administration into the target tissue (Burt
et al., 2020). By this means it has the potential to generate local
therapeutically active concentrations, which can be tracked using
biomarkers. In general, ITM can be utilized to obtain very early
evidence of in-human target engagement. As it implicitly takes
advantage of selective distribution of a drug by means of route of
administration ITM is not dependent per se on the drug or the target
and, even in the case of a target being expressed in multiple tissues,
so long as the particular tissue exposed to drug contains enough
target to elicit a measurable response, this suffices.

We believe we can further extend the utility of ITM by focusing
on a drug’s pharmacokinetic profile, together with receptor-drug
kinetic data, to generate evidence to support the desirable systemic
dose as part of human dose prediction. This early insight can be
invaluable, by significantly curtailing the risks associated with
subsequent stages, most notably the Phase II study. The
alternative and traditional approach is to place significant
reliance on the translational efficacy of drugs gained from
preclinical species to human, which also carries significant
inherent risks.

Intra-Target Microdosing (ITM), instead of giving a microdose
of a new medicine systemically, involves administering a microdose
directly to the specific area or “target” in the body where the drug is
intended to act, via an incoming artery or direct administration into
the target tissue (Burt et al., 2020). There have been various clinical
studies using ITM focusing on comparing in situ drug effects of
various compounds, particularly in oncology (Bhagavatula et al.,
2021; Derry et al., 2023; Peruzzi et al., 2023). In general, ITM can be
utilized to obtain evidence of in human target engagement of the
investigating compound prior to phase 1 clinical trial.

Drug discovery and development are iterative processes. At the
very outset, when a molecular target is identified, we already possess
various independent physiologic knowledge, such as the
approximate volume of the target tissue into which drug needs to
distribute, as well as the relevant blood flow rate. Subsequent in vitro
screenings offer insights into the feasible target affinity of various
chemical series, as well as likely metabolic and transporter features.
Once a candidate drug’s target profile is defined so can its
approximate therapeutic dose, which subsequently informs the
ITM dose. At each stage, modeling and simulation allows an
estimate of the likelihood of observing the desired target
engagement in human via ITM (defined as “ITM success”), so

that it may guide the drug development team whether to
consider including this step in the drug development plan.

By the time compounds are shortlisted for advancement, there’s
an accumulation of important data: human therapeutic dose
estimates, predicted in vivo PK data from preclinical species,
human in vitro metabolic and transporter data, details on target
tissue drug distribution, and correlations between exposure and
target engagement biomarkers. With these data, constructing a
PBPK-PD model akin to our simulation study becomes feasible,
allowing for reasonably precise predictions regarding likely target
engagement via ITM and establishing clear go-no-go decision
benchmarks.

Our overarching goal is to strengthen the early stages of drug
development by systematically evaluating the potential of ITM.
More than just a technical tool, ITM can serve as an important
decision-making criterion, optimizing investments and driving the
evolution of drug development strategies. To support the approach,
we have conducted a series of PBPK model-based Monte Carlo
simulations of many virtual molecular entities, and compared their
PK attributes against an array of marketed drugs, to assess the
feasibility of observing acceptable target engagement through ITM
trials. More specifically we aimed to answer the following
two questions:

- Is there a possibility to observe target engagement through
ITM, if so, what is the likely probability of achieving it?

- What kind of drugs have a higher chance of observing target
engagement through ITM?

Methods

PBPK model-based Monte Carlo simulation

We developed our analysis using a simplified PBPK model,
tailored to assess pharmacokinetics and receptor occupancy (PK-
RO), based on the model available in Koyama et al. (2021),
schematically depicted in Figure 1. In our model, we maintained
consistency by fixing all physiological parameters (tissue sizes and
blood flows), except those directly related to the target, based on the
values provided by Davies and Morris (Davies and Morris, 1993)
and assuming all subjects in the trials weigh 75kg, as detailed in
Table 1. For the physiological parameters of the target tissue, we
opted for values utilized in the PBPK modeling of solid tumors, as
documented by Rose et al. (Rose et al., 2019). The PBPK model,
expressed as a system of ordinary differential equations, was
numerically solved using the lsoda algorithm through its
implementation in the rxode2 package (version 2.0.13) (Fidler
et al., 2024) during Monte Carlo simulations in the R
environment (R Core Team, 2023).

Recognizing the necessity of differentiating between potential
target tissues for ITM, we conducted a series of simulations
across a range of tissue volumes and blood flow rates. In
parallel, we simulated a variety of compounds, each designed
to reflect the properties of existing small molecule drugs on
the market.

To maintain simplicity and consistency across our experiments,
we chose once-daily intravenous (IV) bolus administration as our
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primary route of therapeutic drug delivery. For the distribution of
key kinetic parameters, we relied on the data from Kato et al. (Kato
et al., 2003); for the distribution of target binding related parameters,

we turned to the findings of Dahl and Akerud (Dahl and Akerud,
2013). We acknowledge that many pharmacokinetic parameters are
heavily influenced by the specific chemical properties of a

FIGURE 1
Schematic diagram of the PBPK model used for the Monte Carlo simulations.

TABLE 1 Physiological parameters used for the PBPK model-based Monte Carlo simulations.

Symbol Unit Description Value Justification

Qa L/hr Blood flow rate to adipose 3.72*Weight*60/1000 Davies, B., and Morris (Davies and Morris, 1993)

Qh L/hr Blood flow rate to liver 20.7 *Weight*60/1000

Qm L/hr Blood flow rate to muscle 10.7*Weight*60/1000

Qs L/hr Blood flow rate to skin 4.28 *Weight*60/1000

Va L Volume of skin 142 *Weight/1000

Vh L Volume of liver 17.4 *Weight/1000

Vhe L Volume of extracellular space of liver 6.69 *Weight/1000

Vm L Volume of muscle 429 *Weight/1000

Vs. L Volume of skin 111 *Weight/1000

Vt L Volume of target 5/1000*(0.204 +
0.296)

Values that were used for Permeability-limited Tumor Model in (Rose et al.,
2019)

Vt_ic L Volume of inner-cellular space of the
target

5/1000*(1-
0.204–0.296)

Qt L/hr Blood flow rate to the target 0.686*60/1000*5

Frontiers in Pharmacology frontiersin.org03

Aoki et al. 10.3389/fphar.2024.1366160

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1366160


compound; therefore, we conducted simulations across a broad
range of parameter distributions, ensuring that our calculations
for intrinsic hepatic clearance (a measure of intracellular
metabolic activity) closely mirrored the results presented by Kato
et al. (Kato et al., 2003) The distribution of the parameters used for
the simulation is specified in Table 2. All parameters followed a log-
normal distribution, while some parameters with known

correlations, as reported in Kato et al. (Kato et al., 2003), were
simulated based on a multivariate log normal distribution. The
physiological plausibility of the generated parameters is considered
in the Results section of the manuscript.

To further probe the influence of these diverse parameters, and
to bolster the robustness of our findings, we employed a sub-setting
approach within our Monte Carlo simulations. We refer to

TABLE 2 Kinetic parameters and their distributions used for PBPK model-based Monte Carlo simulation.

Parameter Name Unit Description Distribution Inter quartile
range

Justification

Vmax_uptake µmol/hr/
body

Maximum uptake rate of active
hepatic uptake

Log_normal [10,1000] Highly variable between compounds
so conduct subset analyses in
combination with other parameters
related to liver uptake and
metabolism

Km_uptake µM Michaelis-Menten constant for the
hepatic uptake

Log_normal [1/3,3]

Vmax_met µmol/hr/
body

Maximum rate of hepatic metabolism Log_normal [25, 2500]

Km_met µM Michaelis-Menten constant for the
active hepatic metabolism

Log_normal [10/3,30]

PSdif_inf L/hr/body Diffusion coefficient for passive
hepatic uptake

Log_normal [3,300]

Vmax_targetUptake µmol/hr/
body

Maximum rate of active uptake to the
target organ

Log_normal [0.0192, 1.92] 1/5 of hepatic metabolism normalized
to the size of the organ

Km_targetUptake µM Michaelis-Menten constant for the
active uptake to the target organ

Log_normal [1/3,3]

PSdiff_targetInflux =
PSdiff_targetEflux

L/hr/body Diffusion coefficient for passive
uptake to the target organ. (assume
passive influx and eflux are the same

Log_normal [0.0115, 1.15] Same as the passive uptake of the
compound to liver normalized to the
size of the organ

Vmax_targetMet µmol/hr/
body

Maximum metabolism rate for the
inner target metabolism of the
compound

Log_normal [0.0192, 1.92] 1/5 of hepatic metabolism normalized
to the size of the organ

Km_targetMet µM Michaelis-Menten constant for the
inner target metabolism of the
compound

Log_normal [10/3,30] Similar to km at liver

Kd µmol/L Equilibrium dissociation constant of
the drug to the molecular target.

Log_normal [0.0003, 0.006] Dahl and Akerud (2013)

koff 1/hr Dissociation constant of the drug to
the molecular target.

Log_normal [0.25, 4]

X_TotalR µmol Total abundance of the receptor of the
molecular target.

Log_normal [0.001,0.1]

Molar mass g/mol Molar mass Fixed 400

fp = fb Plasma unbound fraction and in
blood unbound fraction

Multivariable normal distribution (after log
transformation) with mean and correlation
matrix provided in Kato et al. (2003)
We have used nPt/Kd to calculate fp and fb
(note Kd here is the equilibrium
dissociation constant to the plasma/blood
protein and not to the molecular target)
Kp_scaling is derived from the volume of
distribution generated from this
distribution

Kato et al. (2003)

CLr L/hr/body Renal clearance

Kp_scaling Scaling factor for the tissue partition
coefficient

Kpa Partition coefficient for adipose 0.1* Kp_scaling

Kpm Partition coefficient for muscle 0.2*Kp_scaling

Kps Partition coefficient for skin 0.5*Kp_scaling
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compounds that made it through our Monte Carlo simulations, see
criterion below, as “virtual compounds”.

Assess the success of ITM for each
virtual compound

We used fractional receptor occupancy (RO) as a quantitative
measure of target engagement, and defined as “ITM success”, if the
24-h average RO (area under the RO curve/24 h) equals or exceeds
60%. Although RO can be measured using in vivo imaging methods
such as PET imaging, more commonly, engagement is quantified
with a biomarker, a rapidly responding, quantifiable, downstream
measure of the drug-target interaction. The selection of the 60%
benchmark is somewhat arbitrary, prompting us to explore the
implications of this percentage on outcome by simulating different
intended target occupancies. Though these conditions can be
modified, and similar simulation strategies applied, the
overarching insights drawn from the results remain largely
unchanged. Therefore, to streamline our discussions, we
consistently define “ITM success” as previously mentioned
throughout this manuscript.

To practically gauge ITM success for each virtual compound, we
executed the following procedure. A schematic diagram of the

simulation study is depicted in Figure 2: Firstly, we simulated
PK-RO across various IV doses to identify the dosage necessary
to achieve the desired RO, terming this dosage as the “estimated
therapeutic dose.” Next, a micro-dose was computed based on this
“estimated therapeutic dose,” ensuring themicro-dose is the lesser of
either 1/100th of the “estimated therapeutic dose” or 100µg,
whichever is the lower. This was followed by running a PK-RO
simulation where the micro-dose was delivered to the extracellular
space or artery of the target tissue. (Here we make a key assumption
that all the micro-dose is administered to the interstitial space of the
target tissue.) The time-dependent RO profile was then analyzed to
determine if it aligns with the target engagement objectives
(i.e., more than 60% average RO).

Summarize the success rate of the ITM

To understand the general trends concerning the probability of
achieving the desired target engagement through ITM, we computed
the probabilities of “ITM success”, as previously defined, across
various Monte Carlo simulations.

As the main analysis, we produced 10,000 virtual compounds
using the Monte Carlo simulation, with parameters distributed as
specified in Tables 1, 2. This dataset allowed us to plot the

FIGURE 2
Schematic diagram of the Monte Carlo simulation we have conducted to determine probability of ITM success. We first analyzed literature data to
identify the distribution of parameters for Monte Carlo simulation to create virtual compounds. Subsequently, for each virtual compound, we simulated
the receptor occupancy (RO) across various intravenous (IV) doses using a physiologically based pharmacokinetic (PBPK) model. Based on the simulated
RO, we selected the dose that achieves an average RO of above 60%, which we designated as the estimated therapeutic dose. Utilizing this
estimated therapeutic dose calculate the microdose and then simulate the case of intra target administration using the same PBPK model to evaluate if
the RO exceeds 60% on average. This process was repeated for every virtual compound generated, allowing us to calculate the probability of achieving
successful ITM.
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correlation between the desired average RO and the probability of
ITM success.

In our sensitivity analyses, we conducted Monte Carlo
simulations with variations in three parameters explicitly
included in the simulation model: blood flow rate to the target,
equilibrium dissociation constant (Kd), and target receptor
abundance. We performed these simulations by fixing one
parameter at a time and varying it across seven fixed values. For
computational efficiency, we generated 1,000 virtual compounds for
each simulation, resulting in a total of 21,000 virtual compounds

across all scenarios, and assessed ITM success for each of these
21 scenarios.

To extend the sensitivity analyses to parameters not explicitly
present in the Monte Carlo simulations—such as the estimated
therapeutic dose, hepatic clearance, and clearance at target
organ—we conducted subgroup analyses. This involved dividing
the Monte Carlo samples generated in the main analyses and
constructing subgroups with a biased sample mean for the
parameter of interest. Specifically, for each parameter, we divided
the Monte Carlo simulation results into 10 bins by decile

FIGURE 3
Cumulative distribution functions of pharmacokinetic parameters for virtual and marketed small molecule drugs. The blue curve depicts the
distribution of parameters used for our Monte Carlo simulations. For panels (A, B): The red curve represents the empirical cumulative distribution function
(ECDF) based on the list of 33 compounds taken from Dahl and Akerud (2013). (A) Equilibrium dissociation constant of the drug-target receptor complex
(Kd). (B)Dissociation rate constant of the drug-target receptor complex (koff). For panels (C–E): The red curve represents the ECDF based on the list
of 164 compounds from Jansson et al. (2020). (C) Unbound fraction in plasma (fu). (D) Total systemic clearance (sum of renal and hepatic clearance). (E)
Bioavailable dose (calculated as bioavailability multiplied by daily dose for orally administered drugs).
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(i.e., 0%–10%, 10%–20%, 20%–30%, 30%–40%, 40%–50%, 50%–
60%, 60%–70%, 70%–80%, 80%–90%, 90%–100% percentiles).

Results

Validation of the generated
virtual compounds

In our initial analysis, we sought to validate the use of the log-
normal distribution as a suitable approximation for the real
parameter distribution. To achieve this, we generated values of
Kd for the drug-target complex and the dissociation rate
constant (koff) of the drug-target complex using a log-normal
distribution, and subsequently compared these values with the
actual distributions as presented by Dahl and Akerud, (Dahl and
Akerud, 2013). As can be seen in Figures 3A, B, it is evident that the
distributions of both parameters align closely with the
experimentally observed log-normal distribution, thereby
reinforcing its appropriateness as a representative model for these
parameters.

We undertook an external validation by contrasting the
compounds generated from our simulations with actual
compound data from a publication that was not employed in
creating our simulations. Utilizing the unbound fractions in
plasma from Jansson et al. (2020), we compared these with those
generated based on data from Kato et al. (2003). As illustrated in
Figure 3C, our simulations produce less virtual compounds with
unbound fractions lower than 0.5 compared to the data from
Jansson et al. (2020).

Moreover, we assessed the distributions of clearance (combining
renal clearance and intrinsic hepatic clearance) between our
simulated compounds and those currently available as medicines
on the market, as per Jansson-Löfmark et al. (Jansson et al., 2020)
data. As can be seen in Figure 3D, although it is not perfect,
clearance distribution of our simulated compounds aligns
reasonably well with the data presented in Jansson et al. (2020).
To further validate our methodology for estimating the therapeutic
dose, we compared the distribution of the daily bioavailable doses
from our simulated compounds against the data in Jansson et al.
(2020). In this study, we compared the bioavailable doses, given that
the data from actual small molecule compounds included a mix of
oral and IV administration. Since our simulation consists only of IV
doses, we standardized the dose for those drugs intended for oral
administration by adjusting the daily dose according to their
bioavailabilities, thus reflecting the amount that enters the
systemic circulation. As can be seen in Figure 3E, the cumulative
density of the “estimated therapeutic dose” and actual doses of the
drugs on the market, while exhibiting certain deviations, follow a
similar trend across the range of doses. Specifically, for lower
bioavailable doses (around 0.1–10 micromoles, corresponding to
0.04–4 mg for a 400 MW compound), the simulated dataset tends to
report a slightly higher fraction of compounds compared to the
dataset of Jansson et al. (2020). As the dose increases, both curves are
closely aligned, especially around the middle dose range. Toward the
higher end of the dose spectrum, there is a slight divergence again,
with the simulation curve being slightly below the Jansson et al.
(2020) curve. Additionally, in the dataset generated by

Jansson et al. (2020), the therapeutic dose for 35 out of
164 drugs (approximately 21%) was less than 10 mg daily. This
implies that for about 80% of the drugs, the microdose was set at
100 µg, regardless of the therapeutic dose.

Estimation of therapeutic dose, simulation
of time-course of drug concentrations, RO
and success probability of ITM

Our methodology begins by determining the therapeutic dose
for IV administration, using RO as an efficacy indicator. An IV dose
is deemed as an estimated therapeutic dose if it sustains an average
RO above 60% for 24 h. Based on this, a microdose, defined as 1% of
the effective dose and capped at 100 µg, is administered directly to
the artery of the target organ to evaluate efficacy maintenance at the
microdose level through simulation studies. This approach is
detailed in Figure 2. Monte Carlo simulations were conducted,
and the summary statistics of generated parameters were listed in
Supplementary Table S1. From these, nine compounds were selected
to exemplify the procedure. The results, documented in
Supplementary Figure S1-9, illustrate the RO change over time
with different IV doses to ascertain the effective IV dose, and RO
over time for both the estimated therapeutic dose via IV and ITM
doses. Supplementary Table S2 details the primary biochemical
parameters for these nine compounds. Among them, two
compounds had therapeutic doses exceeding 25 µmol (10 mg),
with a microdose limit of 0.25 µmol (100 µg). The RO at ITM
varied widely, ranging from 6% to 93%, and three compounds
achieved ITM success (RO>60%). The reasons for this variation
can be understood by examining the biochemical parameters
(especially total clearance CLh + CLr, receptor abundance and
Kd), of each compound, as shown in Supplementary Table S2.

Simulated success rates of the ITM

Influence of the target organ
In our investigation, we identified that two factors related to the

target organ - blood flow rate to the target organ and clearance at the
target organ - influence the probability of ITM success. Figure 4A
illustrates the quantitative relationship between the probability of
ITM success and the blood flow rate to the target. It suggests that a
smaller blood flow rate to the target correlates with a higher
probability of ITM success. Figure 4B demonstrates how the
clearance capacity of the target organ influences the probability
of ITM success. A higher clearance rate at the target tissue
corresponds to a higher probability of ITM success. However,
even with minimal target organ clearance, the probability of ITM
success remains above 5%, suggesting that even if there is no
clearance at the target tissue, one can still achieve successful
target engagement via ITM.

Influence of the target receptor
Our investigation has revealed that the following target receptor-

related factors influence the probability of ITM success: the required
level of average RO, the target receptor abundance, and Kd for the
drug-target complex. The desired level of average RO significantly
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FIGURE 4
Relationships between probability of ITM success and various key target organ, target receptor, and pharmacokinetic parameters. ITM success is
defined as achieving an average receptor occupancy of over 60% during the 24-h period following ITM administration, except for panel (C). (A) Blood flow
rate to the target tissue. (B) Clearance within the target tissue. (C) Required level of receptor occupancy. (D) Target receptor abundance. (E) Equilibrium
dissociation constant (Kd) for the drug-target receptor complex. (F) Hepatic clearance. (G) Estimated therapeutic dose.
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influences the probability of ITM success. As illustrated in Figures
4A,C decrease in the desired level of average RO leads to an increase
in the probability of ITM success. Figure 4D displays the relationship
between ITM success probability and target receptor abundance,
showing a moderate increase up to 0.001–0.1µmol, followed by a
steep decrease. In contrast, Figure 4E presents the monotone
relationship between Kd and the probability of ITM success, with
results indicating that a smaller Kd results in a higher probability of
ITM success.

Influence of systemic pharmacokinetics factors
Although it can be expected that the nature of the target organ

and receptor significantly influences the ITM success rate, the drug
concentration at the target organ also plays a crucial role. Our
investigation has revealed that hepatic clearance and estimated
therapeutic dose, both systemic pharmacokinetics-related factors,
influence the probability of ITM success. As clearly demonstrated in
Figure 4F, the hepatic clearance of a compound significantly impacts
the probability of ITM success, with an increasing trend observed as
hepatic clearance rises beyond 10 L/h. However, when hepatic
clearance is less than 1L/hr, the probability of ITM success falls
below 3%. We also found that the estimated therapeutic dose
significantly affects the probability of ITM success. Figure 4G
portrays the relationship between the estimated therapeutic dose
and the probability of ITM success. Remarkably, success probability
surpasses 20% when the estimated therapeutic dose is below 10mg,
but sharply declines for doses above this level. It is crucial to note
that for doses under 10mg, the microdose is 1/100th of the
therapeutic dose, while for doses exceeding 10mg, the microdose
remains a constant 100 µg, regardless of the therapeutic dose. It
should be noted that all the qualitative relationships remained
consistent across all levels of required receptor occupancy, as
presented in Supplementary Figure S10. Additionally, the
distributions of the receptor occupancy are depicted in
Supplementary Figure S11.

Discussion

ITM offers an innovative approach to drug development,
potentially augmenting the transition from preclinical to clinical.
Our study provides an in-depth analysis of various factors
influencing the probability of successful target engagement via
ITM. To investigate this, we conducted PBPK model-based
Monte Carlo studies. Despite the many simplifying assumptions
made to make this study feasible, both our internal and external
validations confirm the overall reasonableness of these assumptions
(cf. Figure 3). This ensured that the distribution of the key
compound characteristics of the Monte Carlo-generated “virtual
compounds” are similar to what is on the market,
i.e., approved medicines.

Primarily, our PBPK model-based simulation indicated that for
certain compounds, achieving target engagement by ITM at RO
levels comparable to therapeutic doses is feasible. While the
likelihood is largely dictated by the target tissue and compound
properties, our simulations revealed that if the estimated therapeutic
dose is under 10mg, approximately 20% of compounds should
exhibit successful target engagement via ITM (Figure 4G).

Nonetheless, the potential utility of ITM must be evaluated at
each phase of drug discovery, considering both the target tissue
and compound characteristics.

One observation was the inverse relationship observed between
the blood flow rate to the target organ and the probability of
successful target engagement (cf. Figure 4A), the reason being
that any increase in flow rate will lower the likelihood of
retention of the administered microdose at the target site. Hence,
the chances of successful ITM are improved when blood flow to the
target organ is either inherently low or physically restricted,
compatible with physiological constraints.

We also have demonstrated that the required level of receptor
occupancy heavily influences the probability of ITM success, that
is to say, the lower the required level of receptor occupancy level
to observe target engagement, the higher the chance of ITM
success (cf. Figure 4C). As the required receptor occupancy level
decreases, the estimated therapeutic dose will also decrease,
resulting in fewer compounds being subject to the restriction
of the 100 µg limit of the microdose, thus causing a higher ITM
success rate. It is typically understood that agonists necessitate
lower target occupancy compared to antagonists. Hence, ITM
may be more suitable when developing agonists. Although this
may seem trivial, a decrease in the required level of receptor
occupancy leads to a lower estimated therapeutic dose and,
consequently, the ITM dose. Therefore, the balance between
the required RO and the probability of ITM success is not
necessarily trivial.

While the Kd pertinent to potency is refined until the late phases
of preclinical drug discovery, the probable range of this constant for
a particular chemical series is often discernible during in vitro
compound screening. Hence, we probed the interrelation between
Kd and ITM success probability and found that the smaller Kd
higher the probability of ITM success (cf, Figure 4E). This suggests
that recent progress in the chemistry optimization towards single
nano molar range potency will potentially increase the potential
utility of ITM.

Hepatic clearance is a pivotal metric influencing
pharmacokinetics. When the drug is administered via IV
route, then the hepatic clearance does influence the drug
exposure at the target tissue. For the high clearance drug, it
requires more drug to achieve the same level of target exposure
compared to the low clearance drug. In other words, the high
clearance drugs have higher estimated therapeutic dose. When
the estimated therapeutic dose increases then the micro-dose
increases. On the other hand, when the drug is administered to
the target tissue, the influence of hepatic clearance to the average
receptor occupancy is rather limited. Thus, for the high clearance
drug more drug will be delivered to the target via ITM hence ITM
success will increase.

Figure 4F delineates the influence of hepatic clearance and ITM
success probability. There’s a marked increase in success probability
as hepatic clearance increases, especially evident when exceeding
10 L/h. Generally, there is a tendency as part of early drug
development to reduce hepatic clearance, as this leads to longer
half-lives and reduced daily dose requirements. This in turn reduces
the probability of ITM success. However, as illustrated in Figure 3E
Jansson-Löfmark et al.‘s survey (Jansson et al., 2020) show that more
than 75% of marketed small molecules have a larger than 10 L/h
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total body clearance. Thus, even with the progressive effort to design
molecules with lower hepatic clearance, it is unlikely to reduce
sufficiently to generally make ITM infeasible.

We have also observed that clearance at the target tissue plays
a modest role in the success of ITM as indicated in Figure 4B. An
increase in clearance within the target organ (CL_target) can
enhance the probability of ITM success. This is because, even
though CL_target is elevated, it does not significantly impact the
total body clearance. A higher CL_target improves the extraction
ratio across the target tissue, necessitating an increased the
estimated therapeutic dose. Consequently, the amount of the
drug reaching the target tissue escalates with the higher estimated
therapeutic dose, thereby increasing the likelihood of achieving
the desired RO.

Lastly, at the end of preclinical studies, it should be noted that
when the predicted daily therapeutic dose exceeds 10 mg there is
a projected very low probability of ITM success (cf. Figure 4G).
This hinges on the current definition of a microdose which
cannot exceed 100 µg or 1/100th of the estimated therapeutic
dose. This also explains a similar bi-phasic relationship between
the probability of ITM success and the target receptor abundance.
As the receptor abundance increases so does the estimated
therapeutic dose (cf. Supplementary Figure S12) which leads
to the increase in the ITM dose hence the ITM success. On
the other hand, with the ITM dose capped at 100µg, it is
impossible to achieve ITM success when the receptor
abundance is more than the mol amount of the microdose
(0.25µmol, assuming a molecular weight of 400 g/mol).

While our simulations indicated that the virtual compounds
generated exhibit similar distribution characteristics to marketed
small molecule drugs, it is important to recognize that marketed
compounds represent a very small fraction of those considered
for drug products. Therefore, the distribution of our virtual
compounds might not accurately reflect the broader spectrum
of compounds currently under consideration for ITM.
Additionally, our simulation relies on the definition of a
microdose as per current guidelines (International Conference
on Harmonization, 2009), which assumes no therapeutic effect or
side effects when administered systemically or orally. However,
our simulation suggests that altering the administration location
could potentially lead to target engagement. This observation
necessitates further discussion and reconsideration of the
microdose definition for ITM, ensuring both volunteer safety
and the informativeness of such trials.

It should be emphasized that the success rate of ITM
demonstrated in this work is based on virtual compounds
generated via Monte Carlo simulations, which mimic the
distribution of the properties of drugs on the market. This
reflects the probability of observing target engagement via ITM
on a compound randomly selected from those currently on the
market. In reality, before making an investment decision for ITM,
there should be sufficient information from preclinical experiments
to determine the probability of observing target engagement via
ITM, as demonstrated in this paper. Only compounds with a
sufficient probability of ITM success should be considered for
ITM. Thus, the probability of observing target engagement via
ITM should be significantly higher for a compound chosen for
an ITM study.

In our modeling approach, we recognize several key limitations
that warrant mention. First, we have simplified the analysis by
assuming that active uptake into the target tissue is proportional to
hepatic uptake and scales with the volume of the target tissue, due
to the absence of specific uptake data. Also, the PBPK model used
throughout the study may not fully capture the complexities of in
vivo pharmacokinetics. Furthermore, our simulation does not take
account of variability in the relationship between target receptor
occupancy and the measurable target engagement of biomarkers.
Instead, we have presumed direct observability of receptor
occupancy. This assumption could limit the model’s
applicability to molecular targets that lack sensitive circulating
target engagement biomarkers. Such simplification, while
necessary for the feasibility of our study, is an acknowledged
limitation that could affect the extrapolation of our results to a
“real-world” setting.

It is important to note that the decision to further narrow down
candidate compounds through ITM clinical trials or to proceed
directly to Phase-1 trials based solely on pre-clinical predictive
results rests with the comprehensive judgment of each study
sponsor. However, it is worth mentioning that according to
statistics from 2005 to 2015, the probability of compounds that
advanced to Phase-1 trials through traditional selection methods
eventually being approved and entering the market ranges from only
five rising to 14% (Wong et al., 2019). This highlights the undeniable
need for new methodologies in the selection process of compounds.

Conclusion

ITM is a promising method in drug development, yet its
implementation needs thorough evaluation. This involves
considering not only the physiological characteristics of the target
tissue but also each drug’s distinct pharmacokinetic and receptor
binding properties, along with practical considerations. Our PBPK
model-based simulations suggest that ITM could achieve adequate
target engagement for certain compounds. We recommend ITM
particularly for cases where the target tissue has limited blood flow
rate, and the anticipated therapeutic dose is below 10 mg. This is to
ensure that the 1% of therapeutic dose does not exceed 100 µg. For
therapeutic doses under 10mg, our estimates indicate that over 20%
of compounds might show effective target engagement using ITM.
Additionally, it is crucial for these compounds to demonstrate
strong potency, characterized by Kd in the nanomolar range, and
to have a reasonable rate of hepatic clearance. These criteria help in
maximizing the potential success of ITM in drug development.
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