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Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from
continuous exposure to SiO2-rich dust in the workplace. The onset and
progression of silicosis is a complicated and poorly understood pathological
process involving numerous cells and molecules. However, silicosis poses a
severe threat to public health in developing countries, where it is the most
prevalent occupational disease. There is convincing evidence supporting that
innate and adaptive immune cells, as well as their cytokines, play a significant role
in the development of silicosis. In this review, we describe the roles of immune
cells and cytokines in silicosis, and summarize current knowledge on several
important inflammatory signaling pathways associatedwith the disease, aiming to
provide novel targets and strategies for the treatment of silicosis-related
inflammation.
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1 Background

Silicosis is a progressive lung disease caused by long-term inhalation of silica particles.
Previous studies elucidated that inflammation is associated with the pathogenesis and
severity of silicosis. However, the associations between inflammation-related cells, factors,
signaling pathways and proteins and disease have not been specifically studied and
summarized in silicosis. In this review, we aimed to describe the role of inflammation
during the development of silicosis and to explore the relationship between them, as well as
to summarize current drug targeting on inflammation of silicosis.

2 Introduction

Silicosis is a fibrogranulomatous lung disease characterized by macrophage-dominated
pulmonary alveolitis and restricted pulmonary function, which is traditionally been
detected in miners but is now also being diagnosed in individuals working in
contemporary industries such as denim production, domestic benchtop fabrication, and
jewelry polishing (Leung et al., 2012; Barnes et al., 2019).

There are three types of silicosis—chronic, accelerated, and acute—which are
categorized according to the quantity and length of silica exposure. Several additional
diseases associated with silica exposure also result in considerable morbidity and mortality,
including lung cancer, pulmonary tuberculosis, interstitial fibrosis, industrial bronchitis,
hemoptysis, emphysema, rheumatoid complications, glomerulonephritis, and autoimmune
disease, which negatively influence the quality of life and physical health of affected
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individuals (Rees andMurray, 2007; Pollard, 2016; Krefft et al., 2020;
Faubry et al., 2021). Despite the high rates of silicosis incidence and
mortality, treatment options for the prevention or repair of silicosis-
associated lung damage are limited, and the pathomechanisms of the
condition remain poorly understood (Li et al., 2022). Inflammation-
related mechanisms are considered to underlie most cases of silica-
induced lung injury. Elucidating silica-induced inflammation
cascades and inflammation-fibrosis relationships is critical for
understanding the pathophysiology of silicosis. In this review, we
outline the most recent advances in the understanding of the
inflammatory mechanisms associated with silicosis occurrence
and development.

2.1 Silicosis and immune cells

Studies have demonstrated that silicosis begins with
inflammation of the lungs. Silicon dioxide (SiO2) stimulates
immune cells such as macrophages, neutrophils (NEUTs), mast
cells (MCs), dendritic cells (DCs), T cells, and B cells. Immune cells
regulate silicosis- and pulmonary fibrosis-related processes through
several molecular pathways. Both the innate and adaptive immune
systems are involved in the modulation of silicosis-induced
inflammation (Langley et al., 2004; Malaviya et al., 2020).

2.1.1 Macrophages
Macrophages are the most well-known immune cells in innate

immunity during silicosis progression. Two kinds of macrophages,
tissue-resident macrophages and recruited macrophages, play
important regulatory roles in tissue repair and fibrosis. Alveolar
macrophages (AMs) constitute a unique subset of tissue-resident
macrophages with the highest content, which originate primarily
from embryonic precursors during differentiation and development
and self-renew during adulthood (Laskin et al., 2019). While
recruited macrophages derived primarily from blood and bone
marrow precursors become part of the lung macrophage pool
during inflammation, they are referred to as recruited alveolar
macrophages (RecAMs) (Aegerter et al., 2022). As demonstrated
in an excellent review by Dang et al., AMs are mainly to detective
and respond to microenvironment changes and phagocyte debris.
RecAMs show a strong pro-inflammatory effect in inflammation
and promoting fibrosis after inflammation regression (Dang
et al., 2022).

AMs, also known as the resident innate immune cell of the lung,
located on the luminal surface of the alveolar space, are the only
macrophages exposed to air (Joshi et al., 2018). AMs represent the
first line of defense against SiO2 and regulate the different stages of
silicosis. When silica particles enter the lungs from the respiratory
tract, scavenger receptors (SRs) on the surface of AMs first recognize
and bind SiO2 particles (Lee et al., 2019). Subsequently, the SRs
mediate the internalization of SiO2 via the formation of phagosomes,
which then combine with primary lysosomes derived from the Golgi
apparatus, yielding lysosomes, in which the phagocytic contents are
degraded (Deretic, 2021). The integrity of the lysosomal membrane
is disrupted throughout this degradation process via H-bonding
reactions (SiOH interaction with oxygen and nitrogen groups on the
membranes). Following lysosome rupture, the NOD-like receptor
thermal protein domain associated protein 3 (NLRP3)

inflammasome is activated by enzymes on the membrane, such
as cathepsin, which triggers AM disintegration, necrotization, or
apoptosis (Orlowski et al., 2015; Zhang et al., 2021). Damaged/dead
AMs release a large number of inflammatory factors [interleukin
(IL)-1β, IL-18, and others] and reactive oxygen species (ROS),
thereby enhancing the pro-inflammatory cascade. They also
stimulate a pro-fibrotic response that promotes the proliferation,
activation, and migration of pulmonary fibroblasts. Fibroblasts
synthesize and secrete collagen, and can also differentiate into
myofibroblasts that release more extracellular matrix (ECM),
leading eventually to fibrosis (Chanda et al., 2019), progressing to
massive pulmonary fibrosis, and then to the impairment of
respiratory functions (Hamilton et al., 2008; Todd et al., 2012).
Subsequently, damaged AMs that are not eliminated continue
accumulating and further activating the immune response. The
SiO2 particles released by injured cells are ingested by new AMs,
resulting in a vicious circle that serves to accelerate the fibrotic
process (Tan and Chen, 2021) (Figure 1). These observations
provide strong evidence that AMs are central to the pathology of
silicosis in terms of both inflammation and fibrosis formation.

Studies have shown that silica engulfment results in lysosomal
rupture, which leads to the accumulation of autophagosomes in
AMs and the promotion of apoptosis via the mitochondrial
apoptotic pathway (Tan and Chen, 2021). In addition, SiO2

mediates AM apoptosis through the Fas/FasL, NF-κB, and ERK
signaling pathways. NF-κB and ERK activation exerts protective
effects against silica-induced apoptosis in macrophages, whereas
Fas/FasL promote pro-apoptotic effects in these cells (Gambelli
et al., 2004; Yao et al., 2013).

Thus, altering the autophagy and apoptosis of AMs can reduce
the silica-inflammation, which implies that manipulating
macrophage autophagy may be a promising treatment target for
pulmonary fibrosis. Dioscin and trehalose protecting the autophagy-
lysosomal system leads to alleviate CS-induced apoptosis and
cytokine production in AMs, which may provide concrete
molecular mechanism for the therapy of silicosis (Du et al., 2019;
Tan et al., 2020). Notably, atractylenolide III alleviates the apoptosis
of AMs but inhibit autophagy by mTOR-dependent manner,
thereby improving the blockage of autophagic degradation in
AMs (Chen et al., 2021).

The number of macrophages in the lung increased in mice after
exposure to silica (Song et al., 2022). Once localized at the site of lung
injury, these macrophages are activated by mediators they encounter
in the lungmicroenvironment and develop into subpopulations with
varying degrees of pro-inflammatory (M1) or wound-repair (M2)
activity (Atri et al., 2018). In the early stages of silicosis,
M1 macrophages are stimulated, which promotes inflammation
primarily through the production of the pro-inflammatory
cytokines IL-1β and IL-6. Later, M2 macrophages are induced to
secrete the pro-fibrotic cytokines IL-10 and TGF-β, which promotes
tissue repair (Zhang et al., 2021; Fan et al., 2022; Tang et al., 2022).
Meanwhile, exosome secretion is increased in macrophages treated
with SiO2, which stimulates crosstalk between macrophages and
fibroblasts. Additionally, the inhibition of endoplasmic reticulum
stress reduces exosome secretion, which, in turn, suppresses
myofibroblast differentiation, proliferation, and migration (Qin
et al., 2021). Therefore, inhibiting macrophage polarization can
reduce the symptoms of pulmonary fibrosis. Pirfenidone and
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bicyclol ameliorates pulmonary inflammation and fibrosis in a rat
silicosis model by inhibiting macrophage polarization (Zhan et al.,
2021; Tang et al., 2022).

AMs engulf invading silica dust. The lysosomal membrane of
AMs is disrupted by H-bonding reactions, resulting in AM
apoptosis. Simultaneously, silica dust induces
NLRP3 inflammasome activation in AMs. Apoptotic AMs secrete
large numbers of inflammatory factors. Eventually, fibroblasts
proliferate and are activated and produce large amounts of
extracellular matrix (ECM), leading to fibrosis. Macrophage
apoptosis is regulated by the Fas, NF-κB, and ERK
signaling pathways.

2.1.2 Neutrophils
NEUTs play a pivotal role in the innate immune defense against

pathogens, killing them directly by phagocytosis and degranulation
(Khan et al., 2019). In response to silica insult, neutrophils secrete a
wide range of cytokines as well as neutrophil extracellular traps
(NETs), which stimulate the production of downstream factors
and lead to the recruitment of more neutrophils or other
leukocytes to the lung (Khan et al., 2019). The lungs of mice
show severe injury after the inhalation of SiO2 for 28 days, and
the content of NETs in the bronchoalveolar lavage fluid is
significantly increased (Liu et al., 2019). Brinkmann et al.
described extracellular DNA release in human neutrophils
challenged with different doses of silica particles, suggesting
that silica crystal-promoted NETs could play an important
role in the establishment of silicosis (Brinkmann et al., 2012).
Furthermore, it was reported that NETs induce the activation of
pulmonary fibroblasts and their differentiation into
myofibroblasts, leading to increased collagen production and
fibrosis (Chrysanthopoulou et al., 2014). Airway neutrophils
seem to be activated in silicosis, as reflected by the observed
increase in their main proteolytic product, neutrophil elastase

(NE), in the BALF of affected patients (Scharfman et al., 1989).
Gregory et al. demonstrated that fibroblast and myofibroblast
accumulation was significantly reduced in Ne−/− mice, which are
protected from asbestos-induced pulmonary fibrosis. They
further found that NE directly promotes lung fibroblast
proliferation and myofibroblast differentiation (Gregory
et al., 2015).

2.1.3 Mast cells
MCs form part of the sentinel immune cell population. Despite

the evidence supporting a role for MCs in silicosis, no relevant
systematic studies on the effects of silica on these cells exist to date.
Clinical studies have shown that MCs are activated in silica-
induced inflammation. Increased numbers of tryptase- and
basic fibroblast growth factor (bFGF)-positive MCs were found
within silicotic nodules in lung tissues of patients with silicosis
(Hamada et al., 2000). MCs not only recruit and activate other
immune cells by secreting inflammatory mediators but also
regulate vascular permeability, smooth muscle cell contraction,
and fibroblast growth in lung fibrosis (Wygrecka et al., 2013). Jared
et al. found that, unlike wild-type C57BL/6 mice, MC-deficient
mice do not develop inflammation nor do they display significant
collagen deposition following silica instillation (Brown et al.,
2007). MCs also secrete tryptase, which interacts with multiple
regulatory factors, such as activating proteinase-activated receptor
2 (PAR2), inducing DNA synthesis in resting fibroblasts and
promoting collagen synthesis, thereby stimulating fibroblast
proliferation (Henriques Á et al., 2016). Collectively, these
studies highlighted a clear involvement of MCs in silicosis.
Yiling et al. proposed the IgE-FcεRI axis as a molecular
mechanism responsible for the activation of mast cells. They
found that silica exposure induced MCs degranulation, as
shown by the increased serum histamine levels and β-
hexosaminidase activity in WT mice, but in FcεRI-deficient

FIGURE 1
The mechanisms underlying the pathological effects of silica on alveolar macrophages (AMs).
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mice, no significant alterations in serum, indicating that MCs
degranulation took place in silica-exposed mice, but was blocked
by FcεRI deficiency (Chen et al., 2022). Chymase, chymotrypsin-
like serine protease, is present in MCs, which can promote
inflammatory responses. The specific chymase inhibitor TY-
51469 suppresses the accumulation of MCs and NEUTs in the
lung and reduces pulmonary fibrosis in silicotic mice (Takato
et al., 2011).

2.1.4 Dendritic cells
DCs are potent antigen-presenting cells (APCs) that modulate

immune response initiation. DCs, recently identified players in the
pathogenesis of silicosis, have been shown to accumulate in the lung
tissue of silica dust-exposed rats (Bao et al., 2018; Liu et al., 2019).
DCs migrate from the alveoli into the lung parenchyma in response
to silica, resulting in significantly increased numbers of activated T
lymphocytes, and thereby promoting immune activation (Beamer
and Holian, 2007). Suna Liu et al. showed that the phenotype,
function, and migration of DCs and the balance between T-helper1
(Th1) and Th2 cells are altered by silica exposure and that these
changes contribute to the development of silicosis (Liu et al., 2019).
Moreover, Lei Bao et al. demonstrated that DCs regulate the
polarization of Th1/Th2 cells via CD80, CD86, MHC-II, and IL-
12 expression (Bao et al., 2018). Combined, these observations
indicate that DCs may play a critical role in modulating immune
homeostasis during silicosis.

2.1.5 Adaptive immune cells
It is known that adaptive immune cells infiltrate the silicotic

lung. However, the precise role of different immune cell subsets in
the pathology of silicosis has not been elaborated. In mice, SiO2

treatment was found to activate T and B cell proliferation via T-cell
(TCR) and B-cell (BCR) receptor complexes and significantly alter
the proportions and subtypes of T and B cells (Eleftheriadis et al.,
2019; Zhao et al., 2022). The expression of PD-1/PD-L1 and CTLA-4
was also dysregulated in T and B cells. Additionally, although both
PD-1/PD-L1 and CTLA-4 inhibitors improved silica-induced
immune system disruption, only PD-1/PD-L1 signaling inhibition
exerted significant ameliorative effects against silicosis (Zhao et al.,
2022). Meanwhile, analysis of patients with this condition indicated
that the morbidity of autoimmune diseases increased after dust
exposure (Pollard, 2016).

Once silica dust has entered the respiratory tract, APCs, such as
DCs, activate naïve T lymphocytes via the processing and presentation
of silica antigens. CD4+ T cells, primarily Th1, Th2, Th17, and
regulatory T cells (Tregs), have been demonstrated to exert
pathogenic effects in silica particle-induced pulmonary fibrosis.

Th1/Th2 imbalance plays a regulatory role in the inflammatory
phase of silicosis. The Th cell balance shifts from Th1 dominance
during inflammation to Th2 dominance in the development of
fibrosis. Specifically, IFN-γ and IL-12 produced by Th1 cells
inhibit fibroblast proliferation and fibrous tissue formation,
whereas Th2-secreted IL-4, IL-5, and IL-13 are thought to
promote fibrosis by inducing fibroblast aggregation and
activation (Song et al., 2014; Malaviya et al., 2020).

Th17 cells also play a key regulatory role during inflammation
and fibrosis of the lung in response to silica exposure. IL-17, a
signature cytokine of Th17 cells, contributes to lung inflammation

and fibrosis by increasing IL-6, IL-8, and matrix metalloproteinases
(MMPs) production (Lo Re et al., 2010; Kolahian et al., 2016). The
Th17 response is key to promoting silicosis inflammation and
fibrosis by affecting the homeostasis of Th cell-mediated immune
responses and increasing the production of IL-22 and IL-1β (Song
et al., 2014).

Tregs have dual functions, depending on the stage of silicosis
and interaction with other immune cells. In one study, mice exposed
to silica were administered anti-CD25 monoclonal antibodies to
deplete Tregs. In the early inflammatory stage, Treg-depleted mice
were found to be susceptible to severe inflammation, resulting in
enhanced inflammatory cell infiltration and the promotion of
fibrosis. In the later fibrotic stage, the same mice show a delay
in silicosis progression (Liu et al., 2010). This suggests that Tregs
play a detrimental role in lung fibrosis in the early stages of the
disease, increasing the production of TGF-β and collagen
deposition. However, the opposite is seen in the later stages
(Boveda-Ruiz et al., 2013). In silica-induced fibrosis, Tregs
promote Th17 cell differentiation and IL-17 secretion by
regulating TGF-β and IL-1β and also interact with Th1/Th2 cells,
altering Th1/Th2 polarization toward a Th2-dominant response by
suppressing Th1 responses (Liu et al., 2010; Song et al., 2012).

B cells are also actively involved in silicosis. Regulatory B cells
(Bregs) have immunomodulatory properties and secrete inhibitory
cytokines such as IL-10, as well as fibrotic cytokines such as TGF-β
(Rosser and Mauri, 2015). There is clear evidence that IL-10-
producing Bregs (B10) are involved in the development of
silicosis through the regulation of the Th cell balance.
B10 deficiency results in an increase in the number of
inflammatory cells (early lymphocytes, late macrophages, and
neutrophils) and factors (IL-6 and TNF-α), which aggravates
inflammation. Additionally, B10 insufficiency leads to a decrease
in silica-induced TGF-β expression, which attenuates the pro-
fibrotic response (Liu et al., 2016). The role of B10 in silicosis
has also been confirmed in patients. The levels of IL-10 and Bregs are
increased in patients with silicosis, resulting in Treg maintenance
and the regulation of the Th1/Th2 immune balance (Chen et al.,
2017). Kazuhiro Komura et al. found that a lack of CD19 weakens
the B cell response and significantly reduces susceptibility to
pulmonary fibrosis. In contrast, fibrosis is aggravated in mice
overexpressing CD19, indicating that B cells play a pro-fibrotic
role in pulmonary fibrosis. The authors proposed that B cells
regulate cytokine expression, thereby promoting fibrosis via a
hyaluronic acid-TLR4-dependent pathway (Komura et al., 2008).

During the development of silicosis, many immune cells are
activated and produce multiple mediators that either activate or
suppress inflammation and fibrosis (Figure 2).

3 Inflammatory factors

Pro-inflammatory cytokines released during inflammation by
macrophages and, potentially, also neutrophils, MCs, and
lymphocytes, promote the exaggerated development of silicosis.
Cytokines that have received substantial attention include IL-6,
IL-1β, TGF-β, TNF-α, and platelet derived growth factor (PDGF)
(Blanco-Perez et al., 2021). The complicated interaction between
these mediators will be elaborated in the following sections.

Frontiers in Pharmacology frontiersin.org04

Liu et al. 10.3389/fphar.2024.1362509

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1362509


3.1 Interleukins

IL-1β is a downstream product of NLRP3 inflammasome
activation and has pro-inflammatory and fibrinogenic effects
in silicosis. The excessive secretion of IL-1β can aggravate
silicosis, whereas its neutralization or knockout can reverse the
progression of the disease (Cavalli et al., 2015; Qin et al., 2021). Studies
have shown an association between IL1B gene polymorphism and an
increased risk of silicosis (Weng et al., 2015). The importance of IL-1β
in silicosis has been demonstrated in both the inflammatory and
fibrotic stages. IL-1β can promote inflammatory cell infiltration by
stimulating the expression of TNF-α, IL-6, and MCP-1, thereby
further amplifying the inflammatory response (Guo et al., 2013;
Chen et al., 2014). Moreover, IL-1β contributes to a shift in the
Th1/Th2 balance toward a Th2-dominant response during the
development of fibrosis (Guo et al., 2013). IL-1β is a pro-
fibrogenic cytokine that enhances collagen deposition by increasing
the expression of TGF-β (Fan et al., 2001; Guo et al., 2013).

IL-6 is mainly secreted by monocytes, lymphocytes, pulmonary
fibroblasts, pulmonary macrophages, and endothelial cells. The
levels of IL-6 are significantly increased in the serum and BALF
of patients with silicosis (Blanco-Perez et al., 2021). High IL-6 levels
exert marked effects on other inflammatory factors, immune cells,
and oxidative stress, which are closely related to the pathogenesis of
silica-induced pulmonary fibrosis. IL-6 is required for the
production of other inflammatory factors, such as IL-1 and TNF-
α. The differentiation of CD4+ T cells is also modulated by IL-6,
which induces the differentiation of Th17 cells but inhibits the
production of Tregs. An imbalanced Th17 cell/Treg ratio results in
the disruption of the immune response and the promotion of
inflammation-related diseases (Kang et al., 2019). In mice,
silencing IL-6 receptor-α can ameliorate the secretion of
Th2 cytokines (IL-4 and IL-5) and inhibit the activation of the

IL-6/JAK/STAT pathway, thereby improving lung function and
alleviating the development of silicosis (Tripathi et al., 2010). IL-
6 can also influence dust-induced oxidative stress in the lung. The
epithelial cells of the lungs produce ROS and express ICAM-1
through an IL-6/AKT/STAT3/NF-κB-dependent pathway, thereby
mediating immune cell adherence and infiltration into
inflammatory sites and fibrotic lesions (Liu et al., 2018).

IL-17, secreted by macrophages and Th17 lymphocytes, is
important for host defenses against extracellular pathogens, and
can exacerbate inflammatory responses (Korn et al., 2009). Rats
exposed to silica display increased levels of IL-17, which is associated
with the progression of fibrosis (Lo Re et al., 2010). The mRNA
expression levels of IL-17, retinoid-related orphan nuclear receptor
γt (RORγt), and IL-23 are increased in AMs of mice tracheally
perfused with silica dust, leading to the local aggregation of
Th17 lymphocytes and the production of IL-17. These changes
subsequently aggravate the acute inflammatory response in silicosis
(Lo Re et al., 2010). IL-23 maintains the phenotype of
Th17 lymphocytes, while RORγt is the key transcription factor of
Th17 lymphocytes (Korn et al., 2009). The neutralization of IL-17
can reduce neutrophil recruitment and suppress Th17 cell
development by decreasing IL-6 and IL-1β content (Hasan et al.,
2013). IL-17modulates the differentiation of Tregs in the early phase
of silicosis and promotes the Th1/Th2 immune response, thus
influencing silica-induced lung inflammation and fibrosis by
regulating the production of IL-22 and IL-1β (Chen et al., 2014;
Song et al., 2014). Hence, neutralization of IL-17 with anti-IL-
17 antibody could inhibit silica-induced lung inflammation and
fibrosis by decreasing Th17 cells and IL-1β, increasing Tregs, and
delaying silica-induced Th1/Th2 immune response (Chen
et al., 2014).

Other interleukins, such as IL-13, IL-18, and IL-8, also promote
fibrosis through a variety of mechanisms, while cytokines such as

FIGURE 2
The innate and adaptive immune systems in silicosis.
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IL-7, IL-12, and IL-22 can inhibit the formation of fibrosis by
reducing collagen deposition (She et al., 2021).

3.2 TNF-α

TNF-α, produced by activated macrophages, fibroblasts, and
lymphocytes, can initiate a complex cascade of inflammatory
responses in the early inflammatory stage and during the late
development of silica-induced fibrosis (Park et al., 2012). TNF-α
increases the risk of pulmonary fibrosis by inducing the expression
of IL-1, IL-6, and IL-8. Meanwhile, TNF-α can stimulate the
expression of TGF-β1 through the ERK signaling pathway (Xie
et al., 2021), which promotes fibrosis progression by inducing ECM
synthesis and deposition in fibroblasts (Morrison and Davey, 2009;
Jiang et al., 2015). That TNF-α plays an important role in the
development of silicosis has been demonstrated in SiO2-treated rats.
After a course of infliximab (anti-TNF-α antibody) injections, the
number of inflammatory cells was decreased, collagen deposition
was reduced, NF-κB signaling was inhibited, and iNOS expression
was downregulated, leading eventually to an improvement in
pulmonary function (Zhang et al., 2018). Silicosis can be
prevented with the administration of an anti-TNF antibody but
is aggravated by exogenous recombinant TNF-α application. The
latter augments fibroblast growth, collagen deposition, and cell
necrosis (Piguet, 1990). Moreover, in silicosis, TNF-α stimulation
promotes the secretion of other cytokines, influences the function of
signaling pathways, and potentiates the proliferation of fibroblasts
and the deposition of collagen. Infliximab is the anti-TNF-α
antibody, which improve silica-induced pulmonary inflammation
by decreasing the TNF-α, inhibiting NF-κB signaling as well as
oxidant status (iNOS) (Zhang et al., 2018).

3.3 TGF-β

TGF-β is a well-characterized fibrogenic mediator and it has
long been known that TGF-β expression is increased in silicosis. In
rats, after a single intratracheal infusion of silica, TGF-β peptide was
detected in fibroblasts and macrophages surrounding silicotic
granuloma and fibroblasts adjacent to hyperplastic type II cells in
the lungs (Williams et al., 1993). The major role of TGF-β in silicosis
is the promotion of ECM accumulation, EMT induction, and the
inhibition of matrix degradation. During pulmonary fibrosis, the
TGF-β/Smad signaling pathway is activated, which increases the
expression of collagen and fibronectin genes. TGF-β binds to TGF-β
receptors (TβR) on lung fibroblasts, leading to the phosphorylation
of Smad2/3. Phosphorylated Smad2/3 then translocate to the
nucleus and induce the expression of genes that promote EMT
and the transformation of fibroblasts into myofibroblasts, resulting
in the production of a large amount of ECM (Attisano and Wrana,
2002; Zhang et al., 2021). An uncontrolled, continued EMT may
result in fibrosis that has a close relationship with silicosis (Stone
et al., 2016). TGF-β can also inhibit matrix degradation by
decreasing the secretion of proteases and increasing that of
protease inhibitors such as MMPs and tissue inhibitor of metal
protease (TIMP) (Yang et al., 2011). Through these various means,
TGF-β can cause pulmonary fibrosis by promoting the

accumulation of a large amount of ECM in the lungs. TGF-β can
also promote pulmonary fibrosis via the activation of the ERK and
PI3K/AKT pathways (Kolahian et al., 2016). Hence, as a key
inflammatory factor in silicosis, any way to downregulate the
expression of TGF-β or to neutralize secreted TGF-β might be
possible to delay the progression of silicosis. According to this,
the anti-TGF-β antibody HTPEP-001 was developed and is
currently in clinical phase I (Liu et al., 2023).

3.4 Growth factors

Many growth factors, such as PDGF, fibroblast growth factor
(FGF), vascular endothelial growth factor (VEGF), and connective
tissue growth factor (CTGF), can promote fibrosis (Jiao et al., 2021;
Zhang et al., 2021). The role of PDGF in fibrosis has been
particularly well-studied. It has been shown that SiO2 can induce
PDGF secretion in Tregs, thereby stimulating fibroblasts and
promoting pulmonary fibrosis (Lo Re et al., 2011). The
overexpression of PDGF aggravates silicosis by increasing Ca2+

release through the PI3K signaling pathway, ultimately
influencing the expression of ECM-related genes in pulmonary
fibroblasts (Mukherjee et al., 2013).

CTGF, the most direct downstream effector of TGF-β,
influences the pathogenesis of silicosis by promoting the
synthesis of ECM, the proliferation and migration of fibroblasts,
and EMT (Paradis et al., 1999; Jiao et al., 2021). In silicosis, the TGF-
β/CTGF pathway enhances inflammation and fibrosis primarily by
interacting with Smad or MAPK (Jiao et al., 2021). A high
concentration of CTGF is detected in fibroblasts treated with the
supernatant of SiO2-stimulated AMs. However, anti-CTGF
antibody administration prevents CTGF from activating
downstream pro-fibrotic signaling, thereby attenuating silicosis
(Cui et al., 2018). Combined, these observations indicate that
CTGF exerts pro-fibrotic effects in silicosis.

VEGF plays a key role in lymphangiogenesis, which is an
important channel for the removal of dust and inflammatory
mediators in the early stage of silicosis (Yu et al., 2016). Jinsong
et al. found that VEGF expression levels are higher in BALF and
AMs of patients with silicosis than in healthy controls. In lymphatic
endothelial cells cultured in supernatant medium of silica-treated
human monocyte-macrophages (U937 cells), VEGF can promote
the expression of VEGF receptor 3 (VEGFR3) and lymphatic vessel
endothelial hyaluronic acid receptor 1 (LYVE-1), which can
influence lymphangiogenesis by upregulating the Src/eNOS
signaling pathway (Zhang et al., 2021). Specifically, VEGF
stimulates lymphangiogenesis in silicosis, which promotes
inflammation, oxidative damage, and, ultimately, fibrosis.

3.5 Chemokines

MCP-1 (also known as CCL2), mainly derived from fibroblasts
and macrophages, is a member of the C-C class chemokine family
and a key factor in the initiation of inflammation (Deshmane et al.,
2009; Melgarejo et al., 2009). MCP-1 can regulate the migration,
chemotaxis, and recruitment of macrophages and T lymphocytes
during various types of inflammation (Lee and Song, 2017).
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Boitelle A et al. found that coal workers have higher levels of MCP-
1 compared with healthy controls. They speculated that MCP-1
promotes the migration of peripheral blood mononuclear cells out
of blood vessels into tissues, causing mononuclear macrophages to
accumulate in the alveolar lumen, and thus influencing the
occurrence of alveolitis in coal worker’s pneumoconiosis
(Boitelle et al., 1997). When exposed to SiO2, human
pulmonary fibroblasts (HPF-α) release MCP-1. The increased
release of MCP-1 and its receptor, CCR2, promotes cell
activation and migration (Liu et al., 2015).

Inflammatory factors play important roles in silicosis, the
interaction between them is complicated. However, regulation of
some of these factors suggest a strategy to mitigate the progression of
fibrosis in silicosis, and some drugs targeting on these factors have
revealed good therapeutic potential (Table 1).

4 Signal pathways

The inflammatory networks underlying the development of
silicosis remain incompletely understood. Multiple pathways have
been reported to participate in the pathology of silicosis.

4.1 The NF-κB signaling pathway

NF-κB is a nuclear transcription factor with a key role in
pro-inflammatory signaling and represents a major regulatory
node in a complex inflammatory signaling network (Lawrence,

2009; Rius-Pérez et al., 2020). NF-κB is rapidly and persistently
activated in acute and chronic inflammatory disorders and plays
a critical role in host defenses against pathogens and toxic
substances, such as silica (Kang et al., 2000; Zhang et al.,
2017; Dorrington and Fraser, 2019). Following exposure to
silica, NF-κB is rapidly released from IκB, following which it
translocates into the nucleus and initiates the transcription of
specific genes, such as TNF, IL1B, and IL6, which, in turn, can
further aggravate the inflammatory response and fibrosis
(Rojanasakul et al., 1999; Porter et al., 2002). The systemic
blockage of NF-κB activation can markedly ameliorate SiO2-
induced inflammatory responses, collagen deposition,
apoptosis, and fibrosis in mice. However, in transgenic mice
with lung epithelial cell-specific inhibition of NF-κB activation,
lung inflammation is decreased following silica exposure,
whereas collagen deposition and apoptosis levels are
increased (Di Giuseppe et al., 2009). As mentioned earlier,
silica exposure induces NF-κB activation in macrophages,
which modulates macrophage apoptosis. To clarify the role of
NF-κB activation in silica-induced apoptosis, macrophages
were treated with BAY 11-7085, a powerful inhibitor of IκB
phosphorylation. The absence of NF-κB was found to increase
silica-induced apoptosis in macrophages (Gambelli et al., 2004).
The absence of NF-κB was found to increase silica-induced
apoptosis in macrophages. Meanwhile, whereas the systemic
inhibition of NF-κB protects against silica-induced lung
injury, specific NF-κB inhibition in macrophages and lung
epithelial cells appears to promote cell apoptosis and
aggravate silicosis.

TABLE 1 Drugs targeting inflammatory cytokines.

Name Target Mechanism Ref

Anakinra IL-1 receptor ↓collagen deposition Cavalli et al. (2015)

↓damaged lung

↓SiO2 nodule formation

SM-17 IL-17 receptor B ↓the accumulation of neutrophils Hasan et al. (2013)

↓the development of Th17

Anti-IL-17 Ab IL-17 ↑neutralization of IL-17 Chen et al. (2014)

↓Th1/Th2 immune response

↓Th17 cells

↑Tregs

Tralokinumab IL-13 ↑neutralization of IL-13 Murray et al. (2014)

↓collagen deposition

↓myofibroblasts activation

Infliximab TNF-a ↓the expressing of NF-κB signaling Zhang et al. (2018)

↓M1 macrophage (iNOS)

HTPEP-001 TGF-β ↓TGF-β reduction Liu et al. (2023)

↓fibrotic progress

Pamrevlumab CTGF ↓EMT Cui et al. (2018)
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4.2 The MAPK signaling pathway

The generic MAPK signaling pathway is shared by four distinct
cascades, namely, ERK1/2, JNK1/2/3, p38-MAPK, and ERK5. The
MAPK signaling pathway is the primary regulatory module of
various cellular processes, such as cell proliferation,
differentiation, and responses to stress. ROS, cytokines, and
other substances produced following exposure to SiO2 act on
MAPK/ERK pathway-related receptors and activate downstream
signals, thereby promoting silicosis formation and development
(Ding et al., 1999). Studies have indicated that the SiO2-induced
activation of fibroblast proliferation, ECM production,
inflammatory responses, and apoptosis is mediated by the
MAPK/ERK signal pathway, at least partly. The MAPK/ERK
inhibitor (PD98059) exerts a marked antagonistic effect on
silica-induced lung inflammation by inhibiting the expression of
TNF-α and TGF-β (Li et al., 2009). Silica exposure induces ERK1/
2 phosphorylation, which can protect against macrophage
apoptosis, in contrast to that observed with PD98059 treatment
(Gambelli et al., 2004). Silica induces early growth response
protein 1 (EGR-1) activation via the MAPK/ERK pathway,
resulting in the modulation of the expression of inflammation-
related genes (PDGF, ICAM-1) and fibrosis-related genes that
affect matrix balance (MMP1, fibronectin), which promotes the
inflammatory response, fibroblast proliferation, and ECM
synthesis (Zeng et al., 2005).

p38-MAPK, a central mediator of inflammatory and stress
responses, is a major cellular signal transducer of extracellular
stress signals induced by lipopolysaccharide (LPS), endotoxins,
and pro-inflammatory cytokines (Yeung et al., 2018). p38-MAPK
is activated by silica, following which it phosphorylates an array of
substrates in both the cytoplasm and nucleus, thereby influencing
inflammation, cell differentiation, and cell growth (Wang et al.,
2016). Ample evidence suggests that p38-MAPK regulates signals
involved in the development of fibrosis by mediating EMT and
promoting TGF-β secretion. Treatment with SB203580, a p38 kinase
inhibitor, can significantly reduce silica-induced TGF-β secretion
and EMT, as evidenced by the consequent induction of E-cadherin
and repression of vimentin and α-SMA. p38 inhibitor ameliorates
silica-induced pulmonary fibrosis, which may be related to the
inhibition of ZEB-1, ZEB-2, and Twist expression (Wang
et al., 2016).

SiO2 is also known to activate JNK in vivo and in vitro. The JNK
inhibitor BI-78D3 not only completely blocks the production of
leukotriene B4, IL-1β, and CXC chemokines in macrophages, MCs,
and neutrophils, but also reduces SiO2-induced sterile inflammation
in an air-pouch model in mice (Hegde et al., 2018).

4.3 Fas/FasL

Pro-apoptotic Fas and FasL play critical roles in pulmonary
immune homeostasis, immune surveillance, and autoimmunity
involving T cells. Clinical research has shown that patients with
silicosis exhibit elevated levels of soluble Fas in serum and
peripheral blood mononuclear cells, as well as higher levels of
other FAS transcript variants and reduced membrane Fas
expression in lymphocytes (Otsuki et al., 2006). Fas/FasL

signaling aggravates inflammation-related apoptosis in epithelial
cells and AMs, which consequently release IL-1β and chemokines,
leading to neutrophil infiltration and lung injury (Dosreis et al.,
2004; Hoffmeyer et al., 2010). Patients with silicosis administered
an anti-FasL antibody exhibit reduced levels of the pro-apoptotic
factors Fas and caspase-3 and the inflammatory mediators TGF-β
and IL-8 (Yao et al., 2013). Fas ligand-deficient GLD mice instilled
with silica do not develop silicosis. These animals display
significantly reduced neutrophil extravasation into the
bronchoalveolar space, decreased TNF-α production, reduced
pulmonary inflammation, and macrophage apoptosis (Borges
et al., 2001). In wild-type mice administered an anti-FasL
monoclonal antibody, neutrophil accumulation in the lung
parenchyma is inhibited, as is macrophage apoptosis, and even
silicotic fibrosis (Borges et al., 2001). The Fas/FasL pathway plays
an important role in regulating the levels of inflammatory
cytokines and promoting lung inflammation and fibrosis.

4.4 cGAS-STING

The cGAS-STING signaling pathway has emerged as an
essential mediator of inflammation in infection, cellular stress,
and tissue damage (Decout et al., 2021). Cyclic GMP-AMP
synthase (cGAS) is a recently identified intracellular pattern
recognition receptor (PRR) that can recognize abnormal
cytoplasmic dsDNA, following which it catalyzes the synthesis of
cyclic GMP-AMP (cGAMP). cGAMP then activates stimulator of
interferon genes (STING), which promotes the secretion of type-I
IFN and other inflammatory factors, thereby influencing the
immune response (Motwani et al., 2019). The cGAS-STING
pathway is essential for silica-induced lung inflammation.
Activation of the STING pathway by airway silica leads to cell
death, self-dsDNA release, an increase in ROS generation, and
STING/type-I-IFN-dependent acute lung inflammation
(Messaoud-Nacer et al., 2022). cGAS recognizes leaked dsDNA
and activates STING in vivo after silica exposure. When DNase I
is used to degrade dsDNA, silica-induced STING activation and the
downstream type-I-IFN response are inhibited (Benmerzoug
et al., 2018).

5 Inflammatory biomarkers

Owing to its hidden onset and long duration, silicosis is difficult
to diagnose until severe lung injury occurs, at which point silicosis
can be diagnosed based on an abnormal chest X-ray. However, at
this stage, the lesions are irreversible (Jiang et al., 2015; Li et al.,
2022). Accordingly, there is an urgent need to identify biomarkers
for early silicosis diagnosis, i.e., before radiological alterations are
detected. Several candidate biomarkers for silicosis have been
identified, namely, the interleukins, TGF-β, TNF-α, GF,
chemokines, inflammatory proteins, NLRP3, and DNA
methylation. These biomarkers are mainly present in the cellular
oxidative stress response, immune response, and tissue damage and
repair processes, which play extremely important roles in the
diagnosis of silicosis (Sato et al., 2006; Peeters et al., 2014;
Perkins et al., 2016; Blanco-Perez et al., 2021).
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5.1 Inflammatory cytokines

Ample evidence supports that SiO2 activates inflammatory
cytokines such as IL-1β, IL-6, TGF-β, TNF-α, growth factors, and
CCL and promotes pulmonary fibrosis (Boitelle et al., 1997; Blanco-
Perez et al., 2021), suggesting that increased inflammatory cytokine
levels may be used as typical biomarkers for the clinical diagnosis
of silicosis.

5.2 Inflammatory proteins

HO-1, an inducible antioxidant stress protein, is one of the most
important downstream regulatory effectors of nuclear factor-
erythroid 2 related factor 2 (Nrf2) and exhibits anti-
inflammatory and antioxidant properties (Loboda et al., 2016;
Zhang et al., 2021). HO-1 is a rate-limiting enzyme in heme
catabolism, degrading heme to carbon monoxide (CO), biliverdin
(BV), and ferrous ion (Fe2+) (Ayer et al., 2016). It has been suggested
that all these byproducts are important contributors to the anti-
inflammatory activity of HO-1. The endogenous mediator CO
inhibits the expression of pro-inflammatory cytokines, such as
TNF-α and IL-1β, while simultaneously increasing the expression
of the anti-inflammatory cytokine IL-10 (Abraham and Kappas,
2008). It is reported that the HO-1/CO axis regulates inflammation
and the immune system (Ryter, 2020). BV and its downstream
reductive derivative bilirubin (BR) are potent anti-inflammatory
factors that can inhibit C5aR expression in macrophages and reduce
pro-inflammatory cytokine expression through mTOR signaling
(Bisht et al., 2014). HO-1 is present in silicotic nodules, where it
exerts protective effects by attenuating lung inflammation
(Nakashima et al., 2018), suppressing ROS activity and
subsequent inflammatory and pathologic changes, and thereby
attenuating disease progression (Sato et al., 2006; Nakashima
et al., 2018). Low serum concentrations of HO-1 can predict
impaired lung function in chronic silicosis. These observations
imply that HO-1 is a key biomarker suitable for the monitoring
of at-risk patients and a potential therapeutic target for silicosis (Sato
et al., 2006; Sato et al., 2012).

The nuclear factor high-mobility group box 1 protein (HMGB1),
which is actively secreted by inflammatory cells or passively released
from necrotic cells, was recently found to function as an important
late inflammatory mediator (Ciucci et al., 2011). High levels of
HMGB1 have been strongly linked to silicosis; each 1 ng/mL
increase in plasma HMGB1 levels is positively correlated with an
increased risk of silicosis (Ma et al., 2018). Jixuan et al. demonstrated
that the overexpression of HMGB1 induced by SiO2 exposure can
influence the progression of silicosis, including pulmonary
inflammation and fibrosis, via EMT.

The authors found that the neutralizing antibody-mediated
abrogation of HMGB1 attenuated silica-induced lung
inflammation, fibrosis, and EMT, whereas the application of
recombinant HMGB1 exerted the opposite effect (Ma et al.,
2020). HMGB1 acts to alert cells to hazardous surroundings,
such as in the presence of silica. The increased secretion of
HMGB1 can strongly promote leukocyte recruitment and
activation, which triggers tissue repair and aggravates silicosis
(Rabolli et al., 2014; Yang et al., 2020). Accordingly, there is

sufficient evidence to show that HMGB-1 is involved in the
progression of silicosis, suggesting that it may represent a
potential diagnostic biomarker and therapeutic target for silicosis.

5.3 The NLRP3 inflammasome

The NLRP3 inflammasome is a large multi-protein complex
composed of the core protein NLRP3, apoptosis-associated speck-
like protein containing a CARD (caspase activation and recruitment
domain) (ASC), and pro-caspase-1 (He et al., 2016). Once activated,
caspase-1 cleaves inactive IL-1β and IL-18 into their mature forms,
which generates pro-inflammatory effects (Jessop et al., 2017).
Abundant evidence suggests that NLRP3-mediated inflammation
plays an essential role in the fibrogenesis and pathogenesis
of silicosis (Cassel et al., 2008; Peeters et al., 2014).
NLRP3 inflammasomes in AMs are major inducers of cytokine
secretion. The phagocytosis of SiO2 particles activates
NLRP3 inflammasomes via four different mechanisms, namely: 1)
SRs on the surface of AMs recognize and induce the internalization of
SiO2 particles, leading toNLRP3 inflammasome activation (Hari et al.,
2014); 2) AMs phagocytose SiO2, resulting in stress injury and the
release of intracellular ATP to the outside of the cell. P2X7 receptors
(P2X7R; ATP-gated ion channels) on the cell membrane recognize
ATP, leading to the opening of some of the channels and the
subsequent activation of NLRP3 by K+ outflow and Na+ influx
(Luna-Gomes et al., 2015); 3) engulfed SiO2 particles promote the
generation of a large amount of ROS, resulting in NLRP3 activation
(Harijith et al., 2014); and 4), the contents released following
lysosomal rupture activate the NLRP3 inflammasome. When
activated, the NLRP3 inflammasome, via activated caspase-1,
converts pro-IL-1β and pro-IL-8 to their active forms. IL-1β and
IL-8 then act to increase the production of other pro-inflammatory
and pro-fibrotic cytokines, which promotes fibrosis (Jessop
et al., 2017).

Normal macrophages produce large amounts of IL-1β when
exposed to silica crystals. However, ASC- and NLRP3-deficient mice
both exhibit reduced inflammation and granuloma formation
(Cassel et al., 2008). Macrophages lacking NLRP3 or ASC do not
release cleaved IL-1β in response to silica crystal exposure (Hornung
et al., 2008). Together, these findings indicate that the
NLRP3 inflammasome plays a central regulatory role in silicosis,
and further suggest that activated NLRP3 may serve as an important
biomarker of silicosis.

5.4 DNA methylation

Dust inhalation can induce oxidative stress responses, leading to
the generation of a large amount of ROS, reactive nitrogen species
(RNS), lipid peroxides, and other free radicals, all of which can
damage mitochondrial DNA and increase the incidence of DNA
methylation (Fubini and Hubbard, 2003; Zhang et al., 2019).
Aberrant DNA methylation profiles have been found in the lung
tissues of patients with silicosis. Namely, 86,770 and 79,660 CpG
sites were found to differ significantly in methylation status between
the lungs of patients with early-stage and advanced-stage disease,
respectively, and those of healthy individuals (Zhang et al., 2016).
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The DNA of a large number of genes is abnormally methylated in
SiO2-treated lung fibroblasts. Methylated DNA
immunoprecipitation (MeDIP) experiments showed that these
genes are mainly involved in the transformation and
differentiation of fibroblasts (Li et al., 2017). DNA methylation is
also found in genes associated with the WNT signaling pathway,
which contributes to proliferative, fibrogenic, and inflammatory
responses to silica exposure in lung epithelial cells (Perkins et al.,
2016). These findings suggest that specific DNA methylation may
have value as a diagnostic biomarker for silicosis.

6 Treatment for silicosis

Although the pathogenesis and preventive treatment of silicosis
have been explored for many years, the existing research on the
mechanism of silica-induced pulmonary fibrosis is inadequate and
lags far behind clinical needs. Lung lavage and transplantation are
efficacious treatments available for patients with silicosis, however,
both methods have some limitations (Pang et al., 2021). Many

studies demonstrated that some pharmaceuticals are the
promising drugs for the treatment of silicosis, which can address
one or more target of silicosis to reduce silica-induced inflammation
and/or fibrosis.

As mentioned earlier, inflammatory cells and cytokines are the
most important factors in silicosis. Therefore, neutralizing cytokines
and blocking cytokine receptors are the important mechanisms for
the treatment of silicosis (Table 1).

In addition to acting specifically on the inflammatory system,
other potential drugs have been reported to inhibit silica-induced
pulmonary inflammation and fibrosis in silicotic models (Table 2).
Pirfenidone and nintedanib are clinically used for treating idiopathic
pulmonary fibrosis, which have been well documented in silica-
induced fibrosis (Wollin et al., 2014; Wollin et al., 2015; Guo et al.,
2019). Tetrandrine, approved for silicosis in China, has been
demonstrated a value regent in clinic therapy for many years
(Bhagya and Chandrashekar, 2016). Some researches
demonstrated the oxidative stress encountered during pulmonary
fibrosis is closely associated with inflammation. N-acetylcysteine
(NAC) and tanshinone IIA have been found to be beneficial in the

TABLE 2 Drug candidates for the treatment of silicosis.

Name Mechanism Ref

Nintedanib ↓block FGF receptor-1 Wollin et al. (2014), Wollin et al. (2015)

↓block PDGF receptor

↓Src pathway

Pirfenidone ↓macrophage polarization Li et al. (2018), Guo et al. (2019), Cao et al. (2022), Tang et al. (2022)

↓IL-17A

↓TAK1-MAPK-Snail/NF-κB pathway

Tetrandrine ↓NLRP3 activation Bhagya and Chandrashekar (2016), Song et al. (2022)

N-acetylcysteine ↓NF-κB activation Zhang et al. (2013)

Tanshinone IIA ↓inflammatory cells (neutrophils, macrophages and lymphocytes) Zhu et al. (2016)

↓TNF-α, IL-6, IL-1β

Dioscin ↑AMs autophagy Du et al. (2019)

↓AMs ROS

↓AMs apoptosis

↓secretion of inflammatory factors and chemokines.

Trehalose ↑AMs autophagy Tan et al. (2020)

↓AMs apoptosis

Atractylenolide III ↓AMs autophagy by mTOR-dependent manner Chen et al. (2021)

↓AMs apoptosis

↑blockage of autophagic degradation in AMs

Bicyclol ↓macrophage polarization Zhan et al. (2021)

TY-51469 ↓chymase in mast cells Takato et al. (2011)

↓neutrophils

MCC950 ↓NLRP3 activation Lam et al. (2022)

↓IL-1β, IL-18
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management of silicosis (Zhang et al., 2013; Zhu et al., 2016). Other
drugs also show great therapeutic potential in silicosis, such as drugs
affecting the autophagy-apoptosis system (dioscin, trehalose, and
atractylenolide III), drugs inhibiting macrophage polarization
(bicyclol), drugs inhibiting inflammatory cell (TY-51469), and
drugs degrading the activity of NLRP3 inflammasome
(tetrandrine, MCC950).

In conclusion, an excessive immune response caused by
overactive adaptive and innate immune cells and their cytokines is
the primary pathogenic mechanism underlying the development of
silicosis, leading to immune imbalance and collagen deposition.

Despite the large number of studies that have investigated the role
of inflammation in fibrogenesis, there is insufficient evidence relating
to how the inflammatory networks regulate fibrogenesis. Inhaled SiO2

particles induce the recruitment of neutrophils and macrophages to
the lungs, the production of pro-inflammatory mediators, cell death,
and fibroblast activation. The incomplete clearance of SiO2 results in
chronic inflammation, the formation of silicotic nodules, fibrosis, and
impaired pulmonary function. Many immune molecules are involved
in this process. However, the intricate interrelationships and
molecular mechanisms among the various immune cells,
inflammatory proteins, and inflammatory-related pathways remain
poorly understood. No specific anti-inflammatory drugs for the
treatment of silicosis are currently available. However, clinical trials
like anti-IL-13 and anti-IL-17 antibodies are presently underway.
With a better understanding of the pathogenesis of silicosis, an
increasing number of possible therapeutic targets and underlying
mechanisms have been identified, and drugs with therapeutic
potential have been and continue to be developed.
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Glossary

AMs Alveolar macrophages

ASC Apoptosis-associated speck-like protein containing a CARD

APCs Antigen-presenting cells

BCR B-cell receptor

bFGF Basic fibroblast growth factor

BR Bilirubin

Bregs Regulatory B cells

BV Biliverdin

CARD Caspase activation and recruitment domain

cGAMP Cyclic GMP-AMP

cGAS Cyclic GMP-AMP synthase

CO Carbon monoxide

CTGF Connective tissue growth factor

DCs Dendritic cells

ECM Extracellular matrix

EGR-1 Early growth response protein 1

HMGB1 High-mobility group box 1 protein

FGF fibroblast growth factor

IL Interleukin

iNOS inducible nitric oxide synthase

LPS Lipopolysaccharide

MCs Mast cells

MeDIP Methylated DNA immunoprecipitation

MMPs Matrix metalloproteinases

NE Neutrophil elastase

NETs Neutrophil extracellular traps\

NEUTs Neutrophils

NLRP3 NOD-like receptor thermal protein domain associated protein 3

Nrf2 Nuclear factor-erythroid 2 related factor 2

PAR2 Proteinase-activated receptor 2

PDGF Platelet derived growth factor

PRR Pattern recognition receptor

RNS Reactive nitrogen species

RORγt Retinoid-related orphan nuclear receptor γt

ROS Reactive oxygen species

SiO2 Silicon dioxide

SRs Scavenger receptors

STING Stimulator of interferon genes

TCR T-cell receptor

TGF-β Transforming growth factor β

Th T-helper

TIMP Tissue inhibitor of metal protease

TNF-α Tumor necrosis factor α

Tregs Regulatory T cells

TβR TGF-β receptors

VEGF Vascular endothelial growth factor
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