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Bile acids (BAs) constitute essential components of cholesterol metabolites that
are synthesized in the liver, stored in the gallbladder, and excreted into the
intestine through the biliary system. They play a crucial role in nutrient absorption,
lipid and glucose regulation, and the maintenance of metabolic homeostasis. In
additional, BAs have demonstrated the ability to attenuate disease progression
such as diabetes, metabolic disorders, heart disease, and respiratory ailments.
Intriguingly, recent research has offered exciting evidence to unveil their potential
antitumor properties against various cancer cell types including tamoxifen-
resistant breast cancer, oral squamous cell carcinoma, cholangiocarcinoma,
gastric cancer, colon cancer, hepatocellular carcinoma, prostate cancer,
gallbladder cancer, neuroblastoma, and others. Up to date, multiple
laboratories have synthesized novel BA derivatives to develop potential drug
candidates. These derivatives have exhibited the capacity to induce cell death in
individual cancer cell types and display promising anti-tumor activities. This
review extensively elucidates the anticancer activity of natural BAs and
synthetic derivatives in cancer cells, their associated signaling pathways, and
therapeutic strategies. Understanding of BAs and their derivatives activities and
action mechanisms will evidently assist anticancer drug discovery and devise
novel treatment.
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1 Introduction

Bile acids (BAs) are physiological metabolites that are synthesized in the liver, stored in
the gallbladder, and excreted into the intestine through the biliary system (Chiang and
Ferrell, 2019). BAs participate in the nutrient absorption and secretion, and regulate lipids
and glucose metabolism, thus maintaining metabolic homeostasis (Collins et al., 2023).
Although BAs regulate intestinal flora growth, the intestinal flora can in turn metabolize
BAs and control their composition and storage in the enterohepatic circulation through an
enterohepatic circulation. A number of factors including fasting and ingesting specific
nutrients can regulate BA synthesis, intestinal flora composition, and blood circulation
hormones to keep systemic metabolic homeostasis and prevent from BA-associated
metabolic diseases. Activation of BA receptor signaling offers protection to the
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gastrointestinal tract against inflammation and damage.
Furthermore, various factors, including gene mutations for the
BA synthesis and transport, high-fat diets, medications, and
circadian rhythm disturbances, are found to mediate the
pathologies of multiple diseases that involve cholestatic liver
disease, inflammatory bowel disease, diabetes, obesity, tumors,
and related metabolic disorders (Li and Chiang, 2014; Fiorucci
et al., 2021; Fu et al., 2021; Perino et al., 2021; Yang et al., 2021;
Shi et al., 2023). In recent years, several researches have
demonstrated that BAs have antitumor properties in various
cancer cell types, such as tamoxifen-resistant breast cancer (Luu
et al., 2018; Kovács et al., 2019), oral squamous cell carcinoma

(Talebian et al., 2020), cholangiocarcinoma (Lee et al., 2022), gastric
cancer (Zhang et al., 2022), colon cancer (Kim E. K. et al., 2017),
hepatocellular carcinoma (Fan et al., 2023), prostate cancer (Lee
et al., 2017), gallbladder cancer (Lin et al., 2020; Li et al., 2022),
neuroblastoma (Trah et al., 2020) etc., by inhibiting cancer cell
proliferation and migration. In addition, new BA derivatives have
been synthesized in several laboratories to investigate their
anticancer properties. These derivatives were demonstrated to
trigger cell death in cancer cells and exhibit anti-tumor
properties (Katona et al., 2009; Sreekanth et al., 2013; Tang et al.,
2018; Markov et al., 2019; Agarwal et al., 2021; Melloni et al., 2022).
This review discusses the anticancer activity of natural BAs and

FIGURE 1
The Diagram of the classical and alternative bile acid synthesis in human. Primary BAs are generated from cholesterol by the classic (CYP7A1-
mediated) or alternative (CYP27A1-mediated) pathway. Subsequently, BACS and BAAT catalyze the conjugation of BAs with glycine or taurine in the liver,
resulting in the formation of bile salts. Once released into the gut, these bile acids undergomodification by the gutmicrobiome, leading to the production
of secondary BAs. Approximately 95% of the BAs that reach the terminal ileum are reabsorbed, allowing for their recycling by the liver. CYP7A1,
cholesterol 7α-hydroxylase; CYP27A1, sterol 27- hydroxylase; BACS, BA-CoA synthetase; BAAT, BA-CoA: amino acid N-acyltransferase; CA, cholic acid;
CDCA, chenodeoxycholic acid; CYP8B1, sterol12α-hydroxylase.
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synthetic derivatives in cancer cells and their signaling pathways and
therapeutic approaches potentially targeted to human cancers.

2 Bile acid biosynthesis

BAs are the final products of cholesterol catabolism in the liver
and consist of a variety of lipid-soluble acids, including cholic acid
(CA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA),
glycochenodeoxycholic acid (GCDCA), ursodeoxycholic acid
(UDCA), glycoursodeoxycholic acid (GUDCA), glycodeoxycholic
acid (GDCA), glycocholic acid (GCA), taurocholic acid (TCA),
taurochenodeoxycholic acid (TCDCA), tauroursodeoxycholic acid
(TUDCA), taurodeoxycholic acid (TDCA), lithocholic acid (LCA),
glycolithocholic acid (GLCA), and taurolithocholic acid (TLCA) (Li
et al., 2022). BAs have two main ways of biosynthesis: classical and
alternative synthetic pathways (Figure 1) (Chiang, 2009). The
microsomal rate-limiting enzyme cholesterol 7α-hydroxylase
(CYP7A1) initiates the classical BA synthesis pathway by which
CYP7A1 oxidizes cholesterol into 7α-hydroxycholesterol.
Subsequently, 3β-hydroxyΔ5-C27-steroid dehydrogenase
(HSD3B7) catalyzes the conversion of 7α-hydroxycholesterol to
7α-hydroxy-4-cholesten-3-one (C4), a precursor of the primary
BAs, CA and CDCA. C4 also serves as a common serum
biomarker used to evaluate levels of BA synthesis. Microsome
sterol 12α-hydroxylase (CYP8B1) can convert C4 to 7α, 12α-
dihydroxy-4-cholestene 3-1thatisfurther metabolized to be a
precursor of the CA 3-alpha, 7-alpha, 12-alpha
trihydroxycholestanoicacid (THCA) by aldo-keto reductases
(AKR) AKR1D1/1C4 and mitochondrial sterol cholesterol 27-
hydroxylase (CYP27A1). In the absence of 12α-hydroxylation,
C4 undergoes conversion into 3α, 7α dihydroxycholestanoic acid
(DHCA), which serves as the precursor for CDCA. THCA and
DHCA are transported to peroxisomes for steroid side chain
cleavage, which occurs similarly to fatty acid β-oxidation.

Initially, BA coenzyme A (CoA) synthase (BACS; SLC27A5)
catalyzes THCA and DHCA into acyl-CoA thioesters. Subsequently,
these thioesters are transported to peroxisomes through the
peroxisomal BA-acyl transporter ABCD3. Among them, α-
methylacyl-CoA racemase (AMACR), acyl-CoA oxidase
(ACOX2), and D-bifunctional enzyme (ACOX2) are the most
common enzymes. HSD17B4 completes the racemization,
hydration, and dehydration steps. Finally, the sterol carrier
protein x (SCPx) cleans releases propanoyl-coA from the steroid
side chains of THCA and DHCA to form cholyl-coA and
chenodeoxycholyl-coA, respectively. BA-coA: amino acid
N-acyltransferase (BAAT) couples cholyl-coA and CDCA-coA to
taurine or glycine to form T/G-CA and T/G-CDCA, respectively
(Perino et al., 2021).

In the alternative synthetic pathway, CYP27A1 is crucial in
converting cholesterol to 27-hydroxycholesterol and 3β-hydroxy-5-
cholesterol in the liver, macrophages, and adrenal glands. Oxysterol
7α-hydroxylase (CYP7B1) hydroxylates C7, resulting in the
formation of 7α, 27-dihydroxycholesterol and 3β, 7α-dihydroxy-
5 cholestenoic acid. In the brain, cholesterol is converted to 24-
hydroxycholesterol by the enzyme sterol 24-hydroxylase
(CYP46A1), which is then hydroxylated at the 7α position by a
specific sterol 7α-hydroxylase (CYP39A1) in the liver. The

oxysterols generated in extrahepatic tissues can serve as
substrates for synthesizing CDCA and CA.

Negative feedback mechanisms tightly regulate classical and
alternative BA synthesis pathways (Di Ciaula et al., 2017; Collins
et al., 2023). In human, the synthesis of BAs is primarily derived
from the classical pathway, whereas approximately 50% of BAs in
rodents are synthesized from the alternative pathway. CA and
CDCA are the two primary BAs synthesized in the human liver.
CDCA, a hydrophobic BA, undergoes further conversion to α-
muricholic acid (α-MCA) by a mouse-specific enzyme sterol-6β-
hydroxylase (Cyp2c70). Furthermore, α-MCA can be epimerized to
be 7β-epimer, known as β-MCA. Cyp2c70 also hydroxylizes the
secondary BA UDCA produced by gut bacteria to β-MCA. α-MCA
and β-MCA are the primary BAs produced in rodent liver and are
highly water-soluble and non-toxic. In human, bacterial 7β-
hydroxysteroid dehydrogenase (7β-HSDH) converts merely 2% of
CDCA as a secondary BA to the 7β-epidermoid UDCA that is a
highly water-soluble and non-toxic BA.

3 The anticancer effect of natural BAs

BAs are typically appreciated as major signal molecules that act
as emulsifiers in dietary lipid digestion and absorption (Melloni
et al., 2022). Interestingly, they are found to intervene the
development of diabetes, metabolic disorders, heart disease,
respiratory ailments, and tumors (Collins et al., 2023; Shi et al.,
2023). In this section, our attention primarily focuses on exploring
the anticancer impacts of natural BAs (Figure 2.) on cancer cells
in vitro (e.g., proliferation, invasion, migration, and adhesion)
(Table 1).

3.1 Glioblastoma (GB)

Glioblastoma (GB) is the most prevalent and aggressive form of
adult human brain tumor. Despite the implementation of aggressive
regimens involving surgery, radiation and chemotherapy, the
prognosis for GBM patients remains poor with a median survival
of 15 months (Schaff and Mellinghoff, 2023). UDCA demonstrates
the ability to penetrate through the blood-brain barrier; thus it
implicates powerful activity to block brain tumor (Palmela et al.,
2015). Yao et al. (2020) demonstrated that UDCA inhibited GB
progression in multiple aspects such as inducing G1 phase arrest,
reducing mitochondrial membrane potential (MMP), promoting
overproduction of reactive oxygen species (ROS), and inducing
endoplasmic reticulum (ER) stress. Combining UDCA with
bortezomib (BTZ) also synergistically enhances the PERK/ATF4/
CHOP pathway and protracts ER stress (Yao et al., 2020).

3.2 Neuroblastoma (NB)

Nephroblastoma (NB) ranks as the second most common
intraabdominal cancer and the fifth most prevalent malignancy
in children (Walz et al., 2023). Extensive research efforts have
enhanced the survival rate from less than 30% to high 85%–90%.
Nevertheless, the relapse rate persists within the range of 15%–50%
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(Saltzman et al., 2023). Strikingly, LCA effectively induced NB cell
death in vitro through apoptosis without neuron cytotoxicity. This
elimination was achieved by triggering the intrinsic (initiator
caspase-9 activation) and extrinsic apoptosis pathways (the
initiator caspase-8 activation) (Goldberg et al., 2011; Trah
et al., 2020).

3.3 Oral squamous cell carcinoma (OSCC)

Oral cancers represent prevalent malignant tumors within the
head and neck and are primarily classified as squamous cell
carcinomas that involve the transformation of mucous
membranes in the gums, tongue, and face into cancerous tissues
(Tan et al., 2023). UDCA has demonstrated potential in preventing
gum and periodontal dysfunctions, as well as reducing gum bleeding
(Pang et al., 2015). As the result, it is suggested that UDCAmay hold
promise in the treatment of oral cancers. Pang et al. (2015)
demonstrated that UDCA triggered apoptosis in oral squamous
cell cancer cells (HSC-3) via caspase activation. They also found that

high UDCA levels exhibited cytotoxic effects in vitro (Pang
et al., 2015).

Elevated levels of BAs have been recently known to be associated
with impaired immune cell function, increased patient morbidity
and even mortality. Consequently, high levels of BAs are considered
immune suppressors, in which TCA is the most potent one of tumor
immune inhibitors (Liu et al., 2018). Talebian et al. (2020) reported
that TCA exhibited anti-inflammatory activities in human OSCC
cells in vitro.

3.4 Oesophageal carcinoma

Esophageal carcinoma is prevalent in the developing countries
and is characterized with significantly high morbidity and mortality,
whereas its incidence is declining in the developed countries (Li
et al., 2023). Abdel-Latif et al. (2016) revealed that pretreatment with
UDCA effectively inhibited DCA-induced nuclear factor kappa B
(NF-κB) and activator protein-1 (AP-1) DNA-binding activities in
oesophageal carcinoma cells, thus decreasing cell survival.

FIGURE 2
The anticancer properties of BAs in a wide variety of cancers. UDCA, ursodeoxycholic acid; TCA, taurocholic acid; TCDCA, taurochenodeoxycholic
acid; DCA, deoxycholic acid; TUDCA, tauroursodeoxycholic acid; CDCA, chenodeoxycholic acid; LCA, lithocholic acid; TDCA, taurodeoxycholic acid.
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TABLE 1 Tumor suppressive effects of natural BAs on cancers.

Cancer types Cell lines Bile
acids

Phenotype Effects Refs

Glioblastoma A172, LN229 UDCA Cell viability Inducing ROS production, arresting the
G1 phase, reducing MMP and inducing
endoplasmic reticulum stress

Yao et al. (2020)

Neuroblastoma BE (2)-m17, SK-n-SH,
SK-n-MCIXC and
Lan- 1

LCA Cell death Activating apoptotic pathways Goldberg et al. (2011)

WT CLS1, SK NEP1 LCA Proliferation Activating apoptotic pathways Trah et al. (2020)

Oral Squamous
Carcinoma

HSC-3 UDCA Cell viability Inducing apoptosis via caspase activation Pang et al. (2015)

Pancreatic cancer HPAC, Capan1 UDCA EMT, stem cell formation Upregulating intracellular ROS and
down-regulating Prx2

Kim E. K. et al.
(2017)

PANC-1 Bile acids Proliferation, EMT Inducing apoptosis via ROS and EMT
pathway

Zhu et al. (2022)

PANC-1, MIA PaCa-2,
PGHAM-1

DCA, CA Proliferation, cytoplasmic microvilli
loss and organelles vacuolization

Increasing the percentage of
G0+G1 phase cells

Wu et al. (2003)

GCA,
TDCA

Proliferation, cytoplasmic microvilli
loss and organelles vacuolization

Elevating the S phase cell number Wu et al. (2003)

Prostate cancer DU145 UDCA Proliferation Activating apoptotic pathways Lee et al. (2017)

LNCaP, PC-3 LCA Proliferation Activating apoptotic pathways Goldberg et al. (2013)

PC-3, DU145 LCA Cell viability Inducing ER stress, autophagy, and
mitochondrial dysfunction

Gafar et al. (2016)

LNCaP, DU145 CDCA Proliferation Activating FXR and accumulating lipids
via the SREBF pathway

Liu et al. (2016)

LNCaP CDCA Proliferation Activating FXR and upregulating PTEN. Liu et al. (2014)

Hepatocellular
carcinoma

Huh-BAT, HepG2 UDCA Proliferation Activating ERK and dephosphorylating
STAT3

Lee et al. (2018)

B16-F10, MC38, LLC,
A549 and SW480

UDCA Treg cell differentiation and
activation

Enhancing antitumor immunity by
serving as a TGF-β inhibitor

Shen et al. (2022)

HepG2 TUDCA Proliferation and invasion Suppressing cell death and inflammation
mediated by ER stress

Vandewynckel et al.
(2015)

HepG2, BEL7402 UDCA Proliferation Blocking the cell cycle and regulating the
expression of Bax/Bcl-2 genes

Liu et al. (2007), Liu
et al. (2015)

HepG2 UDCA Proliferation Inducing apoptosis via regulation of the
expressions of Smac and Livin and
caspase 3

Zhu et al. (2014)

Huh-Bat, SNU761,
SNU475

UDCA Proliferation Inhibiting proteasomal
DLC1 degradation

Chung et al. (2011)

HepG2, SK-Hep1, SNU-
423, Hep3B

UDCA Proliferation Inhibiting ROS production and activating
the p53-caspase 8 pathway

Lim et al. (2010)

HepG2, Huh7, mouse
hepatoma Hepa 1–6

CDCA / Inducing NDRG2 expression through
FXR receptor

Langhi et al. (2013)

Gastric cancer MKN-74 UDCA Invasion Suppressing chenodeoxycholic acid-
induced PGE2 production

Wu et al. (2018)

SNU601, SNU638 UDCA Proliferation Inducing apoptosisthrough the
expression and activation of DR5

Lim et al. (2011)

SGC-7901 TUDCA Proliferation, invasion Inducing Apoptosis Zhang et al. (2022)

SCM1 DCA Cell viability Causing Ca (2+)-independent apoptosis Chien et al. (2015)

SGC-7901 DCA Proliferation Inducing apoptosis through the
mitochondrial-dependent pathway

Song et al. (2013)

(Continued on following page)
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TABLE 1 (Continued) Tumor suppressive effects of natural BAs on cancers.

Cancer types Cell lines Bile
acids

Phenotype Effects Refs

SNU601 UDCA Proliferation Inducing apoptosis via MEK (MAPK)/
ERK pathway

Lim et al. (2012)

SNU601 UDCA Proliferation Inducing apoptosis via CD95/Fas death
receptor, downregulating ATG5 level and
preventing autophagic pathway

Lim and Han (2015)

BGC-823 DCA Proliferation Activating p53 mediated pathway Yang et al. (2015)

SNU-216, MKN45 DCA Invasion, migration Inducing MUC2 expression Pyo et al. (2015)

Oesophageal cancer SKGT-4, OE33 UDCA / Inhibiting NF-κB, AP-1 activation and
COX-2 upregulation

Abdel-Latif et al.
(2016)

Colon cancer HCT116 UDCA Apoptosis Modulating EGFR/Raf-1/ERK signaling Im and Martinez
(2004)

HCT116 UDCA Apoptosis Mediating the PI3K, MAPK, or cAMP
pathways

Saeki et al. (2012)

HCT116 UDCA Proliferation Inhibiting the expression of c-Myc and
cell cycle regulatory molecules

Peiró-Jordán et al.
(2012)

HT29, HCT116 UDCA Proliferation Regulating ROS production, activating
ERK1/2

Kim Y. J. et al. (2017)

HCT116 UDCA Progression Inhibiting interleukin β1 and blocking
NF-κB and AP-1 activation

Shah et al. (2006)

HT-29 UDCA Proliferation Promoting endocytosis and degradation
of EGFR receptor

Feldman and
Martinez (2009)

HCT116, COLO 205 TUDCA Progression Suppressing NF-κB signaling Kim et al. (2019)

Caco-2, HT29C19A LCA Anti-inflammatory signals Blocking inflammatory signals Sun et al. (2008)

HCT116 LCA Proliferation Activating p53 and binding to
MDM4 and MDM2

Vogel et al. (2012)

HCT116 DCA,
CDCA

Proliferation Induce apoptosis Powell et al. (2001)

HCT116 DCA Proliferation Inducing apoptosis via AP-1 and C/EBP
mediated GADD153 expression

Qiao et al. (2002)

HCT116 DCA Proliferation Inhibiting cell growth and inducing
apoptosis physiologically

Zeng et al. (2015)

Cholangiocarcinoma Mz-ChA-1 TUDCA Proliferation Involving in MAPK p42/44 and PKCα Alpini et al. (2004)

Gallbladder cancer NOZ, GBC-SD, EH-GB1 DCA Proliferation Interfering with miR-92b-3p maturation Lin et al. (2020)

NOZ, EH-GB1 LCA Proliferation Downregulating GLS-mediated
glutamine metabolism and inducing
ferroptosis

Li et al. (2022)

Breast cancer MCF7, MDA-MB-231 LCA Proliferation Inducing TGR5 expression, inhibiting
lipogenesis and reducing ERα expression

Luu et al. (2018)

MCF7, 4T1 LCA Proliferation, EMT, VEGF
production, immune response

Activating TGR5 receptor Mikó et al. (2018)

MCF7, 4T1 LCA Oxidative stress Inducing NRF2/NFE2L2 dependent
oxidative/nitrosative stress

Kovács et al. (2019)

MCF7 CDCA Tamoxifen-resistance Activating FXR receptor Giordano et al.
(2011)

MCF7, MDA-MB-231 CDCA Cell death Activating FXR receptor Alasmael et al. (2016)

(Continued on following page)
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3.5 Cholangiocarcinoma

Cholangiocarcinoma represents a malignant tumor associated
with 20%–30% rate of 5-year survival even after resection. For those
unable to undergo resection, the prognosis is especially poorer in
which most patients fail to survive longer than 2 years (Greten et al.,
2023). Although non-surgical palliative chemotherapy and radiation
therapy are alternatively optional, their outcomes have not yielded
satisfactory results. UDCA inhibited the growth of
cholangiocarcinoma, and the combined UDCA and gefitinib
displayed a more robust effect. Thus, UDCA demonstrates a
potential adjuvant or palliative anticancer drug, providing a
therapeutic option to enhance the effects of other
chemotherapeutic agents synergistically (Lee et al., 2022). UDCA
suppressed cholangiocarcinoma cell proliferation and invasiveness
by triggering apoptosis, activating p53, and blocking DCA-induced
activated EGFR-ERK and PI3K-AKT signaling (Lee et al., 2021).
TUDCA impeded the proliferation of bile duct cancer cells by
activating the mitogen-activated protein kinase (MAPK) p42/
44 and PKCα signaling pathways (Alpini et al., 2004).

3.6 Gallbladder cancer (GBC)

Gallbladder cancer is a highly malignant disease that is often
misdiagnosed at early stages. Thus, rapid development of GBC at
later stages has largely limited the possibility of surgical intervention,
leading to a poor prognosis (Li et al., 2014; Song et al., 2020a; Geng
et al., 2022; Wang et al., 2023a; Wang et al., 2023b). DCA treatment
has been found to halt GBC cell proliferation and reduce miR-92b-
3p expression in an m6A-dependent post-transcriptional

modification manner by facilitating METTL3 dissociation from
METTL3-METTL14-WTAP complex and thus inactivating PI3K/
AKT signaling pathway (Lin et al., 2020). LCA treatment has
demonstrated tumor-suppressive function in GBC by decreasing
glutaminase expression, interfering with glutamine metabolism and
reducing GSH/GSSG and NADPH/NADP+ ratios. These effects lead
to cellular ferroptosis and suppress tumor growth of GBC cell lines
(Li et al., 2022).

3.7 Hepatocellular carcinoma (HCC)

Hepatocellular carcinoma (HCC) accounts for 85%–95% of
primary liver cancer. Approximately 80% of HCC patients are
diagnosed at advanced stages when surgical intervention is not
applicable. The overall 5-year survival rate is less than 30% in
advanced HCC patients as most of those patients with 80%
experience cancer recurrence (Brown et al., 2023). Consequently,
there is an urgent need to elucidate the mechanisms underlying
HCC progression and develop effective therapy. CDCA robustly
induced the expression of N-Myc downstream-regulated gene 2
(NDRG2) to hinder the proliferation of hepatoma cells (Langhi
et al., 2013). Combining UDCAwith anti-PD-1 enhanced anticancer
immunity and promoted the development of tumor-specific
immune memory. Additionally, UDCA phosphorylated
transforming growth factor-beta (TGF-β) at the T282 site by
activating the TGR5-cAMP-PKA axis, which increased the
binding of TGF-β to the carboxyl terminus of the Hsc70-
interacting protein. Combination therapy using anti-PD-1 or
anti-PD-L1 antibody together with UDCA was more effective in
treating tumor patients than singleanti-PD-1 or anti-PD-

TABLE 1 (Continued) Tumor suppressive effects of natural BAs on cancers.

Cancer types Cell lines Bile
acids

Phenotype Effects Refs

Ovarian cancer OVCAR3 CDCA,
DCA

Proliferation Upregulating BRCA1 and
downregulating ESR1 gene expression

Jin et al. (2018)

A2780 CDCA,
DCA

Proliferation Inducing apoptosis Horowitz et al.
(2007)

Leukemia T leukemia cell line UDCA,
TUDCA

Proliferation Delaying cell cycle progression Fimognari et al.
(2009)

THP1, Molm-13 CDCA Proliferation, inhibition of
M2 macrophage polarization

Accumulating LDs and lipid peroxidation
via ROS/p38 MAPK/DGAT1 pathway

Liu et al. (2022)

HL60, THP-1 DCA,
CDCA,
LCA

Proliferation and differentiation Accumulating the G0/G1 transition and
inhibiting the differentiation

Zimber et al. (1994)

Melanoma M14, A375 UDCA Proliferation Inducing ROS-triggered mitochondrial-
associated pathway

Yu et al. (2019)

GCA, glycocholic acid; TDCA, taurodeoxycholic acid; UDCA, ursodeoxycholic acid; TUDCA, tauroursodeoxycholic acid; ROS, reactive oxygen species; LCA, lithocholic acid; EMT,

epithelial–mesenchymal transition; DCA, deoxycholic acid; CA, cholic acid; CDCA, chenodeoxycholic acid; Prx2, peroxiredoxin II; FXR, farnesoid X receptor; Dlc1, deleted in Liver

Cancer 1; AP-1, activator protein-1; COX2, cyclooxygenase-2; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; PGE2, prostaglandin E2; MDM2, mouse double minute 2;

MDM4, double Minute 4; c-Myc, myc-Related translation/localization regulatory factor; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; NF-

κB, nuclear factor κappa-light-chain-enhancer of activated B cells; PI3K, phosphatidylinositol 3-kinase; STAT3, signal transducer and activator of transcription 3; TGR5, G protein-

coupled bile acid receptor 5; VEGF, vascular endothelial growth factor; DR5, death receptor 5; NDRG2, N-Myc downstream regulated gene 2; SREBF, sterol regulatory element-

binding factor; MUC2, mucin 2; ATG5, Autophagy Related 5; cAMP, cyclic adenosine monophosphate; GADD153, growth arrest- and DNA, damage-inducible gene 153; BRCA1,

breast cancer type 1 susceptibility protein; PTEN, phosphatase and tensin homolog; EGFR, epithelial growth factor receptor; C/EBP, CCAAT/enhancer-binding protein beta; RAF1,

Raf-1, Proto-Oncogene; NRF2, nuclear factor erythroid 2-related factor 2; LDs, lipid droplets; PKCα, protein kinase C α; MMP, mitochondrial membrane potential; GLS,

glutaminase; TGF-β, Transforming growth factor-β; Smac, second mitochondria-derived activator of caspase; ESR1, Estrogen Receptor 1.
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L1 antibody (Shen et al., 2022). Combining sorafenib and UDCA
chemotherapy showed efficacy in advanced HCC by inhibiting cell
proliferation and inducing apoptosis through ROS-dependent
activation of ERK and Stat3 dephosphorylation (Lee et al., 2018).
TUDCA attenuated apoptosis induced by ER stress (Vandewynckel
et al., 2015). UDCA suppressed HCC growth in vivo in a dose- and
time-dependent apoptosis fashion by upregulating the Bax to Bcl-2
ratio, Smac, Livin and caspase-3 expressions (Zhu et al., 2014; Liu
et al., 2015), serving as a therapeutic candidate for HCC treatment.
UDCA also exhibited selective ability to inhibit proliferation and
induce apoptosis in HCC cell lines by disrupting the cell cycle and
modulating the expression of Bax/Bcl-2 genes (Liu et al., 2007).
Likewise, UDCA acted as an anti-proliferative agent in HCC by
inducing DLC1 protein expression and inhibiting proteasomal
DLC1 degradation (Chung et al., 2011). In HepG2 cells, UDCA
transformed oxaliplatin-induced necrosis into apoptosis by
inhibiting ROS generation and activating the p53-caspase
8 pathway. The combination of UDCA with chemotherapy
effectively inhibited HCC by diminishing inflammatory responses
(Lim et al., 2010).

3.8 Pancreatic cancer

Pancreatic cancer shows a notably low survival rate primarily
owe to late diagnosis and resistance to therapies (Halbrook et al.,
2023). The adverse effects of these chemotherapy treatments are also
detrimental. Thus, optimal treatment remains to be developed.
UDCA displayed the ability to prevent epithelial-mesenchymal
transition (EMT) in pancreatic cancer cell lines, indicating its
potential as an agent with antineoplastic properties (Kim Y.
J. et al., 2017). UDCA suppressed intracellular ROS and
Prx2 levels, EMT and stem cell formation in pancreatic cancer
cells. These findings suggest that UDCA’s antioxidant effects may
provide favorable therapeutic benefits for patients with pancreatic
cancer (Kim Y. J. et al., 2017). A high BA level could inhibit cell
proliferation and migration by inducing ROS and EMT pathways,
thereby promoting apoptosis of pancreatic cancer cells (Zhu et al.,
2022). BAs could reduce the proliferation of pancreatic cancer cells
due to direct cytotoxicity (Wu et al., 2003). Specifically, DCA and
CA induced cell cycle arrest, while GCA and TDCA elevated the S
phase cell number, suggesting enhanced DNA synthesis and
progression through the cell cycle (Wu et al., 2003).

3.9 Gastric cancer (GC)

Gastric cancer (GC) is one of the leading causes of cancer-related
mortality worldwide. Most patients are diagnosed at advanced stages
due to the neglect of minimal symptoms at earlier stages and the lack of
regular early screening. Systemic therapies for GC including
chemotherapy, targeted therapy, and immunotherapy, have been
notably practiced in recent years (Guan et al., 2023). However, the
favorable efficacy remains to be evaluated. TCDCA inhibited gastric
cancer proliferation and invasion and induced apoptosis. Traditional
Chinese medicine in experimental studies offered encouraging evidence
for the potential application in the blockade of tumor (Zhang et al.,
2022). DCA triggered apoptosis in gastric carcinoma cells by activating

intrinsic mitochondrial-dependent, p53-mediatedcell death pathway
(Yang et al., 2015). Furthermore, the upregulation of the Bax/Bcl-
2 ratio and disruption of the mitochondrial membrane potential
significantly contributed to the induction of DCA-mediated
apoptosis in gastric carcinoma cells (Song et al., 2013). DCA also
induced MUC2 expression in GC cells, inhibiting tumor progression.
Accordingly, MUC2-expressing GC cells demonstrated decreased Snail
expression (Pyo et al., 2015). UDCA drove apoptosis and autophagy,
overcoming drug resistance (Lim and Han, 2015). Additionally, UDCA
and DCA demonstrated suppressive effects in gastric cancer cells by
activating the ERK signaling molecules (Lim et al., 2012). UDCA
inhibited invasion by suppressing chenodeoxycholic acid induced
PGE2 production (Wu et al., 2018). Furthermore, UDCA promoted
GC apoptosis by activating the death receptor 5 (DR5) in lipid rafts
(Lim et al., 2011).

3.10 Colon cancer

Colon cancer represents approximately 10% of all human cancers
worldwide and, is also a leading cause of cancer-related deaths (Gallois
et al., 2023). Except the essential early diagnosis and prevention required
for clinic practice, effective therapies emerge as themost powerful aspect
to improve patient survival. BAs play a causal role in colon cancer by
inducing DNA damage (Kandell and Bernstein, 1991). TUDCA
inhibited the NF-κB signaling pathway and alleviated colitis-
associated tumorigenesis, indicating the valuable therapeutic means
for colon cancer treatment (Kim et al., 2019). DCA increased
intracellular ROS, genomic DNA breakage, and expression of ERK1/
2, caspase 3, and PARP. In addition, DCA inhibited colonic cell
proliferation through activation in the cell cycle and apoptosis
pathways (Zeng et al., 2015). DCA exerted common and distinct
effects on cell cycle, apoptosis, and MAP kinase pathway in human
colon cancer cells (Zeng et al., 2009). DCA inhibited the proliferation by
inducing apoptosis through AP-1 and C/EBP-mediated
GADD153 expression (Qiao et al., 2002). Both DCA and CDCA
suppressed cell proliferation by inducing apoptosis (Powell et al.,
2001). UDCA suppressed cell proliferation by regulating oxidative
stress in colon cancer cells (Kim E. K. et al., 2017). Treatment of
colon carcinoma cells with UDCA inhibited cell proliferation by
suppressing c-Myc expression and several cell cycle regulatory
molecules (Peiró-Jordán et al., 2012). UDCA suppressed cell growth
by inhibiting the mitogenic activity of receptor tyrosine kinases such as
EGFR through increased receptor degradation (Feldman andMartinez,
2009). UDCA exerted a partial inhibitory effect on DCA-induced
apoptosis via disrupting EGFR/Raf-1/ERK signaling pathway (Im
and Martinez, 2004). UDCA prevented colon tumor and polyp
formation by balancing the toxic effects of DCA and enhanced the
potential cytoprotective effects of muricholic acids in the water-soluble
fraction in rat feces (Batta et al., 1998). UDCA induced apoptosis by
blocking the PI3K, MAPK, or cAMP pathways (Saeki et al., 2012).
UDCA inhibited interleukin β1 and blocking NF-κB and AP-1
activation in colon cells (Shah et al., 2006). TUDCA augmented the
cytotoxicity of hydrophobic BAs in vitro, and gaining a better
understanding of how BAs interact in the colon can significantly
impact the alteration of tumor promotion (Shekels et al., 1996).
LCA was found to activate the vitamin D receptor (VDR), blocking
inflammatory signals in colon cells (Sun et al., 2008). LCA also activated
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p53 that binds to MDM4 and MDM2, abrogating cell proliferation
(Vogel et al., 2012).

3.11 Breast cancer

Breast cancer continues to be the first ranked cancer in
women, which is characterized by significant disease
heterogeneity, metastasis, and therapeutic resistance (Nolan
et al., 2023). Growing evidence has found that LCA blocked
breast cancer cell proliferation by stimulating oxidative stress
that is under mined during breast cancer progresses (Kovács
et al., 2019). LCA was able to regulate lipid metabolism
reprogramming to inhibit breast cancer cells (Luu et al.,
2018). Moreover, natural BAs negatively impacted on human
breast cancer cell growth and steroid receptor function (Baker
et al., 1992). Like LCA in breast cancer treatment, CDCA
prompted cell death and resensitized tamoxifen resistant
breast cancer (Giordano et al., 2011; Alasmael et al., 2016).
Additionally, LCA exerted inhibitory effects on breast cancer
proliferation, epithelial-mesenchymal transition (EMT), vascular
endothelial growth factor (VEGF) production, and immune
responses through the activation of the Takeda-G-protein-
receptor-5 (TGR5) receptor (Mikó et al., 2018).

3.12 Prostate cancer

In man, prostate cancer is ranked as the most widespread
cancer globally and is the second leading cause of cancer-related
mortality in most developed countries. It is of note that a significant
population of elderly patients are unable to withstand the
conventional chemotherapy (Hamdy et al., 2023). In addition,
increasing resistance to hormonal therapy has emerged as the
substantial challenge in clinical treatment. Hence, alternative
new drug development has been largely taken into account. LCA
exhibited potent and non-selective effects on prostate cancer cells
while sparing highly differentiated podocytes at lower
concentrations, rendering it potential for an effective anticancer
drug (Trah et al., 2020). LCA induced approximately 98% of cancer
cell cytotoxicity at nominal concentrations in cultured medium
(Goldberg et al., 2013). LCA induced autophagy and ER stress in
PC-3 cells. However, this signature was found to be associated with
initial protection and subsequent consequences rather than the
ultimate cytotoxicity and mitochondrial dysfunction mediated by
ROS (Gafar et al., 2016). LCA suppressed the proliferation of
androgen-dependent (AD) LNCaP prostate cancer cells by
inducing an apoptotic pathway (partially dependent on caspase-
8 activation). Notably, LCA increased Bid and Bax cleavage, Bcl-2
downregulation, mitochondrial outer membrane permeabilization,
and caspase-9 activation. UDCA drove apoptosis in prostate cancer
cells by activating extrinsic and intrinsic apoptotic pathways (Lee
et al., 2017). CDCA and DCA were shown to destabilize HIF-1α,
significantly suppressing clonogenic growth, invasion, and
migration (Liu et al., 2016). CDCA inhibited prostate cancer
cells via activating the Farnesoid X receptor (FXR) and
upregulating phosphatase and tensin homolog (PTEN) (Liu
et al., 2014).

3.13 Ovarian cancer

Ovarian cancer is an aggressive disease that is often detected at
advanced stages and typically exhibits a strong initial response to
platinum-based chemotherapy. Despite this, the majority of patients
experience relapse after the initial surgery and chemotherapy,
implicating the critical necessity for the development of new
therapeutic strategies (Konstantinopoulos and Matulonis, 2023).
CDCA and DCA exhibited noteworthy cytotoxic activity in
ovarian cancer cells by inducing apoptosis (Horowitz et al.,
2007). CDCA and DCA could upregulate BRCA1 and
downregulate ESR1 expression to inhibit BRCA1 mutated ovarian
cancer progression (Jin et al., 2018).

3.14 Leukemia

Leukemia represents a highly fatal hematologic malignancy
characterized by the accumulation of poorly differentiated myeloid
cells in the bone marrow and blood, even in other tissues and organs.
This widespread feature results ultimately in systemic dysfunction
(DiNardo et al., 2023). To date, numerous research endeavors have
been added to enhance treatment outcomes (Kayser and Levis, 2023),
yet the rate of complete remission remains low. CDCA suppressed acute
myeloid leukemia (AML) progression by promoting both lipid droplets
(LD) accumulation and lipid peroxidation via ROS/p38 MAPK/
DGAT1 pathway. CDCA also inhibited the polarization of
M2 macrophages, contributing to its anti-leukemic properties (Liu
et al., 2022). DCA, UDCA, TDCA, and TUDCA induced a delay in
cell cycle progression in the human T leukemia cell line. Furthermore,
DCA significantly increased the apoptotic cell fraction. DCA, CDCA
and LCA inhibited the proliferation by accumulating the G0/
G1 transition and inhibiting the differentiation (Zimber et al., 1994).
Given the hydrophobic properties of DCA accounted for its
cytotoxicity, it is possible to develop its derivatives as new anti-
leukemia drugs for cancer therapy (Fimognari et al., 2009).

3.15 Melanoma

Melanoma has demonstrated the most lethal form of skin cancer
and its incidence within the population has steadily risen in recent
years. The high mortality rate of melanoma patients has continued
to stimulate new research efforts to the regimens and drug
development, expectedly improving the efficacy (Carvajal et al.,
2023). UDCA could effectively inhibit melanoma cell
proliferation in a time- and dose-dependent manner through cell
cycle arrest in the G2/M phase, and cell apoptosis via the ROS-
triggered mitochondrial-associated pathway (Yu et al., 2019).

4 Synthetic BA derivatives
against cancer

Over past recent years, a large volume of researchers have paid
the particular attention on modifying the structure of BAs and
synthesizing derivatives in order to create novel agents to block
cancers. This section mainly focuses on several synthetic derivatives
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TABLE 2 Molecular targets of synthetic bile acid derivatives against cancers.

Bile acids Derivatives Cancer
type

Cell line Phenotype Mechanism Effects Refs.

UDCA HS-1030 Colon cancers HT-29 Proliferation Apoptosis G1 phase arrest, sub-G1-
fraction, cyclin D1, E and A and
Cdk2, 4, and 6 decrease, Cdk
inhibitor, p21WAF1/CIP1
increase

Park et al. (2004)

HS-1183 Leukemia Jurkat T cells Proliferation Apoptosis Caspase-3 and -8 down-
regulation, PARP cleavage,
DNA fragmentation

Choi et al. (2001)

Colon cancer HT-29 Proliferation Apoptosis Mentioned above Park et al. (2004)

Cervical cancer SiHa Cell viability Apoptosis DNA fragmentation, Bax up-
regulation, poly (ADP-ribose)
polymerase cleavage

Im et al. (2005)

Breast cancer MCF-7,
MDA-
MB-231

Proliferation Apoptosis Apoptotic nuclear changes, sub-
G1 population increase, DNA
fragmentation

Im et al. (2001)

Prostate cancer PC-3 Proliferation Apoptosis DNA fragmentation, chromatin
condensation, PARP cleavage,
cell cycle arrest

Choi et al. (2003)

UDC-PTX Leukemia HL60, NB4 Cell viability Apoptosis / Melloni et al. (2022)

Colon cancer RKO,
HCT116

Cell viability Apoptosis / Melloni et al. (2022)

CDCA HS-1199 Leukemia Mentioned above Choi et al. (2001)

Colon cancer Mentioned above Park et al. (2004)

Cervical cancer Mentioned above Im et al. (2005)

Breast cancer Mentioned above Im et al. (2001)

Prostate cancer Mentioned above Choi et al. (2003)

Gastric cancer SNU-1 Cell viability Apoptosis Mitochondrial changes,
caspase-3 activation, DNA
fragmentation, nuclear
condensation

Moon et al. (2004)

Glioblastoma U-118MG,
U-87MG,
T98G,
U-373MG

Proliferation Apoptosis Mitochondria, caspases and
proteasomes

Yee et al. (2005)

HS-1200 Leukemia Mentioned above Choi et al. (2001)

Colon cancer Mentioned above Park et al. (2004)

Cervical cancer Mentioned above Im et al. (2005)

Breast cancer MCF-7,
MDA-
MB-231

Proliferation Apoptosis p53 independent pathway
activation

Im et al. (2001),
Yee et al. (2007)

Prostate cancer Mentioned above Choi et al. (2003)

Gastric cancer SNU-1 Cell viability Apoptosis Caspase- and mitochondria-
dependent fashions

Moon et al. (2004),
Jeong et al. (2003)

Glioblastoma Mentioned above Yee et al. (2005)

Hepatocellular
carcinoma

HepG2,
Hep3B

Proliferation Apoptosis Egr-1 regulation Liu et al. (2008),
Park S. E. et al.
(2008)

(Continued on following page)
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TABLE 2 (Continued) Molecular targets of synthetic bile acid derivatives against cancers.

Bile acids Derivatives Cancer
type

Cell line Phenotype Mechanism Effects Refs.

Thyroid
carcinoma

KAT-18 Cell viability Apoptosis Procaspase-3, procaspase-7, and
poly (ADP)- ribose polymerase
degradation, histone
hyperacetylation induction,
peripheral chromatin
condensation, translocation of
apoptosis-inducing factor and
caspase-activated DNase decrease

Kim et al. (2009)

Compound IIIb Multiple
myeloma

KMS-11 Cell viability Apoptosis Mcl-1 and PARP-1 cleavage,
NF-kB signaling inhibition,
DNA fragmentation

El Kihel et al.
(2008)

Glioblastoma
multiforme

GBM

Colonic
carcinoma

HCT-116

ent-CDCA Colon cancer HT-29 and
HCT-116

Proliferation Apoptosis CD95 activation, ROS generation,
procaspase-8 cleavage

Katona et al.
(2009)

CDC-PTX Leukemia Mentioned above Melloni et al.
(2022)

Colon cancer Mentioned above Melloni et al.
(2022)

DCA ent-DCA Colon cancer Mentioned above Katona et al.
(2009)

Compound 9 Duodenal
carcinoma

HuTu-80 Cell viability Apoptosis ROS-dependent cell death Markov et al.
(2019)

Hepatocellular
carcinoma

HepG2

Lung cancer A549

Cervical cancer KB-3-1

4b, 4e, 4d Lung cancer A549 Cell viability Apoptosis / Patel et al. (2022)

Cervical cancer SiHa

6g, 4e Human
osteosarcoma

HOS-CRL-
1543

Cell viability / / Agarwal et al.
(2018)

5-FU@Mic-Hyd Skin cancer L929, A375 Cell viability / / Pourmanouchehri
et al. (2022)

HD Squamous cell
carcinoma

SCC7 Proliferation Cytostatic and antiangiogenetic Park K. et al.
(2008)

Melanoma B16F10

LCA ent-LCA Colon cancer Mentioned above Katona et al.
(2009)

LCA-PIP1 Colon cancer HCT-116,
DLD-1,
HCT-8

Cell viability Apoptosis / Singh et al. (2015)

FHL Nasopharyngeal
carcinoma

KB Cell viability Apoptosis Vessel density decrease Yu et al. (2007)

LCA acetate Hepatoblastoma HepG2 Proliferation Binding to VDR Adachi et al.
(2005)

Colon cancer SW480 Proliferation Binding to VDR

Leukemia THP-1 Monocytic
differentiation

Binding to VDR

(Continued on following page)
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of BAs that have been increasingly reported to inhibit cancer
progression effectively (Table 2).

4.1 UDCA derivatives

The novel derivative HS-1030 derived from UDCA impeded
hepatocellular carcinoma and breast cancer cell growth by

inducing apoptosis (Park et al., 1997). Similarly, HS-1183, HS-
1199 and HS-1200 generated from UDCA, inhibited proliferation
of acute myeloid leukemia by inducing apoptotic cell death by
downregulation of caspase-3/8 (Choi et al., 2001). Accordingly,
these three derivatives inhibited human prostate carcinoma
proliferation due to apoptosis induction via arresting cell cycle
progression (Choi et al., 2003). In human cervical carcinoma
cells, HS-1183, HS-1199, and HS-1200 suppressed cell growth

TABLE 2 (Continued) Molecular targets of synthetic bile acid derivatives against cancers.

Bile acids Derivatives Cancer
type

Cell line Phenotype Mechanism Effects Refs.

Bile-acid-
appended triazolyl
aryl ketones

6af and 6cf Breast cancer MCF-7 Cell viability / Agarwal et al.
(2021)

CA CA-Tam3- Am Breast cancer 4T1, MCF-7,
T47D and
MDA-
MB-231

Cell viability Apoptosis Molecular charge and
hydrophobicity

Sreekanth et al.
(2013)

LLC-202 Liver cancer HL7702 Proliferation / / Jiang et al. (2023)

6a, 6c, 6m Breast cancer MDAMB231 Cell viability / / Agarwal et al.
(2016)

Colon cancer HT29

6e, 6i, 6m Glioblastoma U87

Piperazinyl bile
acid derivative

7b Multiple
myeloma

GBM,
KMS-11

Cell viability Apoptosis Nuclear and DNA
fragmentation

Brossard et al.
(2010)

Colon cancer HCT-116

Cationic bile acid-
based facial
amphiphiles
featuring trimethyl
ammonium head
groups

LCA- TMA1,
CDCA- TMA2,
DCA- TMA2,
and CA-TMA3

Colon cancer HCT-116 or
DLD-1

Proliferation Apoptosis Governing membrane
interactions, translocation

Singh et al. (2013)

Bile acids C-7 Breast cancer MCF-7,
MDA-
MB-231

Cell viability / Bjedov et al.
(2017)

Pancreatic
cancer

PC3

Ovarian cancer HeLa

Colon cancer HT-29

Compound 27 Prostate cancer PC3M Proliferation Cell cycle G1 arrest Mao et al. (2016)

Colon cancer HT-29

Ovarian cancer ES-2

Cholic,
ursodeoxycholic,
chenodeoxycholic,
deoxycholic and
lithocholic acids

Piperazinyl bile
carboxamide

Colon cancer DLD-1,
HCT-116,
and HT-29

Proliferation / Brossard et al.
(2014)

HS-1030, and HS-1183, ursodeoxycholic acid derivatives;HS-1199, and HS-1200, chenodeoxycholic acid derivatives; ROS, reactive oxygen species; CA, cholic acid; CA-TMA3, cholic acid based

amphiphile; CA-Tam3-Am, cholic acid−tamoxifen conjugate; CDCA, chenodeoxycholic acid; CDC-PTX, chenodeoxycholic-paclitaxel hybrid; CDCA-TMA2, chenodeoxycholic acid based

amphiphiles; LCA, lithocholic acid; LCA-PIP1, lithocholic acid–piperidine 1; LCA-TMA1, lithocholic acid based amphiphile; norUDCA, nor-ursodeoxycholic acid;UDCA, ursodeoxycholic acid;

UDC-PTX, ursodeoxycholic-paclitaxel hybrid; ent-CDCA, enantiomers of chenodeoxycholic acid; ent-DCA, enantiomers of deoxycholic acid; ent-LCA, enantiomers of lithocholic acid; 6af and

6cf, bile acid-added triazolyl aryl ketones; 7b, piperazinyl bile acid derivative; DCA, deoxycholic acid; DCA-TMA2, deoxycholic acid based amphiphiles; PARP, poly (ADP-ribose) polymerase;

Mcl-1, myeloid leukemia 1; compound 9, chenodeoxycholic acid derivative; compound IIIb, chenodeoxycholic acid-substituted piperazine conjugate; VDR, vitamin D receptor; Egr-1, early

growth response-1; p-ULK1, phosphorylation of Unc-51, like autophagy activating kinase 1; p-AMPK, phosphorylation of AMP-activated protein kinase; NF-κB, nuclear factor κappa-light-
chain-enhancer of activated B cells.
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and induced apoptosis by activating the JNK and NF-κB signaling
pathways (Im et al., 2005). Moreover, all of HS-1030, HS-1183,
HS-1199, and HS-1200 displayed the ability to inhibit colon
cancer cell growth by arresting cell cycle progression at the
G1 phase (Park et al., 2004). Finally, HS-1183, HS-1199 and
HS-1200 derivatives not only inhibited breast carcinoma cell
proliferation in a dose-dependent method, but also induced
apoptotic nuclear changes and sub-G1 population and DNA
fragmentation through ap53-independent pathway (Im
et al., 2001).

In recent studies, CDCA and UDCA were conjugated with the
anticancer drug paclitaxel (PTX) via a high-yield condensation
reaction. The resulting product chenodeoxycholic-PTX hybrid
(CDC-PTX) displayed comparable cytotoxicity and cytoselectivity
to PTX. This activity was distinct from the ursodeoxycholic-PTX
hybrid (UDC-PTX) that displayed limited anticancer effects on only
colon cancer cells (Melloni et al., 2022).

4.2 CDCA derivatives

CDCA derivatives HS-1199 and HS-1200 induced caspase-
dependent apoptosis in gastric cancer cell lines. This activity was
also found dependent on elevated orphan receptor Nur77 (TR3)
(Jeong et al., 2003). HS-1200 demonstrated an anticancer effect on
human hepatoma cells as it reduced expression levels of cyclin
A/D1 and Cdk2 and upregulated p21WAF1/CIP1 and p27 KIP1 in
a p53-dependent manner. HS-1200 also decreased cyclooxygenase
(COX)-2 levels and induced early expression of Egr-1 (Park S. E.
et al., 2008). In line with these findings, HS-1200 showed potential
to induce apoptosis of hepatocellular carcinoma (HCC) (Liu et al.,
2008). HS-1200 sensitized human breast carcinoma cells to
radiation-induced apoptosis by increasing Bax expression and
translocation into the mitochondria and thus increasing
cytochrome c release (Yee et al., 2007). Both HS-1199 and HS-
1200 exerted an anticancer effect on malignant GB cells through
various apoptotic manifestations, including caspase-3 activation,
DNA fragmentation factor (DFF) degradation, poly (ADP-ribose)
polymerase cleavage, nuclear condensation, and proteasome
activity inhibition (Yee et al., 2005). These two derivatives
could induce apoptosis in GC cells through a caspase- and
mitochondria-dependent manner (Moon et al., 2004).
Treatment of thyroid carcinoma cells with HS-1200 increased
cell death accompanied by procaspase-3/7 degradation, ADP-
ribose polymerase degradation, histone hyperacetylation and
peripheral chromatin condensation (Kim et al., 2009).
Compound IIIb inhibited multiple myeloma cell proliferation in
a way associated with Mcl-1 and PARP-1 cleavage, NF-κB
signaling inhibition and/or DNA fragmentation (El Kihel
et al., 2008).

4.3 DCA derivatives

DCA-chalcone amides were synthesized and tested for their
antitumor effects on human lung and cervical cancer cells. The
studies demonstrated that specific synthesized DCA-chalcone
conjugates exhibited promising outcomes to inhibit cancer cells

as potential anticancer agents (Patel et al., 2022). Recently, a series of
new DCA derivatives were synthesized by incorporating aliphatic
diamine and amino alcohol or morpholine moieties at the
C3 position through 3, 26-epoxide ring-opening reactions. The
mechanistic studies demonstrated that compound 9 induced cell
death in colon cancer cells by activating apoptosis and autophagy.
Vitamin D receptor was the primary target of this compound
(Markov et al., 2019).

Considerable efforts were added to investigate the anticancer
effects of amino-substituted α-cyanostilbene derivatives and CA
and DCA amides on the human osteosarcoma (HOS) cancer cells.
These studies revealed that all CA α-cyanostilbene amides
exhibited anticancer effects on HOS cells with an effective
range from 2 to 13 μM through induction of apoptotic cascade
(Agarwal et al., 2018).

A pH-responsive micellar hydrogel system was developed using
DCA-micelle (DCA-Mic) and carboxymethyl chitosan hydrogel
(CMC Hyd) to improve the effectiveness of 5-FU against skin
cancer and minimize side effects. This system facilitated the
delivery of 5-FU into the skin and exhibited enhanced anticancer
activity against melanoma cell growth compared to 5-FU alone. The
5-FU@Mic-Hyd platform showed a promising delivery system with
improved efficacy for managing skin cancer in the absence of
notable systemic toxicity (Pourmanouchehri et al., 2022).

A conjugate of heparin with DCA exhibited cytostatic and
antiangiogenic properties, enhanced the anticancer effects of
Doxorubicin (DOX) on squamous cell carcinoma and melanoma
cells. Furthermore, the combination treatment using these two drugs
resulted in improving therapeutic efficacy while minimizing
cytotoxic effects (Park K. et al., 2008).

4.4 LCA derivatives

LCA and its derivatives ent-LCA induced apoptosis through
CD95 activation, leading to increased ROS generation and
subsequent cleavage of procaspase-8 (Katona et al., 2009). A
group of BA derivatives, including CA, CDCA, UDCA, and LCA
against colon cancer were designed and synthesized. All the
compounds exhibited an anti-proliferative signature in various
human malignant tumors. Four specific compounds from
4–7 significantly inhibited colon cancer colony formation,
migration, and invasion. In addition to their antitumor effects,
these compounds induced apoptosis by cell cycle arresting,
resulting in a blockage of the mitotic process. Furthermore, they
decreased the potential of the mitochondrial membrane but
increased intracellular levels of ROS. These compounds
downregulated the expression of Bcl-2 and p-STAT3,
contributing to their apoptotic and anti-proliferative effects.
Interestingly, these compounds also exhibited anti-inflammatory
activity by inhibiting the production of nitric oxide (NO) and
downregulating the expression of TNF-alpha, both of which are
associated with inflammation in colon cancer (Wang et al., 2022).

Using LCA as a basis, ten cationic amphiphiles with variations in
their head cationic charged groups were synthesized, and the
anticancer effects of these amphiphiles were determined in colon
cancer. LCA-based amphiphile containing piperidine head group
(LCA-PIP) was approximately 10 times more cytotoxic than its
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precursor. The enhanced activity of LCA-PIP was attributed to a
high level of cellular apoptosis. LCA-PIP induced sub-G0 arrest and
caspase cleavage, promoting programmed cell death (Singh
et al., 2015).

A heparin-lithocholic conjugate (HL) was created by
covalently bonding lithocholate to heparin, and subsequent
conjugation with folate to synthesize folate-HL conjugate
(FHL). Although HL and FHL showed low anticoagulant
activity, they sustained antiangiogenic properties. HL and FHL
demonstrated similar antiangiogenic activity and inhibition of
proliferation, while FHL exhibited stronger apoptotic effects than
HL. These findings highlighted the potential of FHL as an
effective anticancer agent with antiangiogenic and apoptotic
properties (Yu et al., 2007).

LCA acetate induced leukemia cell differentiation. Combined
treatment with LCA acetate and cotylenin A displayed more
effectiveness in inducing monocytic differentiation than LCA
acetate or cotylenin A alone. LCA acetate activated MAPK
signaling that mediates cell differentiation. The synergistic effects
of LCA acetate and cotylenin A on cell differentiation were partially
ascribed to the MAPK activation induced by both agents (Horie
et al., 2008).

4.5 CA derivatives

LLC-202, a prodrug for liver cancer, was developed by
conjugating oxaliplatin with CA. The conjugation was achieved
using 3-NH (2) (−) cyclobutane-1,1-dicarboxylate as a linker
between the oxaliplatin analog and the CA moiety. The CA
component was firmly bonded to the linker via an amide bond.
Compared to oxaliplatin alone, LLC-202 exhibited enhanced
absorption by human liver cancer cells while showing less
affinity for normal liver cells. LLC-202 possessed higher
anticancer activity and efficacy than oxaliplatin through the
induction of apoptosis. These findings highlighted the
promising potential of LLC-202 as a liver cancer-specific
prodrug (Jiang et al., 2023).

A series of BAs (CA and DCA) aryl/heteroaryl amides linked
with alpha-amino acid were synthesized and evaluated for the
anticancer properties. More specifically, CA derivatives 6a, 6c,
and 6m bearing phenyl, benzothiazole, and 4-methyl phenyl
groups showed inhibitory activity against breast cancer cells
compared with cisplatin and doxorubicin. Meanwhile, 6e, 6i, and
6m exhibited robust activity against the GB cancer cells relative to
cisplatin and doxorubicin (Agarwal et al., 2016).

4.6 Other bile derivatives

Different BA derivatives were synthesized with modified side
chains and the steroid skeleton, in which the former included
reaction with 2-amino-2-methylpropanol and 4,4-dimethyl
oxazoline group, and cyclization of amides. The latter involved
addition of steroid skeleton oxo groups in positions 7 (2, 2a, 2b)
and 7,12 (3, 3a, 3b). By Wittig reaction, the ethylidene groups were
introduced regio- and stereo-selectively on C-7 and without
stereoselectivity on C-3. Compounds containing both C-7

ethylidene and C-12 carbonyl groups (6, 6a, and 6b) showed
significant anticancer activity. Altering the carboxylic group to
the amide or oxazoline group enhanced cytotoxicity (Bjedov
et al., 2017).

A series of new seco-A ring BA diamides were synthesized
and evaluated for their anti-proliferative activities. These
compounds enhanced G1 arrest and increased anti-migration
activity, demonstrating improved anti-proliferative activities
relative to the parent bile acid. A compound 27 conjugated
with piperazine showed promising results with strong
cytotoxicity in cancer cells (Mao et al., 2016). Moreover, all
tested compounds exhibited lower cytotoxic activity on
noncancerous cells.

Fifteen new piperazinyl bile carboxamides derived from various
BAs, including CA, UDCA, CDCA, DCA, and LCA, were
synthesized and evaluated for their pro-apoptotic potency in
colon cancer cells. Most of the synthetic bile carboxamide
derivatives were found to significantly decrease cell viability, in
which compound 9c and 9d exhibited the most significant dose-
response effect and solubility on colon cancer cells. The presence of a
benzyl group in the structure of the derivatives was associated with
enhanced anti-proliferative activity. Furthermore, introducing an α-
hydroxyl group at the 7-position of the steroid skeleton was
particularly beneficial (Brossard et al., 2014).

Two BA tamoxifen conjugates were synthesized using LCA,
DCA, and CA, whereby1, 2, or 3 tamoxifen molecules were
attached to the hydroxyl groups of BAs with free acid and
amine functionalities in their tail regions. In these conjugates,
the cholic acid-tamoxifen conjugate with a free amine headgroup
(CA-Tam3-Am) demonstrated the strongest potency as an
anticancer agent to induce apoptosis, cell cycle arrest, and high
ROS generation. These findings highlighted that BAs could be
utilized as a new framework to achieve high effective drug potency.
The antitumor properties of these conjugates were significantly
influenced by the charge and hydrophobicity of the lipid-drug
conjugate (Sreekanth et al., 2013).

Four cationic bile acid-based facial amphiphiles were
synthesized and evaluated for their cytotoxic activities against
colon cancer cells. The critical factors examined were charge,
hydration, and hydrophobicity. Among the synthesized
amphiphiles, the singly charged amphiphile based on lithocholic
acid (LCA-TMA1) exhibited the highest cytotoxicity. In contrast,
the triply charged cationic amphiphile based on cholic acid (CA-
TMA3) showed negligible cytotoxicity. These cytotoxic effects
were observed at late apoptosis. The LCA-TMA1 amphiphile
demonstrated high hydrophobicity combined with a
burdensome charge, leading to efficient dehydration and
significant membrane perturbations. These characteristics
facilitated its translocation and resulted in high cytotoxicity. On
the other hand, the highly hydrated and multiple-charged
amphiphile CA-TMA3 showed the least membrane penetration,
limiting its translocation and subsequent cytotoxicity.
Amphiphiles based on deoxycholic acid (DCA-TMA2) and
chenodeoxycholic acid (CDCA-TMA2), featuring two charged
head groups, displayed intermediate behavior. In conclusion,
the charge, hydration, and hydrophobicity of these cationic BA-
based facial amphiphiles determined their interaction with cells
and membrane translocation (Singh et al., 2013).
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Brossard et al. (2010) utilized nitrogenous heterocycles as a
fundamental component in synthesizing conjugate BA derivatives.
They successfully synthesized new piperazinyl BA derivatives and
examined in vitro activity in different human cancer cells. Among
the synthesized derivatives, N-[4N-cinnamylpiperazin-1-yl]-
3alpha,7beta-dihydroxy-5beta-cholan-24-amide (compound 7b)
and N-[4N-cinnamyllpiperazin-1-yl]-3alpha,7alpha-dihydroxy-
5beta-cholan-24-amide (compound 7c) demonstrated the most
significant pro-apoptotic activity in these human cancer cells.
These compounds induced nuclear and DNA fragmentation,
indicating that 7b and 7c induce cell death through an apoptotic
process. The findings suggest hybrid heterocycle-steroid compounds
could serve as a new class of anticancer drugs with improved
bioactivity. Additionally, the simple synthesis of these
compounds highlighted their potential for future development as
anticancer therapeutics (Brossard et al., 2010).

Králová et al. (2008) synthesized and utilized conjugates of
porphyrin and BAs as ligands to specifically bind to saccharide
cancer markers expressed by tumor cells. They found that these
compounds possessed a high selectivity for saccharide cancer
markers and cancer cells, indicating significant potential for
targeted photodynamic therapy (Králová et al., 2008). LCA
acetate inhibited hepatoblastoma, colon cancer and leukemia cell
proliferation by binding to VDR (Adachi et al., 2005). Moreover,
bile-acid-appended triazolyl aryl ketones (6af and 6cf) inhibited
breast cancer cell viability (Agarwal et al., 2021).

5 Conclusion

This article comprehensively reviews the anticancer activities
observed after treatment with both natural BAs and synthetic BA
derivatives. These therapeutic approaches are attributed to the
amphiphilic nature of BAs and their ability to activate additional
targeted pathways that are not stimulated at physiological low
concentrations. Additionally, the interaction between BAs and
the gut microbiome, known as the BA/gut microbiome axis, may
influence the association between BAs and cancer, facilitating BAs
action (Song et al., 2020b).

Synthesized BA derivatives have strong ability to induce cell
death in various human cancer cell lines. Consequently, these
novel BA derivatives show promising results as potent agents to
target different types of cancer cells by inducing apoptosis. These
findings suggest that these derivatives are the potential
candidates for developing novel alternative anticancer agents.
Nonetheless, to better understand these agents, mechanistic
insights of their activities remain to be substantially
investigated. While there is currently no precise report on the
cost-effectiveness of preparing BAs and their derivatives, we

believe that through further research, the price of isolation,
purification or synthesis expanse of BAs and derivatives can
be reduced, potentially making it more affordable for a greater
number of cancer patients.
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