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Background: Patients with acute tubular necrosis (ATN) not only have severe
renal failure, but also havemany comorbidities, which can be life-threatening and
require timely treatment. Identifying the influencing factors of ATN and taking
appropriate interventions can effectively shorten the duration of the disease to
reduce mortality and improve patient prognosis.

Methods: Mortality prediction models were constructed by using the random
survival forest (RSF) algorithm and the Cox regression. Next, the performance of
both models was assessed by the out-of-bag (OOB) error rate, the integrated
brier score, the prediction error curve, and area under the curve (AUC) at 30,
60 and 90 days. Finally, the optimal prediction model was selected and the
decision curve analysis and nomogram were established.

Results: RSF model was constructed under the optimal combination of
parameters (mtry = 10, nodesize = 88). Vasopressors, international normalized
ratio (INR)_min, chloride_max, base excess_min, bicarbonate_max, anion gap_
min, and metastatic solid tumor were identified as risk factors that had strong
influence on mortality in ATN patients. Uni-variate and multivariate regression
analyses were used to establish the Cox regression model. Nor-epinephrine,
vasopressors, INR_min, severe liver disease, and metastatic solid tumor were
identified as important risk factors. The discrimination and calibration ability of
both predictive models were demonstrated by the OOB error rate and the
integrated brier score. However, the prediction error curve of Cox regression
model was consistently lower than that of RSF model, indicating that Cox
regression model was more stable and reliable. Then, Cox regression model
was also more accurate in predicting mortality of ATN patients based on the AUC
at different time points (30, 60 and 90 days). The analysis of decision curve
analysis shows that the net benefit range of Cox regression model at different
time points is large, indicating that the model has good clinical effectiveness.
Finally, a nomogram predicting the risk of death was created based on
Cox model.
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Conclusion: The Cox regression model is superior to the RSF algorithm model in
predicting mortality of patients with ATN. Moreover, the model has certain clinical
utility, which can provide clinicians with some reference basis in the treatment of
ATN and contribute to improve patient prognosis.
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1 Background

Acute tubular necrosis (ATN) is the most common type of acute
renal failure (accounting for approximately 70%–80%) (Zhou et al.,
2010). It is a clinical syndrome caused by ischemia of renal tissue or
necrosis of tubular epithelial cells due to toxic damage, and resulting in a
dramatic decrease in the glomerular filtration rate (An et al., 2022). It is
often manifested as progressive azotemia, electrolyte disturbance, acid-
base balance disorder, and a host of other symptoms. ATN patients not
only have severe renal failure, but also havemany comorbidities, such as
myocardial infarction, congestive heart failure, peptic ulcer disease, etc.,
which can be life-threatening and require timely treatment. ATN is
associated with high mortality, especially for those patients in the
intensive care unit (ICU) (Rosen and Stillman, 2008).
Understanding the influencing factors of ATN and taking
appropriate interventions can effectively shorten the duration of the
disease to reduce mortality and improve patient prognosis. Previous
studies have shown that pH, base excess, creatinine, and blood urea
nitrogen (BUN) are common influencing factors of ATN (Liaño et al.,
1989). However, other potential risk factors that may affect the
prognosis of patients with ATN have not yet been identified. In
recent years, the continuous development of medical information
technology and the popularization of electronic medical record
systems have generated a large quantity of data for prognostic
model evaluation and other clinical applications.

Cox regression model is the most common semi-parametric
regression model, which can analyze the influence of multiple
factors on outcome events and carry out statistical analysis on data
with censoring (Moolgavkar et al., 2018). This method improves the
efficiency and reliability of survival analysis by considering multiple
predictor variables simultaneously (Koletsi and Pandis, 2017). It has
been widely used in medical research, such as evaluating the survival
rate of cancer patients, the risk of heart failure, and the prognosis
prediction of patients (Hippisley-Cox and Coupland, 2015; Tang M.
et al., 2021; Wang et al., 2022). On the other hand, machine learning
(ML) is a data-based algorithmic technology that automatically analyzes
and learns patterns and regularities in data to predict and optimize
future outcomes, and is a fast-growing area. ML technology has also
been applied in many aspects of medical research, which is important
for improving medical care and promoting human health
(Noorbakhsh-Sabet et al., 2019; Issa et al., 2021). Random survival
forest (RSF) is a comprehensive method of random forest and survival
analysis, which processes right censored data. Different from the general
binary classification method, the target variable of survival analysis
method is survival time. By training a large number of survival trees, the
model votes out the final prediction results weighted from individual
trees in the form of voting. RSF is aML algorithm based on decision tree
(Yosefian et al., 2015), which has good prediction accuracy without
over-fitting, and it is suitable for survival analysis of many diseases

(Farhadian et al., 2021; Roshanaei et al., 2022). The most important
feature of the RSF algorithm is that it can rank the importance of
variables in order to filter out those that have a greater impact on
outcome indicators (Adham et al., 2017; Wang and Zhou, 2017).
Moreover, RSF can effectively deal with the problem of data
imbalance, when there is classification imbalance, RSF can balance
the data error. Currently, it has been used in the construction of
prognostic models for many different diseases, such as heart failure,
arrhythmia, multiple myeloma, etc. (Hsich et al., 2011;Miao et al., 2015;
Morvan et al., 2020). In addition, several studies have compared the
performance of RSFwith the classical Cox regressionmodel, while some
have found that RSF is more accurate than Cox regression (Sloan et al.,
2016; Ma et al., 2020; Tapak et al., 2020), others have reached the
opposite conclusion (Qiu et al., 2020). Hitherto, there were no
comparative studies of two models in the ATN based on large
sample data. Therefore, this study aimed to investigate the
prediction of mortality in ATN patients in the ICU and the
associated influencing factors by using RSF algorithm and Cox
regression method.

2 Materials and methods

2.1 Data source and study population

Medical Information Mart for Intensive Care IV (MIMIC-IV) is
a large-scale public database containing clinical information of
patients at Beth Israel Deaconess Medical Center between
2008 and 2019, which was established by the Massachusetts
Institute of Technology and Beth Israel Deaconess Medical
Center. In the MIMIC-IV database, the patients’ true identifying
information is hidden, therefore, there is no need to obtain informed
consent from patients. However, researchers are required to
complete relevant training courses and receive certificate before
accessing the database. Datasets were obtained from the Physionet
official website (http://mimic.physionet.org/).

A total of 4,031 patients were diagnosed with ATN in the
database. For this study, the inclusion criteria were: over 18 years
old and admission to the ICU longer than 24 h. Exclusion criteria
were: patients who died within 24 h of the ICU admission and
patients with incomplete data. For patients with multiple ICU
admissions, and only data from their first admission were taken.
Ultimately, a total of 3,220 patients were enrolled in this study.

2.2 Data extraction

Datasets were extracted by using structured query language.
Basic information of ATN patients included: age at admission,
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gender, ethnicity, weight, length of stay in ICU, etc. Treatment
measures included: antibiotic use, vasopressors use, nor-epinephrine
use, the use of continuous renal replacement therapy, etc. Related
comorbidities included the following: myocardial infarction,
congestive heart failure, peripheral vascular disease, chronic
pulmonary disease, cerebrovascular disease, rheumatic disease,
mild liver disease, peptic ulcer disease, paraplegia, malignant
cancer, severe liver disease, metastatic solid tumor, etc. The first
laboratory test results after ICU admission included: hemoglobin,
white blood cells, base excess, pH, anion gap (AG), bicarbonate,
international normalized ratio (INR), prothrombin time, urine
output, arterial partial pressure of oxygen, creatinine, BUN,
chloride, glucose, etc. Vital signs after ICU admission included:
heart rate, respiratory rate, systolic blood pressure (SBP), diastolic
blood pressure (DBP), body temperature, etc. Because of the high
sampling frequency, the maximum, the minimum and the average
values were used to represent vital signs and laboratory test results.

2.3 Model construction

Patients with ATN were randomly divided into the training set
and validation set in an 8:2 ratio. The training set was used to
construct RSF or Cox model and the validation set was used to
evaluate the performance of the two predictive models. RSF model
was constructed on the basis of optimal parameter combination. The
out-of-bag (OOB) error rate under different parameter
combination, which is calculated by grid search method, and it
was used to determine the optimal parameter combination of the
model (Wang et al., 2019). RSF algorithm has the ability to assess the

importance of each variable that contributed to the outcome
indicators. In this study, the minimum depth method was used
to measure and rank the importance of each variable (Peng et al.,
2016). On the other hand, uni-variate and multivariate regression
analysis were carried out for the Cox regression model. All variables
were first analyzed in the uni-variate Cox regression model, and
those with p-values less than 0.05 were selected and subjected to
multivariate Cox regression analysis.

2.4 Model comparison

The OOB error rate is equivalent to the value of 1-C index,
which is used to evaluate the prediction ability of the model. The
smaller the out-of-bag error rate is, the stronger the differentiation
ability of the model is. Brier score is an evaluation index to evaluate
different survival models and can represent the prediction accuracy
of prediction models. Brier score can be viewed as a “calibrated”
measure of a set of probabilistic predictions. The OOB error rate and
the integrated Brier score were first calculated to determine the
discrimination and calibration ability of the twomodels. The smaller
the OOB error rate, the better the discrimination ability of the
predictive model (Banerjee et al., 2012). The model is well calibrated
when the Brier score is less than 0.25 (Mogensen et al., 2012). And
the smaller the Brier score, the better the calibration of the model.
Then, the prediction error curves of two models were plotted for
judging the prediction performance. To further assess the prognostic
ability of two models, 30-day, 60-day and 90-day dependent receiver
operating characteristic (ROC) curves were plotted. A larger area
under the curve (AUC) value indicates a stronger predictive ability

TABLE 1 General information of the patients.

Death Survival p-value

Number (sample size) 763 2,457

Age,year 72.16(60.12,80.56) 66.32(54.98,77.06) < 0.0001

Gender(%) 0.0529

Female 330(43.3) 966(39.3)

Male 433(56.7) 1,491(60.7)

Weight, kg 81(68.30,94.40) 83.2(70.20,98.80) 0.0002

Ethnicity (%) < 0.0001

White 500(65.5) 1,647(67.0)

Black 64(8.4) 296(12.0)

Yellow 22(2.9) 65(2.6)

Other 177(23.2) 449(18.4)

Length of stay in the ICU, day 7.89(3.86,14.65) 5.80(2.78,12.21) < 0.0001

First care unit (%) < 0.0001

CCU 82(10.7) 311(12.6)

SICU 118(15.5) 365(14.9)

MICU 191(25.1) 715(29.1)

CVICU 72(9.4) 295(12.0)

Other 300(39.3) 771(31.4)

ICU, intensive care unit; CCU, coronary care unit; SICU, surgical intensive care unit;MICU, medical intensive care unit; CVICU, cardiac vascular intensive care unit, p-value less than 0.05 are

shown in bold text.
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of the model when the AUC values are greater than 0.5 (Bansal and
Heagerty, 2018). To analyze the decision curve analysis (DCA) of the
Cox model, 30-day, 60-day, and 90-day DCA were plotted. When
the net benefit of DCA is large, it indicates that the clinical
application value of the model is high (Vickers and Holland,
2021). The superior performance model was utilized to
construct a nomogram as individual prediction tool for ATN
mortality risk.

TABLE 2 The treatment and comorbidity of the patients.

Death Survival p-value

The treatment

Antibiotic (%) < 0.0001

No 15(2.0) 158(6.4)

Yes 748(98.0) 2,299(93.6)

Dobutamine (%) 0.0008

No 707(92.7) 2,351(95.7)

Yes 56(7.3) 106(4.3)

Dopamine (%) 0.0367

No 700(91.7) 2,307(93.9)

Yes 63(8.3) 150(6.1)

Nerve blockers (%) < 0.0001

No 671(87.9) 2,298(93.5)

Yes 92(12.1) 159(6.5)

Epinephrine (%) < 0.0001

No 644(84.4) 2,263(92.1)

Yes 119(15.6) 194(7.9)

Norepinephrine (%) < 0.0001

No 244(32.0) 1,388(56.5)

Yes 519(68.0) 1,069(43.5)

Phenylephrine (%) < 0.0001

No 485(63.6) 1815(73.9)

Yes 278(36.4) 642(26.1)

Vasopressor (%) < 0.0001

No 441(57.8) 2061(83.9)

Yes 322(42.2) 396(16.1)

CRRT(%) 0.3576

No 716(93.8) 2,327(94.7)

Yes 47(6.2) 130(5.3)

Comorbidity

Myocardial infarct (%) 0.1509

No 576(75.5) 1916(78.0)

Yes 187(24.5) 541(22.0)

Congestive heart failure (%) 0.0358

No 415(54.4) 1,442(58.7)

Yes 348(45.6) 1,015(41.3)

Peripheral vascular disease (%) 0.9299

No 646(84.7) 2077(84.5)

Yes 117(15.3) 380(15.5)

Cerebrovascular disease (%) 0.0047

No 647(84.8) 2,178(88.6)

Yes 116(15.2) 279(11.4)

Dementia (%) 0.9653

No 735(96.3) 2,366(96.3)

Yes 28(3.7) 91(3.7)

(Continued in next column)

TABLE 2 (Continued) The treatment and comorbidity of the patients.

Death Survival p-value

Chronic pulmonary disease (%) 0.0409

No 521(68.3) 1772(72.1)

Yes 242(31.7) 685(27.9)

Rheumatic disease (%) 0.5712

No 730(95.7) 2,362(96.1)

Yes 33(4.3) 95(3.9)

Peptic ulcer disease (%) 0.7695

No 725(95.0) 2,341(95.3)

Yes 38(5.0) 116(4.7)

Mild liver disease (%) < 0.0001

No 487(63.8) 1855(75.5)

Yes 276(36.2) 602(24.5)

Diabetes uncomplicated (%) 0.0777

No 564(73.9) 1735(70.6)

Yes 199(26.1) 722(29.4)

Diabetes complicated (%) 0.0082

No 658(86.2) 2018(82.1)

Yes 105(13.8) 439(17.9)

Paraplegia (%) 0.9334

No 738(96.7) 2,378(96.8)

Yes 25(3.3) 79(3.2)

Renal disease (%) 0.0001

No 496(65.0) 1,407(57.3)

Yes 267(35.0) 1,050(42.7)

Malignant cancer (%) < 0.0001

No 553(72.5) 2,101(85.5)

Yes 210(27.5) 356(14.5)

Severe liver disease (%) < 0.0001

No 597(78.2) 2,137(87.0)

Yes 166(21.8) 320(13.0)

Metastatic solid tumor (%) < 0.0001

No 653(85.6) 2,334(95.0)

Yes 110(14.4) 123(5.0)

Aids (%) 0.3996

No 758(99.3) 2,431(98.9)

Yes 5(0.7) 26(1.1)

CRRT, continuous renal replacement therapy, p-value less than 0.05 are shown in bold text.

Frontiers in Pharmacology frontiersin.org04

Zeng et al. 10.3389/fphar.2024.1361923

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1361923


TABLE 3 Laboratory tests and vital signs of the patients.

Death Survival p-value

Laboratory tests

Hematocrit_min(%) 26.10(22.70,31.00) 27.00(23.40,32.00) 0.0006

Hematocrit_max(%) 31.20(27.20,35.85) 31.80(28.10,36.90) 0.0004

Hemoglobin_min(g/dL) 8.50(7.35,10.00) 8.80(7.70,10.50) < 0.0001

Hemoglobin_max(g/dL) 10.10(8.80,11.60) 10.40(9.10,12.10) < 0.0001

Platelets_min(k/uL) 138.00(69.0,203.5) 146.00(100.00,213.00) < 0.0001

Platelets_max(k/uL) 183.00(105.00,247.00) 187.00(138.00,260.00) < 0.0001

WBC_min(k/uL) 9.90(6.30,13.90) 9.90(6.70,13.30) 0.8786

WBC_max(k/uL) 13.80(9.40,19.30) 13.80(9.90,18.60) 0.9863

AG_min(mEq/L) 15.00(12.00,17.00) 14.00(12.00,17.00) 0.0016

AG_max(mEq/L) 19.00(16.00,22.00) 18.00(15.00,22.00) 0.0114

Bicarbonate_min(mEq/L) 18.00(15.00,22.00) 19.00(16.00,22.00) 0.0003

Bicarbonate_max(mEq/L) 22.00(19.00,25.00) 22.00(20.00,25.00) 0.0007

BUN_min(mg/dL) 33.00(21.00,50.50) 33.00(21.00,52.00) 0.7024

BUN_max(mg/dL) 41.00(26.00,59.50) 41.00(27.00,62.00) 0.2251

Calcium_min(EU/dL) 7.80(7.20,8.40) 7.80(7.30,8.40) 0.7065

Calcium_max(EU/dL) 8.40(8.0,9.0) 8.40(7.90,8.90) 0.1561

Chloride_min(mEq/L) 101.00(96.00,105.00) 101.00(97.00,106.00) 0.0206

Chloride_max(mEq/L) 105.00(100.00,110.00) 105.00(101.00,110.00) 0.0202

Creatinine_min(g/dL) 1.60(1.00,2.30) 1.70(1.20,2.60) < 0.0001

Creatinine_max(g/dL) 2.00(1.30,3.00) 2.20(1.60,3.30) < 0.0001

Sodium_min(mEq/L) 136.00(133.00,139.00) 136.00(133.00,139.00) 0.9822

Sodium_max(mEq/L) 140.00(136.00,143.00) 140.00(137.00,142.00) 0.9765

Potassium_min(mEq/L) 3.90(3.50,4.40) 4.00(3.60,4.40) 0.0801

Potassium_max(mEq/L) 4.60(4.10,5.20) 4.70(4.20,5.30) 0.0874

INR_min(s) 1.30(1.20,1.70) 1.30(1.10,1.50) < 0.0001

INR_max(s) 1.50(1.40,2.00) 1.40(1.20,1.70) < 0.0001

PT_max(s) 16.20(14.75,21.45) 15.70(13.40,18.90) < 0.0001

PTT_min(s) 31.30(28.35,37.90) 30.30(26.90,34.20) < 0.0001

pH_min 7.29(7.19,7.36) 7.30(7.22,7.36) 0.1004

pH_max 7.40(7.35,7.45) 7.40(7.35,7.45) 0.8361

PaO2_min(mmHg) 51.00(37.00,70.00) 53.00(39.00,79.00) < 0.0001

PaO2_max(mmHg) 131.00(80.00,221.50) 134.00(79.00,243.00) 0.2706

PaCO2_min(mmHg) 33.00(28.00,39.00) 34.00(29.00,39.00) 0.0035

PaCO2_max(mmHg) 45.00(37.50,52.00) 45.00(39.00,52.00) 0.2290

TotalCO2_min 20.00(16.00,24.00) 21.00(17.00,24.00) 0.0014

TotalCO2_max 24.00(21.00,28.00) 25.00(22.00,28.00) 0.0045

Base excess_min(mEq/L) −5.00(-11.00,-1.00) −5.00(-9.00,-1.00) 0.0033

(Continued on following page)
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2.5 Statistical analysis

For descriptive variables, the median and quartile were superior
to the means and standard deviation values in several statistical
guides (Kattan and Vickers, 2020). Therefore, continuous variables
were represented by using the median and quartile and were
compared by Mann-Whitney U test. Categorical variables were
expressed in terms of frequency or percentage and compared
using Chi-square tests or Fisher’s exact tests. In this study,
indicators with the missing degree greater than 20% were
removed, and then the remaining missing data were filled with
multipe interpolation method (Zhang et al., 2022). Since the
presence of outliers reduces the accuracy of RSF algorithm, the
outliers were first identified by using box-plots, then the outlier
indicators that exceed 10% were removed and median replacement
was performed on the remaining outlier data (Dutta et al., 2022).
The software packages used in the data analysis and processing
included: randomForestSRC, survival, ggRandomForests, timeROC,
and ggplot2.

3 Results

3.1 Baseline characteristics

A total of 3,220 patients with ATN were included in this
study, of which 2,457 patients survived and 763 patients died
during hospitalization. Comparisons between two groups
showed that there were significant differences in the age,
weight, length of stay in ICU, vasopressors, mild liver
disease, severe liver disease, metastatic solid tumors, AG_
min, AG_max, bicarbonate_min, bicarbonate_max, chloride_
min, chloride_max, creatinine_min, creatinine_max, base
excess_min, base excess_max, temperature_min,
temperature_mean, urine output, DBP_min, etc. There were
no statistically significant differences in the variables including
gender, myocardial infarction, peripheral vascular disease,
paraplegia, rheumatic disease, peptic ulcer disease, glucose_
min, glucose_max, etc. Other baseline characteristics were
shown in Tables 1–3.

TABLE 3 (Continued) Laboratory tests and vital signs of the patients.

Death Survival p-value

Base excess_max(mEq/L) −1.00(-4.00,1.00) −1.00(-4.00,1.00) 0.0376

Glucose_min(mg/dL) 108.00(86.50,132.00) 108.00(91.00,131.00) 0.1577

Glucose_max(mg/dL) 157.00(125.00,197.00) 157.00(127.00,204.00) 0.2225

Urine output(ml) 775.0(304.50,1392.50) 970.0(545.00,1732.00) < 0.0001

Vital Signs

Heart rate_min (min-1) 76.00(65.00,89.00) 73.00(63.00,84.00) < 0.0001

Heart rate_max (min-1) 110.00(95.00,127.00) 104.00(90.00,120.00) < 0.0001

Heart rate_mean (min-1) 91.41(80.08,103.60) 86.66(76.44,99.61) < 0.0001

SBP_min(mmHg) 83.00(75.00,91.00) 85.00(78.00,96.00) < 0.0001

SBP_max(mmHg) 139.0(125.00,152.00) 143.0(131.00,159.00) < 0.0001

SBP_mean(mmHg) 106.73(99.52,116.70) 110.96(103.97,121.60) < 0.0001

DBP_min(mmHg) 42.00(35.00,48.00) 44.00(38.00,50.00) < 0.0001

DBP_max(mmHg) 83.00(71.75,96.00) 84.00(73.00,98.00) 0.0249

DBP_mean(mmHg) 58.20(52.01,64.63) 59.91(54.12,66.88) < 0.0001

Respiratory rate_min (min-1) 13.00(11.00,16.00) 13.00(10.00,15.00) < 0.0001

Respiratory rate_max(min-1) 30.00(26.00,35.00) 28.00(25.00,32.00) < 0.0001

Respiratory rate_mean(min-1) 20.89(18.10,24.0) 19.64(17.31,22.52) < 0.0001

Temperature_min(°C) 36.44(36.11,36.61) 36.44(36.17,36.67) 0.0062

Temperature_max(°C) 37.22(36.89,37.61) 37.22(36.94,37.61) 0.0505

Temperature_mean(°C) 36.78(36.51,37.03) 36.80(36.58,37.09) 0.0002

SpO2_min (%) 92.00(90.00,94.00) 92.00(90.00,95.00) 0.0005

SpO2_mean (%) 96.88(95.33,98.18) 97.00(95.66,98.44) 0.0003

WBC, white blood cells; AG, anion gap; BUN, blood urea nitrogen; INR, international normalized ratio; PT, prothrombin time; PTT, partial thromboplastin time, pH potential of hydrogen,

PaO2 partial pressure of oxygen, PaCO2 partial pressure of carbon dioxide, SBP, systolic blood pressure; DBP, diastolic blood pressure, SpO2 pulse oxygen saturation, Max maximum, Min

minimum, p-value less than 0.05 are shown in bold text.
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3.2 Model construction

3.2.1 RSF model
The OOB error rates were calculated by grid search method

under different combination of parameters. As shown in Figure 1,
RSF model achieved the lowest OOB error rate (21.4%) under the
parameter combination of mtry = 10 and nodesize = 88. Different
shades of the same color indicate the level of OOB error rate, while a
shift from yellow to purple indicates an increase in the OOB error
rate. The lower the OOB error rate, the better the predictive ability of
model (Lines et al., 2021). As shown in Figure 2, the OOB error rate
of model stabilized when 500 survival trees were reached. As shown

in Table 4, the variables were ranked in importance by using the
minimum depth method. Vasopressors, age, length of stay in ICU,
metastatic solid tumors, INR_min, respiratory rate_min, chloride_
max, calcium_min, base excess_min, bicarbonate_max, AG_min,
potassium_min, pH_max, bicarbonate_min, DBP_min were the top
15 variables, indicating that these variables have strong predictive
ability and significant effect on the outcome.

3.2.2 Cox regression model
Uni-variate Cox regression analysis results revealed that variables

included age, length of stay in ICU, dopamine, epinephrine, nor-
epinephrine, vasopressors, AG_min, AG_max, bicarbonate_min,

FIGURE 2
Curve of the OOB error rate for RSF model. The OOB error rate drops from 0.258 to 0.214 and stabilizes at 500 survival trees.

FIGURE 1
Tuning parameter of the RSF model. The black sign in the figure is the parameter combination of mtry = 10 and nodesize = 88, and the
corresponding OOB error rate is 21.4%.
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bicarbonate_max, INR_min, INR_max, pH_min, pH_max, base
excess_min, base excess_max, urine output, SBP_min, SBP_max,
SBP_mean, temperature_min, temperature_max, temperature_mean,
cerebrovascular disease, chronic pulmonary disease, mild liver disease,
severe liver disease, and metastatic solid tumors had p-value ≤0.05.
These variables were included in the multivariate Cox regression model
for analysis. Dopamine, epinephrine, nor-epinephrine, vasopressors,
INR_min, cerebrovascular disease, chronic pulmonary disease, mild
liver disease, severe liver disease,metastatic solid tumors were important
risk factors that increased the risk of death in ATN patients. However,
length of stay in ICU was protective factor. The shorter the stay, the
lower the risk of death. Detailed information of Cox regression analysis
was shown in Table 5.

3.3 Model comparison

As shown in Table 6, the OOB error rates for RSF model and
Cox regression model were 0.214 and 0.215. The OOB error rates for

TABLE 4 Variable importance ranking for RSF.

Variable Depth Importance

Vasopressor 0.390 1

Age 1.364 2

Length of stay in the ICU 1.390 3

Metastatic solid tumor 3.460 4

INR_min 4.578 5

Respiratory rate_min 5.942 6

Chloride_max 6.430 7

Calcium_min 6.524 8

Base excess_min 7.050 9

Bicarbonate_max 7.248 10

AG_min 7.302 11

Potassium_min 7.874 12

pH_max 7.958 13

Bicarbonate_min 7.964 14

DBP_min 8.178 15

Calcium_max 8.214 16

SBP_min 8.452 17

WBC_max 8.550 18

Sodium_max 8.750 19

pH_min 8.882 20

PTT_min 8.964 21

Hemoglobin_min 9.132 22

Temperature_max 9.138 23

Weight 9.186 24

Chloride_min 9.202 25

Potassium_max 9.212 26

WBC_min 9.230 27

Hematocrit_min 9.788 28

Platelets_max 9.866 29

Platelets_min 9.886 30

PaO2_min 10.124 31

AG_max 10.312 32

PaCO2_min 10.364 33

Base excess_max 10.498 34

TotalCO2_max 10.596 35

BUN_min 10.684 36

Heart_rate_max 10.700 37

Creatinine_min 10.996 38

(Continued in next column)

TABLE 4 (Continued) Variable importance ranking for RSF.

Variable Depth Importance

Glucose_min 11.004 39

SpO2_mean 11.166 40

Hemoglobin_max 11.384 41

Hematocrit_max 11.522 42

DBP_max 11.660 43

Sodium_min 11.750 44

Resp_rate_mean 11.896 45

BUN_max 12.012 46

PaCO2_max 12.194 47

Glucose_max 12.202 48

Urine output 12.324 49

Temperature_min 12.346 50

PaO2_max 12.964 51

Creatinine_max 12.998 52

Respiratory rate_max 13.392 53

SBP_max 13.650 54

SBP_mean 13.936 55

INR_max 13.996 56

Heart_rate_min 14.968 57

SpO2_min 15.236 58

DBP_mean 15.352 59

The 59 variables in the depth threshold and the corresponding minimum depth value; ICU,

intensive care unit; INR, international normalized ratio; AG, anion gap, pH potential of

hydrogen, DBP, diastolic blood pressure; SBP, systolic blood pressure; WBC, white blood

cells; PTT, partial thromboplastin time, PaO2 partial pressure of oxygen, PaCO2 partial

pressure of carbon dioxide, BUN, blood urea nitrogen, SpO2 pulse oxygen saturation,Max

maximum, Min minimum.
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TABLE 5 Cox regression analysis results.

Variable Uni-variate Cox regression Multivariate Cox regression

HR(95%CI) p-Value HR(95%CI) p-Value

Age 1(1-1) < 0.0001 1(1-1) < 0.0001

Gender 0.82(0.7-0.97) 0.02 0.89(0.75-1.1) 0.2

Ethnicity 1.1(0.99-1.1) 0.095

Weight 0.99(0.99-1) < 0.0001 1(0.99-1) 0.095

First care unit 1(0.95-1.1) 0.76

Length of stay in the ICU 0.96(0.95-0.97) < 0.0001 0.95(0.94-0.95) < 0.0001

Antibiotic 1.1(0.58-1.9) 0.85

Dobutamine 1.3(0.96-1.8) 0.084

Dopamine 1.4(1-1.8) 0.037 1.4(1-1.9) 0.045

Nerve blockers 1.2(0.91-1.5) 0.21

Epinephrine 1.6(1.3-2) < 0.0001 1.7(1.3-2.2) 0.0002

Norepinephrine 1.9(1.6-2.3) < 0.0001 1.5(1.2-1.9) 0.0004

Phenylephrine 1.2(1-1.4) 0.033 1(0.86-1.3) 0.64

Vasopressor 2.4(2-2.8) < 0.0001 2(1.6-2.5) < 0.0001

CRRT 1(0.74-1.4) 0.89

Hematocrit_min 1(1-1) 0.17

Hematocrit_max 1(1-1) 0.2

Hemoglobin_min 1(0.96-1) 0.77

Hemoglobin_max 1(0.96-1) 0.9

Platelets_min 1(1-1) 0.027 1(1-1) 0.99

Platelets_max 1(1-1) 0.044 1(1-1) 0.4

WBC_min 1(1-1) 0.13

WBC_max 1(1-1) 0.12

AG_min 1(1-1.1) < 0.0001 0.99(0.96-1) 0.51

AG_max 1(1-1.1) < 0.0001 1(0.98-1) 0.65

Bicarbonate_min 0.96(0.95-0.98) < 0.0001 1(0.97-1) 0.68

Bicarbonate_max 0.96(0.94-0.98) < 0.0001 1(0.96-1) 0.97

BUN_min 1(1-1) 0.58

BUN_max 1(1-1) 0.98

Calcium_min 0.93(0.85-1) 0.16

Calcium_max 1(0.92-1.1) 0.71

Chloride_min 1(0.99-1) 0.69

Chloride_max 1(0.99-1) 0.86

Creatinine_min 0.95(0.88-1) 0.2

Creatinine_max 0.94(0.89-1) 0.061

Glucose_min 1(1-1) 0.044 1(1-1) 0.25

Glucose_max 1(1-1) 0.14

(Continued on following page)
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TABLE 5 (Continued) Cox regression analysis results.

Variable Uni-variate Cox regression Multivariate Cox regression

HR(95%CI) p-Value HR(95%CI) p-Value

Sodium_min 1(0.99-1) 0.69

Sodium_max 1(0.99-1) 0.18

Potassium_min 0.95(0.84-1.1) 0.37

Potassium_max 0.98(0.89-1.1) 0.73

INR_min 2.1(1.7-2.6) < 0.0001 1.5(1.1-2.1) 0.0047

INR_max 1.3(1.1-1.5) 0.00054 0.96(0.7-1.3) 0.78

PT_max 1(1-1) 0.0013 0.99(0.96-1) 0.44

PTT_min 1(1-1) < 0.0001 1(1-1) 0.11

pH_min 0.38(0.19-0.77) 0.0071 0.71(0.21-2.4) 0.58

pH_max 0.21(0.07-0.62) 0.0048 2.4(0.44-13) 0.31

PaO2_min 0.99(0.99-1) < 0.0001 1(0.99-1) 0.049

PaO2_max 1(1-1) 0.0083 1(1-1) 0.82

PaCO2_min 0.99(0.98-1) 0.014 1(0.99-1) 0.74

PaCO2_max 0.99(0.99-1) 0.05

Base excess_min 0.98(0.96-0.99) 0.00028 1(0.98-1) 0.5

Base excess_max 0.96(0.94-0.98) < 0.0001 0.99(0.95-1) 0.66

TotalCO2_min 0.97(0.96-0.99) 0.00022 1(0.98-1.1) 0.37

TotalCO2_max 0.96(0.95-0.98) < 0.0001 0.97(0.94-1) 0.068

Urine output 1(1-1) < 0.0001 1(1-1) 0.0019

Heart_rate_min 1(1-1) 0.13

Heart_rate_max 1(1-1) 0.024 1(0.99-1) 0.9

Heart_rate_mean 1(1-1) 0.039 1(1-1) 0.13

SBP_min 0.98(0.98-0.99) < 0.0001 1(1-1) 0.021

SBP_max 0.99(0.99-1) < 0.0001 1(0.99-1) 0.84

SBP_mean 0.98(0.97-0.99) < 0.0001 0.99(0.98-1) 0.28

DBP_min 0.97(0.96-0.98) < 0.0001 0.99(0.98-1) 0.07

DBP_max 1(0.99-1) 0.19

DBP_mean 0.98(0.97-0.99) < 0.0001 1(0.99-1) 0.58

Respiratory rate_min 1(1-1.1) 0.0033 1(0.99-1.1) 0.11

Respiratory rate_max 1(1-1) 0.00017 1(0.99-1) 0.19

Respiratory rate_mean 1(1-1.1) 0.00011 1(0.98-1) 0.37

Temperature_min 0.78(0.66-0.91) 0.0019 0.84(0.68-1) 0.1

Temperature_max 0.85(0.74-0.97) 0.019 1.1(0.9-1.3) 0.38

Temperature_mean 0.75(0.63-0.9) 0.0015 0.9(0.67-1.2) 0.45

SpO2_min 0.97(0.95-0.99) 0.0027 1(0.97-1) 0.99

SpO2_mean 0.91(0.88-0.95) < 0.0001 0.97(0.92-1) 0.25

Myocardial infarct 1.3(1.1-1.5) 0.013 1.1(0.88-1.3) 0.44

(Continued on following page)
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two models were small, indicating that both predictive models had
good discrimination ability. The integrated Brier score of two
models were 0.199 (RSF) and 0.154 (Cox), both of which were
less than 0.25, suggesting that two models had good calibration
ability. As shown in Figure 3, the prediction error curve of Cox
regression model was lower than that of RSF model, indicating that
Cox regression model was more stable and reliable. In the validation
set, RSF model had AUC values of 0.788, 0.719, and 0.715 at 30,
60 and 90 days (Figure 4). Cox regression model had AUC values of
0.833, 0.736, and 0.732 at 30, 60 and 90 days (Figure 4). Thus, it
appeared that Cox regression model was more accurate in predicting
mortality of ATN patients. As shown in Figure 5, the net benefit of
Cox model at different time points was large, indicating that the Cox
model had high clinical practical value.

3.4 Nomogram for predicting risk of
ATN mortality

Given that Cox model outperforms RSF model in the
discrimination and calibration ability, a nomogram was constructed
on the basis of Cox model to predict the probability of death at the
individual level in ATN patients. The nomogram was constructed to
predict 30-day, 60-day, and 90-day mortality risk based on
15 significant variables in the training set. In the nomogram, an
individual score for each factor is obtained by projecting the value
of each factor vertically onto the first row of “points”. For each
participant, the total score was calculated by adding the scores for

each factor. By projecting the total score vertically to the bottom, we can
get a picture of the risk of death for ATN patients. Assuming a 68-year-
old patient with ATNhas a score of 82 formetastatic solid tumor, 83 for
severe liver disease, and 87 for mild liver disease. Chronic pulmonary
disease score was 84, cerebrovascular disease score was 82, SBP_min
score was 83, urine output score was 83, and PaO2_min score was 82.
INR_min score was 80, vasopressor score was 91, nor-epinephrine score
was 86, epinephrine score was 88, dopamine score was 81, length of stay
in the ICU score was 55, with an age score of 83 out of 1,230, the
estimated risk of death at 30, 60, and 90 days was 15%, 37.6%, and
61.6% (Figure 6).

4 Discussion

ATN is one of the most common types of acute kidney
injury, which seriously affects the quality of life and even
threatens their lives, and it is characterized by high
morbidity, high mortality and poor prognosis (Hoste et al.,
2018). Therefore, it is important to identify the influencing

TABLE 5 (Continued) Cox regression analysis results.

Variable Uni-variate Cox regression Multivariate Cox regression

HR(95%CI) p-Value HR(95%CI) p-Value

Congestive heart failure 1.2(0.98-1.4) 0.087

Peripheral vascular disease 1.1(0.85-1.3) 0.6

Cerebrovascular disease 1.3(1-1.6) 0.038 1.5(1.2-1.9) 0.0007

Dementia 1.6(1-2.4) 0.041 0.97(0.62-1.5) 0.9

Chronic pulmonary disease 1.3(1.1-1.5) 0.012 1.3(1.1-1.6) 0.0071

Rheumatic disease 1.4(0.96-2.1) 0.081

Peptic ulcer disease 0.69(0.46-1) 0.08

Mild liver disease 1.4(1.2-1.6) 0.00022 1.5(1.2-1.9) 0.0003

Diabetes uncomplicated 0.96(0.8-1.2) 0.7

Diabetes complicated 0.83(0.65-1) 0.11

Paraplegia 0.73(0.46-1.2) 0.17

Renal disease 0.89(0.75-1.1) 0.2

Malignant cancer 1.5(1.3-1.8) < 0.0001 1.1(0.86-1.3) 0.59

Severe liver disease 1.2(1-1.5) 0.045 1.4(1-1.8) 0.03

Metastatic solid tumor 2.4(1.9-3.1) < 0.0001 2.3(1.8-3.1) < 0.0001

Aids 0.82(0.34-2) 0.66

HR, hazard ratio; CI, confidence interval; ICU, intensive care unit; CRRT, continuous renal replacement therapy; WBC, white blood cells; AG, anion gap; BUN, blood urea nitrogen; INR,

international normalized ratio; PT, prothrombin time; PTT, partial thromboplastin time, pH potential of hydrogen, PaO2 partial pressure of oxygen, PaCO2 partial pressure of carbon dioxide,

SBP, systolic blood pressure; DBP, diastolic blood pressure, SpO2 pulse oxygen saturation, Max maximum, Min minimum, p-value less than 0.05 are shown in bold text.

TABLE 6 Performance comparison of the two models.

Model OOB IBS

Random survival forest 0.214 0.199

Multivariate cox regression 0.215 0.154

OOB, out-of-bag error rate; IBS, integrated brier score.
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factors for ATN, which can help screen those patients at high
risk and receive proper treatment.

AlthoughMLmethods represented by RSF algorithm performed
well in several fields, this does not mean that MLalgorithms have an
absolute advantage over traditional methods. For example, Cuthbert
et al. (Cuthbert et al., 2022) analyzed the prediction of 8-year
revision risk following total knee and hip arthroplasty, and Tang
X et al. (Tang X. et al., 2021) studied prognostic prediction in
metastatic non-small cell lung cancer patients receiving EGFR-TKI
osiertinib treatment, both studies have proved that traditional
statistical methods have certain strengths. Nonetheless, RSF
algorithm also has its own unique advantages. RSF algorithm can

directly and quantitatively calculate the minimum depth of each
variable to reflect the magnitude of importance, which facilitates the
comparison among variables (Taylor, 2011). This is a feature which
has not been found in the traditional Cox regression method.
Therefore, it is better to construct predictive models by using
several methods and compare them to identify the best ones.

Since Cox model outperforms RSF model, we constructed a
nomogram based on the Cox model. The nomogram is a
visualization tool used to generate the probability of clinical
outcome (Park, 2018). Studies have demonstrated that
nomogram enable accurate compared to traditional scoring
systems (Wang et al., 2021). It is now widely used for risk

FIGURE 3
Prediction error curves for RSF and Cox models. The smaller the prediction error value, the more accurate the predictive power of the model.

FIGURE 4
TdROC curve for RSF and Cox models. The AUC values for RSF model at 30-day (A), 60-day (B), and 90-day (C) are 0.788, 0.719, and 0.715,
respectively; the AUC values for Cox regression model at 30-day (D), 60-day (E), and 90-day (F) are 0.833, 0.736, and 0.732, respectively.
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prediction of many diseases (Li et al., 2021; Tan et al., 2022; Wang
et al., 2023). Therefore, the creation of mortality risk nomogram
based on the information about ATN patients can inform existing
critical care assessment programs. Clinical staff can use the total
score to predict the probability of death in ATN patients, thus
assisting them in developing a more rational treatment plan.

In this study, two different models were constructed to explore
the influencing factors of ATN. Cox regression analysis concluded
that vasopressors, nor-epinephrine, INR_max, severe liver disease,
and metastatic solid tumors were the important risk factors. RSF
model concluded that vasopressors, INR_max, and metastatic solid
tumors were the important influencing factors based on the
importance rank of the variables. The influencing factors
identified by two methods of analysis are basically similar,
indicating that they are probably true factors associated with ATN.

Among the variables associated with predicting ATN patients,
the most important ones are the AG, pH, base excess, BUN and
bicarbonate, which can be used to determine whether patients have
symptoms of acid-base imbalance, azotemia and electrolyte
disturbances (Bellomo, 2011). Urine output is the most common
factor affecting ATN. This is due to decreased urine output can cause
hypovolemia, which increases the risk of death from the disease (Xu
et al., 2020). Timely rehydration therapy can restore the circulating
blood volume and improve the impaired renal perfusion function.

ATN is often associated with many comorbidities, and the
presence of these comorbidities also increases the risk of death
from ATN. Severe liver disease is a relatively common comorbidity

in patients with ATN. Due to the presence of large amounts of
peritoneal fluid in patients with severe hepatitis, it can lead to
insufficient circulating blood volume and uneven distribution of
intrarenal blood flow, which ultimately increases the probability of
death in ATN (Chancharoenthana and Leelahavanichkul, 2019). In
addition, metastatic solid tumors are the common comorbidity that
increases the risk of death from this disease (Wu et al., 2020), and the
main reason is that neutrophils in solid tumors can enhance
cytotoxicity and lead to necrosis of renal tubular epithelial cells,
thus reducing patient survival (Liao and Liaw, 2020).

Relevant studies have shown that certain drugs also increase the risk
of death in ATN. For example, vasopressor drugs can increase
glomerular perfusion pressure and urine output, thus affecting renal
function (Shi andWang, 2017). Nor-epinephrine can increase patients’
blood pressure and reduce renal blood flow, resulting in renal function
impairment (Kim et al., 2021). INR is a preferred monitoring indicator
for oral anticoagulants. Since overdose of anticoagulants increases the
probability of death from ATN, the level of this indicator also reflects
the risk of death occurring from ATN (Lim and Campbell, 2013).

However, the association between these drugs and disease needs
further study. Because machine learning is one of the main methods
of drug knowledge discovery. In the follow-up study, we plan to use
machine learning, text mining and other technical methods to mine
the process of drug tacit knowledge contained in the data, so as to
explore whether there is a potential association between drugs and
some biomedical entities, such as drug-disease association, and the
association between drugs and side effects, etc.

FIGURE 5
Decision curve analysis of the Cox model.
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Themain advantage of this study is that it was the first to use the RSF
algorithm and theCox regressionmethod to predict hospitalmortality of
patients with ATN from theMIMIC-IV database. Cox regressionmodel
has improved accuracy and precision compared to RSF model. This
study also has some limitations: firstly, it is a single-center study and
lacks external validation. Secondly, this was a retrospective observational
study in which the majority of patients were white, and there may have
been unobserved confounding factors that could have influenced the
outcome. Finally, although the predictive ability of Cox regressionmodel
in this study is superior toRSF model, ML algorithms are evolving
rapidly and new algorithms are constantly proposed, and further
comparative studies are needed in practical applications.

5 Conclusion

Cox regression model is superior to RSF algorithm model in
predicting mortality of patients with ATN. Vasopressors, nor-
epinephrine, INR_min, and metastatic solid tumors were
imporant factors that also significantly influence prognosis.
Therefore, the mortality risk nomogram based on information
about ATN patients can inform existing critical care assessment
programs. Moreover, the model has certain clinical utility, which can

provide clinicians with some reference basis in the treatment of ATN
and contribute to improve patient prognosis.
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established.
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Glossary

ATN Acute tubular necrosis

RSF Random survival forest

OOB Out-of-bag

ICU Intensive care unit

pH Potential of hydrogen

BUN Blood urea nitrogen

ML Machine learning

MIMIC Medical information mart for intensive care

AG Anion gap

INR International normalized ratio

SBP Systolic blood pressure

DBP Diastolic blood pressure

ROC Receiver operating characteristic

AUC Area under the curve

Max Maximum

Min Minimum

CCU Coronary care unit

SICU Surgical intensive care unit

MICU Medical intensive care unit

CVICU Cardiac vascular intensive care unit

CRRT Continuous renal replacement therapy

WBC White blood cells

PT Prothrombin time

PaO2 Partial pressure of oxygen

PTT Partial thromboplastin time

PaCO2 Partial pressure of carbon dioxide

SpO2 Peripheral capillary oxygen saturation

HR Hazard ratio

CI Confidence interval

Frontiers in Pharmacology frontiersin.org17

Zeng et al. 10.3389/fphar.2024.1361923

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1361923

	Mortality prediction and influencing factors for intensive care unit patients with acute tubular necrosis: random survival  ...
	1 Background
	2 Materials and methods
	2.1 Data source and study population
	2.2 Data extraction
	2.3 Model construction
	2.4 Model comparison
	2.5 Statistical analysis

	3 Results
	3.1 Baseline characteristics
	3.2 Model construction
	3.2.1 RSF model
	3.2.2 Cox regression model

	3.3 Model comparison
	3.4 Nomogram for predicting risk of ATN mortality

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary


