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Objective: Bioinformatics methods were applied to investigate the pivotal genes
and regulatory networks associated with atherosclerotic carotid artery stenosis
(ACAS) and provide new insights for the treatment of this disease.

Methods: The study utilized five ACAS datasets (GSE100927, GSE11782, GESE28829,
GSE41571, and GSE43292) downloaded from the NCBI GEO database. The first four
datasets were combined as the training set (n = 99), while GSE43292 (n = 64) was
used as the validation set. Difference analysis and functional enrichment analysis
were then performed on the training set. The pathogenic targets of ACAS were
screened by protein-protein interaction networks and MCODE analyses, combined
with three machine learning algorithms. The results were next verified by analysis of
inter-group differences and ROC curve analysis. Next, immune-related function and
immune cell correlation analyseswere performed, and plaques of humanACASwere
applied to verify the results via immunohistochemistry (IH) and immunofluorescence
(IF). Finally, the competing endogenous RNAs (ceRNA) and transcription factors (TFs)
regulatory networks of the characterized genes were constructed.

Results: A total of 177 differentially expressed genes were identified, including
67 genes downregulated and 110 genes upregulated. Gene set enrichment
analysis revealed that five pathways were active in the experimental group,
including xenograft rejection, autoimmune thyroid disease, graft-versus-host
disease, leishmaniasis infection, and lysosomes. Four key genes were identified,
with C3AR1 being upregulated and FBLN5, PPP1R12A, and TPM1 being
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downregulated. The analysis of inter-group differences demonstrated that the four
characterized geneswere differentially expressed in both the control and experimental
groups. The ROC analysis showed that they had high AUC values in both the training
and validation sets. Therefore, a predictive ACAS patient nomogram model based on
the screenedgeneswas established. Correlation analysis revealed a positive correlation
between C3AR1 expression and neutrophils, which was further validated in IH and IF.
One or multiple lncRNAs may compete with the characterized genes for binding
miRNAs. Additionally, each characterized gene interacts with multiple TFs.

Conclusion: Four pivotal genes were screened, and relevant ceRNA and TFs were
predicted. These molecules may exert a crucial role in ACAS and serve as potential
biomarkers and therapeutic targets.

KEYWORDS

carotid artery stenosis, atherosclerosis, machine learning, pathogenic markers,
therapeutic targets

1 Introduction

As of 2019, stroke remains the second leading cause of death
worldwide and the third leading cause of death and disability (Feigin
et al., 2021). Ischemic stroke accounts for 87% of these cases (Saini
et al., 2021). The primary cause of ischemic stroke is ischemia and
even necrosis of brain tissue due to carotid artery stenosis (CAS),
occlusion, or detachment of carotid plaque (Feske, 2021). ACAS is a
narrowing of the carotid artery diameter due to the formation of
carotid atherosclerotic plaques, which is very common, affecting one
in five patients with stroke or transient ischemic attack (TIA), and
occurs mostly in the bifurcation of the common carotid artery and
the beginning of the internal carotid artery (Cheng et al., 2019; Heck
and Jost, 2021). Some stenotic lesions may even progress to complete
occlusion, resulting in severe neurological deficits, such as coma,
limb paralysis, speech disorders, sensory deficits, hemianopsia,
intellectual disability, and infarctions in certain areas, such as the
brainstem, may even result in sudden death (Kappelle, 2002;
Campbell et al., 2019). Treatment options depend on the degree
of CAS and the patient’s symptoms, and include medical, surgical, or
interventional therapy. Conservative medical treatment aims to
reduce the symptoms of cerebral ischemia and lower the risk of
stroke; controlling existing diseases such as hypertension, diabetes
mellitus, hyperlipidemia and coronary heart disease is the main
strategy (Bonati et al., 2022). The aim of surgical treatment is to
prevent the onset of stroke, followed by prevention and slowing of
the onset of TIA. The standard surgical procedure is carotid
endarterectomy (CEA), but CEA also carries potential risks of
stroke, heart attack, and hyperperfusion syndrome (Bonati et al.,
2022). Carotid angioplasty and stenting is an alternative to CEA,
especially in cases where the neck anatomy is not conducive to
surgery (White et al., 2022). It is a minimally invasive procedure in
which a stent is placed into the carotid arteries to increase blood
flow, but there are still problems with intraprocedural endothelial
tearing, postprocedural elastic regression of the vessel, and
restenosis (Bonati et al., 2022; White et al., 2022). In conclusion,
each of the three treatments has its own set of advantages,
disadvantages, and indications. With the advancements in
vascular imaging technology, the prevalence of ACAS is gradually
increasing, how to block or reverse the process of carotid
atherosclerotic plaque formation at an early stage and improve

the ACAS is the hot spot of current research. Therefore, an in-
depth and comprehensive investigation of the causes of carotid
atherosclerotic plaque formation and related pathogenic factors is
urgently required.

In recent years, machine learning (ML) has been continuously
applied to clinical diseases for disease diagnosis, target screening,
patient prognosis prediction, and therapeutic programmes due to its
powerful computational power, lower error rate and better
predictive performance (Swanson et al., 2023; Theodosiou and
Read, 2023). In this study, protein-protein interaction networks
(PPI) and molecular complex detection (MCODE) analyses were
combined with three ML algorithms, namely least absolute
shrinkage and selection operator (LASSO), support vector
machine-recursive feature elimination (SVM-RFE) and random
forest (RF), to screen out critical targets of ACAS, which can
offer a new theoretical reference for precise therapy of the illness.

2 Materials and methods

2.1 Retrieval and merging of datasets

We obtained five datasets from the NCBI GEO database (https://
www.ncbi.nlm.nih.gov/geo/): GSE100927 (12 controls + 29 carotid
atherosclerosis), GSE11782 (9 controls + 9 carotid atherosclerosis),
GESE28829 (13 controls + 16 carotid atherosclerosis), GSE41571
(6 controls + 5 carotid atherosclerosis), and GSE43292 (32 controls
+ 32 carotid atherosclerosis). The first four datasets were combined
as the training set (n = 99), while GSE43292 (n = 64) was used as the
validation set. We then applied the sva package for batch calibration
and visualized the pre- and post-correction results using principal
component analysis (PCA).

2.2 Patients and samples with ACAS

Twenty patients diagnosed with ACAS and admitted to Renmin
Hospital of Wuhan University between 2021 and 2023 were
included in the study. The control group consisted of 10 ACAS
patients who underwent CEA, and the experimental group consisted
of 10 ACAS patients who also underwent CEA. The study collected
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neighboring intima around atherosclerotic plaques in the control
group and atherosclerotic plaques in the experimental group,
resulting in a total of 20 cases. The atherosclerotic plaques and
adjacent intima were collected within 10 min of CEA and stored
at −80°C for future use. The study protocol was approved by the
Clinical Research Ethics Committee of Renmin Hospital of Wuhan
University (Ethics Approval No. WDRY2023-K123), and all
methods used complied with relevant guidelines and regulations.
Informed consent forms were signed by all participants.

2.3 Identification of differentially expressed
genes (DEGs)

To find the DEGs between the control and experimental groups,
the gene expression patterns of each group were normalized and
analyzed using the “limma” package. The filtering criteria for the
DEGs were set to a corrected p-value of < 0.05, |logFC| ≥ 1. A
heatmap was visualized using the “pheatmap” package.

2.4 Functional enrichment analysis

“ClusterProfiler,” “enrichplot,” and “org.Hs.eg.db” packages
were used to analyze important functions and pathways of DEGs,
including Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Qin et al., 2023). The reference genome file
“c2.cp.kegg.Hs.symbols.gmt” was used for gene set enrichment
analysis (GSEA) to understand the differences in pathways
between control and experimental groups (Qin et al., 2023). All
results were visualized by the “ggplot2” software package.

2.5 PPI and MCODE analysis

The DEGs were uploaded to the online website STRING (http://
string-db.org), and the PPI was constructed with a medium confidence
level of 0.400. The PPI was then beautified by applying the software
Cytoscape_3.8.0. MCODE analysis is to find out the key sub-networks
and genes based on the relationship of edges and nodes in a huge PPI
network, which facilitates downstream analysis to screen out the key
genes (Bader and Hogue, 2003). Thus, MCODE in Cytoscape was
chosen to calculate the information of each node in the PPI to produce
the final functional module. The parameters were set as follows: Degree
Cutoff: 2, Node Score Cutoff: 0.2, K-Core: 2, Max. Depth from
Seed: 100.

2.6 Three ML algorithms for screening
feature genes

We use the LASSO, SVM-RFE and RF algorithms (Qin et al., 2023)
to screen key genes in the above functional modules. The feature genes
were first screened using the LASSO algorithm to obtain a “LASSO
coefficient path” and a “LASSO regularization path” (also known as
Lasso regression analysis cross-validation curve). The former shows the
variation of feature coefficients for different values of the regularization
parameter (λ) in the LASSO algorithm. The latter shows the model

fitting effect for different values of λ in the LASSO algorithm. The results
of this figure allow us to find an optimal value of λ that gives the best
Lasso fit andminimizes the cross-validation error. The number of genes
corresponding to the point with the smallest cross-validation error is the
number of disease signature genes. Then SVM-RFE algorithm can
obtain a graph of cross-validation accuracy and a graph of cross-
validation error. The horizontal coordinates of the two graphs represent
the number of feature genes, and the vertical coordinates, “10 X CV
Accuracy” and “10 X CV Error,” represent the accuracy and error rate
of the curve changes after 10-fold cross-validation, respectively. In the
next RF algorithm, random forest trees were first constructed by setting
the number of trees ntree = 500, obtaining a random forest tree graph.
Find the number of trees corresponding to the point with the smallest
cross-validation error in the graph as the best tree value. And score the
importance of the genes based on the best tree value so as to rank the
genes and select the genes with gene importance greater than 1 for
subsequent analysis. Finally, the intersection of the three algorithm
screening results was taken and the Venn diagramwas plotted using the
“VennDiagram” R package. The R package “pROC” and “InpROC”
were also applied to plot the ROC curves and calculate the area under
the curve (AUC), respectively, to determine the predictive value of these
characterized genes in the training set and validation set.

2.7 Creation of ACAS nomogram

The R package “rms” “rmda” was applied to construct
nomogram of the identified signature genes and a calibration
curve was plotted to assess the accuracy of the nomogram. Then
the clinical impact curves of the model were plotted and evaluated.
Finally, the decision curve analysis was used to evaluate the clinical
utility of the nomogram.

2.8 Immune-related functions and immune
cell correlation analysis

The 59 ACAS samples in the training group were categorized
into high and low groups according to the expression of target genes.
The cited R packages “GSVA,” “GSEABase,” “ggpubr,” “reshape2,”
and “ggExtra” show the differences of different immune-related
functions between the high and low expression groups of the
characterized genes, as well as explore the correlation analysis of
the characterized genes with immune cells.

2.9 Immunohistochemistry and
immunofluorescence double-labeling

Twenty specimens were first paraffin-embedded and then sliced
into 5 µm thin slices using a paraffin slicer (Leica RM2235).
Immunohistochemistry steps: Briefly, the sections were first
dewaxed to water. Then antigen repair was performed under the
condition (citric acid solution, microwave medium heat for 8 min,
cease-fire for 8 min, turn to medium-low heat for 7 min).
Endogenous peroxidase was next blocked with a 3% hydrogen
peroxide solution. The tissue was covered evenly with drops of
3% BSA in the histochemistry circle and closed at room temperature
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for 30 min. Primary antibodies (C3AR1, GTX114293, 1:200,
GeneTex; MPO, GB12224, 1:1500, Servicebio; MCP7, GB12110,
1; 500, Servicebio) were added and incubated overnight at 4°C.
After cleaning, the slices were incubated with homologous
secondary antibodies for another 1 h. Freshly prepared DAB
solution was added to develop the color and then restained with
hematoxylin for about 3 min. Then, the sections were dehydrated
and sealed with xylene. Photographs were taken utilizing a
microscope (Olympus BX53) and quantified using ImageJ
(v1.8.0) analysis software.

Steps of homologous immunofluorescence double-labeling
staining: the preparation process of the paraffin section, including
antigen repair, was consistent with that of immunohistochemistry.
The slices were added with the first primary antibody (C3AR1,
GTX114293, 1:200, GeneTex) and incubated overnight at 4°C. After
washing, incubate with the secondary antibody for 1 h. Then TSA
dye was added and incubated for 10 min at room temperature away
from light. After washing, antigen repair was again performed. The
second primary antibody (MPO, GB12224, 1:4000, Servicebio) was
supplemented and incubated overnight at 4°C and then incubated
with the secondary antibody for another 1 h. Next, the nuclei were
restained with DAPI and incubated at room temperature away from
light for 10 min. Finally, images were captured using a fluorescence
microscope (Olympus BX53) and quantified utilizing
ImageJ (v1.8.0).

2.10 Construction of ceRNA and TF
regulatory networks

The software miRanda, miRDB and TargetScan were applied to
jointly predict miRNAs bound by characterized genes. miRNAs
identified by all three software were saved for subsequent analysis.
The spongeScan (Furió-Tarí et al., 2016) network was applied to
predict miRNA-bound lncRNAs. The results were then imported
into Cytoscape software to map the ceRNA regulatory network.
Meanwhile, NetworkAnalyst (Zhou et al., 2019) (http://www.
networkanalyst.ca) was utilized to construct the characteristic
gene TFs regulatory network.

2.11 Statistical analysis

Statistical analysis was done using R version 4.2.3. The t-test was
used for normally distributed variables and the Wilcoxon test was
used for non-normally distributed variables. Linear relationships
were analyzed using Pearson analysis, while monotonic
relationships were analyzed using Spearman analysis. All
statistical p-values were two-sided and p < 0.05 was considered
statistically significant.

3 Results

3.1 177 DEGs were obtained

Before performing the analysis of variance, we performed a
batch correction. The PCA analysis showed that in the pre-

correction graphs, the samples from different experiments were
separated, meaning that there was a batch effect between these
samples (Figure 1A). After batch correction, these samples were
randomly distributed, eliminating the effect of batch effects
(Figure 1B). All gene volcanoes were then mapped (Figure 1C).
The final differential analysis yielded 177 DEGs, which contained
67 downregulated and 110 upregulated genes (Figure 1D).

3.2 Function and pathway exploration
of 177 DEGs

Next, functional enrichment analysis was performed on these
DEGs. The GO and KEGG results indicated that these genes were
primarily involved in leukocyte-mediated immunity, leukocyte
migration, collagen-containing extracellular matrix, and actin
binding functions (Figure 2A), as well as tuberculosis,
staphylococcus aureus infection, lysosome, and phagosome
pathways (Figure 2B). To understand the differences in pathways
between the control and experimental groups, GSEA analysis was
performed. The data demonstrated that these five pathways were
active in the control: arrhythmogenic right ventricular
cardiomyopathy, dilated cardiomyopathy, hypertrophic
cardiomyopathy, ribosome, and vascular smooth muscle
contraction (Figure 2C). In contrast, the experimental group
showed activity in five different pathways: allograft rejection,
autoimmune thyroid disease, graft versus host disease, leishmania
infection, and lysosome (Figure 2D).

3.3 MCODE analysis yielded 7 important
functional modules containing 63 genes

Next, the PPI map of the 177 DEGs was constructed (Figure 3A).
To further investigate the underlying mechanisms of ACAS, a
modular network was created applying the MCODE algorithm to
reveal the core therapeutic targets. The algorithm identified highly
relevant network targets from the PPI network, and a total of
7 significant modules were generated (Figures 3B–H), containing
63 genes. Table 1 provides specific information for each module.

3.4 Three ML algorithms screened for four
feature genes

Next, the study began with a LASSO analysis of 63 genes,
resulting in the identification of 9 genes: C3AR1, CTSB, CTSD,
FBLN5, FERMT2, MMP9, PPP1R12A, RHOB, and TPM1 (Figures
4A, B). Subsequently, the SVM-RFE algorithm was employed to
screen seven genes, namely PPP1R12A, FBLN5, C3AR1, MYL9,
HMOX1, MFAP4, and TPM1 (Figures 4C, D). Meanwhile, the RF
algorithm identified 15 feature genes with relative importance
greater than 1, including FERMT2, VCL, FBLN5, PPP1R12A,
PPP1CB, FCGR2A, CD68, TPM1, IRF8, LY86, HCK, TAGLN,
FCER1G, LMOD1, and C3AR1 (Figures 4E, F). Finally, we took
the intersection of the genes screened by the three algorithms
resulted in the identification of four characterized genes: C3AR1,
FBLN5, PPP1R12A, and TPM1 (Figure 4G).
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3.5 The four characterized genes had group
differences in the control and
experimental group

Adjacently, to probe into whether the expression of the four
characterized genes differed between the control and experimental
groups, violin plots and line plots were plotted. The results from both
the training and validation sets indicate that the four characterized genes
were differentially expressed in both the control and experimental groups
(p < 0.01, Figures 5A, B). Additionally, C3AR1 was highly expressed in

the experimental group, while FBLN5, PPP1R12A, and TPM1 were
expressed at low levels in the experimental group (Figure 5C).

3.6 ROC analysis of the four
characterized genes

ROC analysis was performed to verify the accuracy of the
screened feature genes. In the training set, C3AR1, FBLN5,
PPP1R12A and TPM1 had AUC values of 0.896, 0.908, 0.906,

FIGURE 1
Identification of DEGs. (A) Samples from four datasets were shown to exist with batch effects; (B) Samples from four datasets eliminated the effects
of batch effects; (C) Volcano plots of all genes; (D) Heatmaps of 67 downregulated genes and 110 upregulated genes.
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and 0.918, respectively (Figure 6A). In the validation set, the AUC
values for C3AR1, FBLN5, PPP1R12A and TPM1 were 0.801, 0.837,
0.824, and 0.756, respectively (Figure 6B).

3.7 Construction of nomogram for
predicting patients with ACAS based on four
characterized genes

Next, a nomogram was constructed as a diagnostic tool for ACAS
by combining the four characterized genes (Figure 7A). The scores
corresponding to each of the characterized genes were summed to
obtain a total score, which corresponded to the risk of prevalence of

ACAS. The calibration curve discovered that the accuracy of the
nomogram in predicting prevalence was high (Figure 7B). The
clinical impact curve also showed significant predictive power of the
nomogram model (Figure 7C). Decision curve analysis hinted that
patients with ACAS could benefit from the nomogram (Figure 7D).

3.8 Immune-related function and immune
cell correlation analysis of the four
characterized genes

Next, the immune-related function analysis displayed that
diverse immune-related functions differed to varying degrees

FIGURE 2
Functional enrichment analysis of 177 DEGs. (A)GO analysis results; (B) KEGG analysis results; (C) Five active pathways in the control group; (D) Five
active pathways in the experimental group.
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between high and low expression groups of the four characterized
genes (Figures 8A–D). We then explored the correlation analysis
between genes and immune cells. The results showed that
C3AR1 expression was positively correlated with neutrophils
and mast cells activated, and negatively correlated with B cells
memory, mast cells resting, and plasma cells (Figure 8E).
FBLN5 showed an inverse correlation with T cells follicular
helper (Figure 8F), whereas TPM1 was positively correlated
with T cells CD4 memory activated (Figure 8H). The
statistical significance of PPP1R12A’s result was
inconclusive (Figure 8G).

3.9 Immunohistochemical and fluorescent
dual-labeling validation of C3AR1 expression
in patients with ACAS

Based on the results presented in Figure 8E, there appears to
be a positive correlation between C3AR1 expression and
neutrophils and mast cells activated in carotid atherosclerotic
plaques. To verify this relationship, we examined the expression
levels of C3AR1, myeloperoxidase (MPO), a neutrophil marker
(Schmekel et al., 1990), and mast cell protease 7 (MCP7), a mast
cell marker (Matsumoto et al., 1995), in the carotid intima and

FIGURE 3
PPI and MCODE analysis. (A) PPI of DEGs; (B–H) seven important functional modules obtained from MCODE analysis. Red represents upregulated
genes and blue represents downregulated genes.
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plaque tissues of various patients with ACAS who
underwent CEA, using immunohistochemistry. Furthermore,
through quantitative analysis, correlation analysis and
immunofluorescence double labeling method, a close
connection between C3AR1 and MPO as well as MCP7 was
found in carotid atherosclerotic plaque tissues. More notably,
IH staining revealed significantly higher expression of C3AR1,
MPO, and MCP7 in plaques from patients with ACAS compared
to the intima (p < 0.001, Figures 9A, C–E). IF double-labeling of
plaques also revealed a significant co-localization relationship
between C3AR1 and MPO-positive neutrophils (Figure 9B).
Correlation analysis demonstrated a positive correlation
between C3AR1 and both MPO expression level (Figure 9F)
and MCP7 expression level (Supplementary Figure S1).

3.10 Construction of ceRNA and TFs
regulatory networks for four
characterized genes

Finally, to further explore the molecular mechanism of ACAS,
the present study constructed the regulatory networks of ceRNA
and TFs of four target genes. The ceRNA hypothesis reveals a new
mechanism for RNA interactions. The ceRNA is a newly
discovered mechanism to regulate gene expression, which
includes mRNA encoding proteins, lncRNA, miRNA and
circRNA (Salmena et al., 2011). We predicted the miRNAs
bound to each characterized gene and also predicted the
miRNA-bound lncRNAs. The results showed that seven
lncRNAs competed with C3AR1 to bind hsa-miR-361-3p
(Figure 10A). Thirty-nine lncRNAs competed with FBLN5 for
binding to eight miRNAs (hsa-miR-27a-3p, hsa-miR-518a-5p,
hsa-miR-939-5p, hsa-let-7a-3p, hsa-miR-888-5p, hsa-miR-615-
5p, hsa-miR-892a, and hsa-miR-214-3p) (Figure 10B). Eighteen
lncRNAs competed with TPM1 to bind four miRNAs (hsa-miR-
542-3p, hsa-let-7a-3p, hsa-miR-558 and hsa-miR-297)
(Figure 10C). While up to ninety-one lncRNAs competed with
PPP1R12A for binding to nineteen miRNAs (hsa-miR-20a-3p,
hsa-miR-450b-5p, hsa-miR-323a-5p, hsa-miR-767-3p, hsa-miR-
148a-3p, hsa-miR-1207-5p hsa-miR-377-3p, hsa-miR-129-5p,
hsa-miR-1227-3p, hsa-miR-561-3p, hsa-miR-182-5p, hsa-miR-
141-3p, hsa-miR-181a-2-3p, hsa-miR-186-5p, hsa-miR-140-

5p,hsa-miR-570-3p, hsa-miR-877-3p, hsa-miR-194-3p, and hsa-
miR-449c-5p), respectively (Figure 10D). Thus, one or more
lncRNAs would compete with the characterized genes to bind
miRNAs. In addition, this study also predicted the TFs bound to
each characterized gene. Among them, twelve transcription
factors could bind to C3AR1 (Figure 11A). Nineteen
transcription factors could bind to FBLN5 (Figure 11B). Forty-
one transcription factors were able to bind to PPP1R12A
(Figure 11C). And forty transcription factors were able to bind
to TPM1 (Figure 11D). Thus, each characterized gene possesses
multiple TFs.

4 Discussion

In recent years, due to hypertension, dyslipidaemia, diabetes,
tobacco, obesity and other factors, cerebrovascular disease in young
adults, especially ischemic stroke, has shown an increasing trend
(Goldstein, 2020). Its extremely high mortality rate, disability rate,
recurrence rate, and further complications bring a huge economic
burden to people. Here, we investigated its main etiology, ACAS,
and probed into the pivotal genes and regulatory networks
associated with carotid atherosclerotic plaques employing
bioinformatics methods.

Our study screened out four genes characterized by ACAS:
C3AR1, FBLN5, PPP1R12A, and TPM1. Of these, C3AR1 was
upregulated and FBLN5, PPP1R12A, and TPM1 were
downregulated. The results of the analysis of variance in both the
training and validation sets highlighted that the four characterized
genes were differentially expressed in both the control and
experimental groups. And the ROC analysis for the four genes
revealed that they had high AUC values in both the training and
validation sets, indicating the accuracy of our screening results. In
addition, immunohistochemistry and fluorescence double labeling
further confirmed that C3AR1 was highly expressed in
atherosclerotic plaques of patients with ACAS. Therefore, we
venture to hypothesize that these key diagnostic genes are tightly
intertwined with the pathogenesis of ACAS and deserve to be
explored in depth.

The C3AR1 gene encodes the C3a allergenic toxin
chemotactic receptor, which belongs to the G protein-coupled
receptor 1 family and stimulates chemotaxis, granzyme release

TABLE 1 The results of the MCODE analysis.

Cluster Score Nodes Edges Node IDs

1 17.895 20 170 LAPTM5, LY86, ITGB2, CD74, CD53, FCGR2A, IRF8, TYROBP, CSF1R, ITGAM, HLA-DRA, CCR1, C1QA, IL10RA,
HCK, FCGR3A, FGR, NCF2, C1QB, C3AR1

2 7.091 12 39 CCL4, IGSF6, CD14, TREM1, CD68, CCL3, FCER1G, MS4A6A, RNASE6, CTSS, C5AR1, TREM2

3 6.444 10 29 IFI30, CTSA, CTSD, CTSC, HLA-DPB1, HLA-DQA1, HLA-DMA, MMP9, LGMN, CTSB

4 3.75 9 15 RHOB, LMOD1, PPP1CB, PPP1R12A, TPM1, TAGLN, CNN1, FERMT2, VCL

5 3.2 6 8 APOE, MMP12, CCL18, MSR1, HMOX1, SPP1

6 3 3 3 MYH11, MYH10, MYL9

7 3 3 3 FBLN5, OGN, MFAP4
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FIGURE 4
Three ML algorithms to screen feature genes. (A) LASSO coefficient path diagram, each curve represents one gene; (B) Lasso regression analysis
cross-validation curve. When nine genes are used in the analysis, Lasso fits best and cross-validation error is minimized. (C) SVM-RFE algorithm
determined the highest accuracy (0.909) when there were 7 genes; (D) SVM-RFE algorithm determined the lowest error rate (0.0911) when there were
7 genes; (E) The relationship between the number of Random Forest Trees and the error rate; (F) Genes are arranged in descending order of
importance; (G) Venn diagrams of the genes obtained by the three algorithms.
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and superoxide anion production. This gene is not only a key
gene in carotid atherosclerosis (Meng et al., 2021), but
also its signaling pathway C3a/C3aR1/VCAM1 mediates
neuroinflammation in aging and neurodegenerative diseases
(Propson et al., 2021). In our study, this gene also showed a

positive correlation with the level of infiltrating neutrophils and
mast cells activated. Previous studies have discovered that
C3aR1 controls neutrophil mobilization after spinal cord
injury through physiological antagonism of CXCR2 (Brennan
et al., 2019). Besides, neutrophils can trigger atherosclerosis and

FIGURE 5
Intergroup difference analysis of the four characterized genes. (A) Differential analysis of the expression of the four feature genes in the training set
illustrated by Violin plots; (B)Differential analysis of the expression of the four feature genes in the validation set shown by Violin plots; (C) Line plots of the
expression levels of the four feature genes.
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promote atherosclerotic plaque destabilization and endothelial
detachment (Silvestre-Roig et al., 2020). Notably, the formation
of neutrophil extracellular traps (NETs) in neutrophils is one of
the mechanisms of early atherosclerosis (Herrero-Cervera et al.,
2022). Furthermore, activated diseased SMCs attract neutrophils
to form NETs, which cause the histone H4 they contain to bind to
and cleave SMCs, leading to plaque instability (Silvestre-Roig
et al., 2019). Therefore, in our future studies, it is necessary to
investigate how C3AR1 mediates the role of neutrophils in
atherosclerosis and the potential specific mechanisms, so as to
design neutrophil-targeted therapeutic strategies to stabilize
atherosclerotic plaques, reverse ACAS, and reduce the
incidence of stroke. In contrast, the interaction between
C3AR1 and mast cells in atherosclerotic plaques has been less
studied and needs to be explored in depth.

FBLN5 is a member of the fibronectin family and is essential
for elastic fiber formation. It was discovered that FBLN5 may play
an important role in carotid atherosclerosis via has-mir-128 and
has-mir-532-3p (Zheng et al., 2022). PPP1R12A, also known as
MYPT1, is a key regulator of protein phosphatase 1C. Evidence
suggests that ROS-mediated downregulation of MYPT1 in
smooth muscle cells is a potential mechanism for abnormal
myocyte contractility in atherosclerosis (Cheng et al., 2013).
TPM1, the pro-myosin α-1 chain, binds to actin filaments in
muscle and non-muscle cells. It has been shown to be
downregulated in unstable carotid atherosclerotic plaques
(Guo et al., 2022). In short, these previous studies further
support the reliability of our screening results. Hence, we

established a predictive ACAS patient nomogram model based
on the four characterized genes of our screening. This model can
lead to the joint diagnosis or prediction of the pathogenic risk of
patients with ACAS by the four characteristic gene indicators and
provide an accurate digitalized risk probability for each patient,
thus assisting clinicians in decision-making and individualized
medical treatment.

Importantly, GSEA analysis revealed that five pathways were
activated in the experimental group, encompassing xenograft
rejection, autoimmune thyroid disease, graft-versus-host
disease, leishmaniasis infection and lysosomes. It has been
shown that allograft vasculopathy is a special case of immune-
mediated atherosclerosis (Libby, 2012). Moreover, lysosomes are
key nodes connecting lipid degradation, autophagy, apoptosis,
inflammatory vesicles, lysosomal biogenesis and macrophage
polarization, and may play a predominant role in the
initiation, development and progression of atherosclerotic
plaques (Zhang et al., 2021). However, the remaining
pathways such as autoimmune thyroid disease, graft-versus-
host disease and leishmaniasis infection have not been
reported to be associated with atherosclerosis. Therefore,
future exploration of the role of these pathways in ACAS may
offer more effective and precise avenues for drug development
and therapy.

More intriguingly, with the completion of the human genome
sequencing project and the continuous optimization of
sequencing technologies, the richness of the RNA world and
the diversity of TFs have been continuously recognized, opening

FIGURE 6
ROC analysis of the four feature genes. (A,B) ROC analysis results of the four feature genes in the training set (A) and validation set (B), respectively.
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up new frontiers for the treatment of diseases. Therefore, to
further enrich future therapeutic strategies for ACAS, we
constructed the ceRNA and transcription factor regulatory
networks of four target genes.

The ceRNA include mRNA, miRNA, lncRNA and so on
(Salmena et al., 2011). Studies have shown that many miRNAs
are involved not only in atherosclerosis-related physiological and
pathological processes, but also in lipid processing, inflammation
and cellular behaviors (such as proliferation, migration and
phenotypic transformation) (Navarro et al., 2020). For example,
extracellular vesicles-derived hsa-miR-27a-3p promotes
M2 macrophage polarization, thereby promoting cell proliferation
and migration (Zhao et al., 2022). Inhibition of hsa-miR-140-5p
expression can induce upregulation of C-reactive protein, which is
involved in atherogenesis (Teng and Meng, 2019). In addition, one

or more lncRNAs compete with signature genes to bind miRNAs.
lncRNAs coordinate and integrate a variety of signaling pathways
and play important roles in development, differentiation and disease
(Navarro et al., 2020). lncRNAs affect the expression levels of genes
closely related to endothelial dysfunction, smooth muscle cell
proliferation, macrophage dysfunction, abnormal lipid
metabolism and cellular autophagy in atherosclerotic plaques,
and thus are involved in regulating the onset and progression of
atherogenesis (Ma et al., 2023). For example, the long non-coding
RNA HOXC-AS1 inhibits oxidized low-density lipoprotein (ox-
LDL)-induced cholesterol accumulation by promoting the
expression of HOXC6 in THP-1 macrophages (Huang et al.,
2016). LINC01123 is highly expressed in patients with CAS and
promotes cell proliferation and migration by regulating the ox-LDL-
induced miR-1277-5p/KLF5 axis in vascular smooth muscle cells

FIGURE 7
Alignment diagram model for predicting the risk of ACAS. (A) Alignment diagram for predicting ACAS. (B) Calibration curve to assess the predictive
accuracy of the model. (C) Clinical impact curve to assess the model. (D) Decision curve analysis showing benefit in patients with ACAS.
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(Weng et al., 2021). In addition, TFs can regulate macrophages in
atherosclerosis through mechanisms involved in cytokine signaling,
lipid signaling, and foam cell formation (Kuznetsova et al., 2020).
For instance, decreasing RUNX1 expression inmacrophages inhibits

ox-LDL-induced lipid accumulation and inflammation (Liu et al.,
2022). Endothelial Foxp1 inhibits atherosclerosis by regulating
Nlrp3 inflammasome activation (Zhuang et al., 2019). In
conclusion, these findings further support the accuracy of the

FIGURE 8
Immune-related functions and immune cell correlation analysis of characterized genes. (A–D) Box line plots of the differences between high and
low expression groups for immune-related functions in C3AR1 (A), FBLN5 (B), PPP1R12A (C), and TPM1 (D), respectively; (E–H) Lollipop charts of the
correlation of C3AR1 (E), FBLN5 (F), PPP1R12A (G) and TPM1 (H), respectively, with 22 immune cell types.
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ceRNA and TFs regulatory networks of the characterized genes
constructed in this study. Therefore, an in-depth understanding of
the mechanisms and functions of these ceRNA and TFs will help us
to better ravel out the mysteries of the regulation of these
characterized genes and provide new ideas for the future
treatment of ACAS.

Undeniably, there are some limitations to this study. First,
although this study identified four signature genes for ACAS
based on ML algorithms and validated their diagnostic efficacy
in an external dataset, prospective cohorts are needed to further
investigate the biological significance of these signature genes in
predicting ACAS. Second, we validated the high expression of

FIGURE 9
C3AR protein level in intima and plaques of patients with ACAS. (A) IH staining of C3AR1, MPO and MCP7 in the intima (left) and plaques (right) of
patients with ACAS. (B) IF staining for C3AR1 (red) andMPO (green) in plaques from patients with ACAS (magnification, ×400). (C–E) Significant difference
analysis of IH results for C3AR1, MPO and MCP7 present by box plots. ***, indicate p < 0.001. (F) Correlation plot of C3AR1 and MPO protein expression.
MPO: myeloperoxidase (neutrophil marker); MCP7: mast cell protease 7 (mast cell marker).
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C3AR1 in patients with ACAS only in human plaque tissue,
whereas the levels of FBLN5, PPP1R12A and TPM1 in plaques
need to be further clarified. In conclusion, further in vivo and

in vitro studies are needed to elucidate the potential
mechanisms of action of C3AR1, FBLN5, PPP1R12A and
TPM1 in ACAS.

FIGURE 10
ceRNA of characterized genes. (A–D) The ceRNA regulatory networks of C3AR1 (A), FBLN5 (B), PPP1R12A (C), and TPM1 (D), separately. Red
represents characterized genes, green represents miRNAs, and blue represents lncRNAs.
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5 Conclusion

Four pivotal genes were screened, and relevant ceRNA and TFs
were predicted. These molecules may play a crucial role in ACAS
and serve as potential biomarkers and therapeutic targets.
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