
TCM targets ferroptosis: potential
treatments for cancer

Liwen Qin1, Yuhan Zhong2, Yi Li3 and Yongfeng Yang3*
1Core Facilities of West China Hospital, Sichuan University, Chengdu, China, 2Laboratory of Liver
Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital,
Sichuan University, Chengdu, China, 3Department of Respiratory and Critical Care Medicine, Institute of
Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University,
Chengdu, China

Ferroptosis is caused by the accumulation of cellular reactive oxygen species that
exceed the antioxidant load that glutathione (GSH) and phospholipid
hydroperoxidases with GSH-based substrates can carry When the antioxidant
capacity of cells is reduced, lipid reactive oxygen species accumulate, which can
cause oxidative death. Ferroptosis, an iron-dependent regulatory necrosis
pathway, has emerged as a new modality of cell death that is strongly
associated with cancer. Surgery, chemotherapy and radiotherapy are the main
methods of cancer treatment. However, resistance to these mainstream
anticancer drugs and strong toxic side effects have forced the development
of alternative treatments with high efficiency and low toxicity. In recent years, an
increasing number of studies have shown that traditional Chinese medicines
(TCMs), especially herbs or herbal extracts, can inhibit tumor cell growth and
metastasis by inducing ferroptosis, suggesting that they could be promising
agents for cancer treatment. This article reviews the current research progress
on the antitumor effects of TCMs through the induction of ferroptosis. The aim of
these studies was to elucidate the potential mechanisms of targeting ferroptosis
in cancer, and the findings could lead to new directions and reference values for
developing better cancer treatment strategies.
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1 Introduction

In the last decade, the Nomenclature Committee on Cell Death (NCCD) has
meticulously examined an extensive body of literature, ultimately formulating a
definition for cell death that incorporates considerations of morphology, biochemistry,
and function. This definition remains applicable to the present day. In terms of functional
characteristics, cell death modalities can be categorized into two types: accidental cell death
(ACD) and regulated cell death (RCD). (Galluzzi et al., 2018). Ferroptosis, a novel type of
regulated cell death, is morphologically, biochemically, and genetically distinct from
apoptosis, necrosis, and pyroptosis, among others. Elevated levels of iron-dependent
reactive oxygen species (ROS) result in the buildup of lipid peroxides, disrupting redox
homeostasis and causing oxidative damage to cell membranes. This imbalance adversely
impacts normal cellular processes, ultimately leading to ferroptosis (Xing et al., 2023).

In 2003, Dolma et al. reported that a new compound, erastin, could induce RAS-mutated
human foreskin fibroblasts (BJeLRs) death.However, this pattern of cell death differs from classical
apoptosis previously found. During erastin-induced cell death, there were observations of distorted
mitochondrial morphology and the disappearance of mitochondrial cristae. (Dolma et al., 2003).
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However, no classic features of apoptosis, such as mitochondrial
cytochrome c release, caspase activation, or chromatin fragmentation,
are observed inRSL-treated cells (Yagoda et al., 2007; Yang and Stockwell,
2008). In Nine years later, this new mode of cell death was officially
named ferroptosis by Dixon et al. (Dixon et al., 2012). Since then,
researchers have continued to explore the relationship between
ferroptosis and human disease. Although the specific mechanisms and
physiological functions of ferroptosis have not been fully elucidated,
increasing evidence indicates that ferroptosis is involved in multiple
pathological conditions, such as ischemia‒reperfusion injury (Carlson
et al., 2016), stroke mitigation and neurodegeneration (Hambright et al.,
2017; Tuo et al., 2017), and cancer treatment (Conrad et al., 2016;
Stockwell et al., 2017; Tonnus and Linkermann, 2017; Toyokuni et al.,
2017). Several studies have shown that suppressing system xc- or
GPX4 inhibits tumor growth and metastasis in various types of
cancer (Yang et al., 2014; Zhang et al., 2019a). In addition, multiple
tumor suppressors have been found to sensitize cells to ferroptosis. For
example, p53 can enhance tumor ferroptosis by suppressing the
transcription of the system xc-subunit SLC7A11 (Wang et al., 2016).
Malignant mutations in oncogenes usually accelerate metastasis, protect
cancer cells from apoptosis and increase resistance to common cancer
therapies (Piccolo et al., 2014; Hansen et al., 2015). However, the finding
that these same mutations sensitize cancer cells to ferroptosis brings new
hope for cancer treatment (Wu et al., 2019).

Traditional Chinese medicine (TCM), a medical theory system
gradually formed and developed through long-termmedical practice
under the guidance of ancient simple materialism and spontaneous
dialectics, is one of the oldest medical systems in the world. It has
condensed thousands of years of health-preserving concepts and
practical experience. TCM and its natural extracts have been widely
used to treat various diseases, making significant contributions to
medical health worldwide. Traditional Chinese medicine has shown
efficacy in treating acute pancreatitis (Ge et al., 2023),
neurodegenerative diseases (Lin et al., 2023), and polycystic ovary
syndrome (PCOS) (Liu et al., 2022). Myocardial infarction (MI)
(Wang et al., 2023a), atherosclerosis (AS) and hyperlipidemia (HLP)
(Chen et al., 2021a;Wu et al., 2023)develop through the activation of
ferroptosis. Given the recent studies highlighting the association
between ferroptosis and the inhibition of tumor cells, there is a
growing suggestion that ferroptosis could be a potential target for
anticancer therapy. (Chen et al., 2021b). Consequently, it is a novel
andmeaningful research direction to explore the ferroptosis induced
by traditional Chinese medicine.

In this review, we list the traditional Chinese medicines and their
natural extracts and prescriptions that can be used to treat different
cancers. The mechanism of the ferroptosis pathway was investigated
to guide rational clinical application, improve disease prognosis and
reduce patient suffering caused by toxic side effects.

2 Main TCMs as ferroptosis regulators
in cancer

2.1 Terpenoids

2.1.1 Artemisinin and its derivatives
400 years ago, the famous Chinese herbalist Li Shi Zhen

published in the Compendium of Materia Medica that “fever and

colds” could be treated with qinghaosu preparations (Klayman,
1985). Artemisinin is indeed a natural sesquiterpene lactone
compound. It is derived from the sweet wormwood plant
(Artemisia annua). Since it was first isolated from the Asteraceae
plant Artemisia annua by the Nobel laureate in Medicine and the
Chinese scientist Tu Youyou in 1971, artemisinin has saved
countless lives as an antimalarial drug (Bhattacharjee et al.,
2018). Recently, the artemisinin and its derivatives not only save
lives as antimalarials, but have also been explored as potential
anticancer drugs.

Dihydroartemisinin (DHA), a derivative of artemisinin, can not
only inhibit cell proliferation by inducing autophagy (Zou et al.,
2019), but also exert its role by inhibiting the PRIM2/SLC7A11 axis
and inducing ferroptosis (Yuan et al., 2020). The peroxide bridge
structure of DHA triggers a Fenton reaction with the release of iron
ions that may contribute to ferroptosis in tumor cells by promoting
transferrin receptor expression and inhibits glutathione peroxidase
(GPX4) (Greenshields et al., 2017; Yang et al., 2019; Su et al., 2021).
DHA can induce ferritin lysosomal degradation and increases
cellular free iron levels, increasing cellular susceptibility to
ferroptosis. Furthermore, by binding to cellular free iron, thereby
stimulating iron-regulatory proteins (IRPs) binding to mRNA
molecules containing iron-responsive element (IRE) sequences.
After the iron homeostasis controlled by IRP/IRE was broken by
DHA, the cellular free iron continued to increase. Ferroptosis was
induced in cancer cells by induction of GPX4 knockout in vitro and
mouse xenograft models. DHA significantly increased the sensitivity
of these cells to RSL3-induced ferroptosis and lipid peroxidation,
including the human lung cancer cell line H292; the human
colorectal cancer cell lines SW480, HCT116 and HT29; and the
human breast cancer cell lines MDA453 and MCF-7 (Chen
et al., 2020b).

Artesunate (ART) has exhibited antitumor effects on several
nonurologic tumors. In both sunitinib-sensitive and sunitinib-
resistant Renal Cell Carcinoma (RCC) cells, ART has been
shown to inhibit proliferation and metastasis, and reduce
metabolism. Artemisinin (ATS) substantially elevated
cytotoxicity and suppressed proliferation in sunitinib-resistant
RCC cells. In Caki-1, 786-O, and A-498 cell lines, the inhibition
of growth was related to G0/G1 phase arrest and differential
regulation of cell cycle-regulating proteins. Artesunate (ART)
primarily impacts KTCTL-26 cells through ROS accumulation,
ferroptosis, and decreased metabolism, as reported by
Markowitsch et al., in 2020 (Markowitsch et al., 2020).
Additionally, Roh et al. found that Artesunate (ART) selectively
induces ferroptosis in head and neck cancer (HNC) cells while
sparing normal tissue cells. Similarly, ART selectively killed
cisplatin-resistant HNC cells without harming normal cells. As
a pivotal transcription factor that regulates antioxidant stress,
Nrf2 plays a crucial role in initiating the body’s antioxidant
response. It controls the intricate cellular antioxidant system
responsible for generating glutathione (GSH) in cancer cells.
Artesunate (ART) has the ability to stimulate the generation of
reactive oxygen species (ROS), which can result in ferroptosis, as
well as other modes of cell death (Roh et al., 2017). ART can also
suppress the proliferation of CA-46 cells in vivo through
ferroptosis (Wang et al., 2019b). At the very least, ART has
been shown to play a key role in improving the effectiveness of
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cancer treatment by inducing ferroptosis. It can also be combined
with other antioxidants to enhance anticancer effects.

2.1.2 Cucurbitacin B
Cucurbitacins, classified as tetracyclic triterpenoid natural

products, are primarily derived from plants within the
Cucurbitaceae family. These compounds showcase diverse
pharmacological activities, including anti-inflammatory,
hepatoprotective, antibacterial, antipyretic, and antitumor
properties, achieved through the modulation of multiple signal
pathways. Among these, Cucurbitacin B, extracted from
Trichosanthes kirilowii Maximowicz, stands out as one of the
most abundant and extensively researched derivatives of the
cucurbitacin family. In traditional medicine, (Chen et al., 2005;
Zhang et al., 2009; Chan et al., 2010a; Chan et al., 2010b; Dakeng
et al., 2012). CuB could induce intracellular accumulation of iron
ions and depletion of glutathione. A study revealed that CuB
treatment of nasopharyngeal cancer cells downregulated
GPX4 expression with iron accumulation and glutathione
depletion, initiating extensive lipid peroxidation and ultimately
leading to ferroptosis. Though, CuB significantly inhibited tumor
progression and caused no significant side effects in vivo (Huang
et al., 2021).

2.2 Phenols

2.2.1 Curcumin
Curcumin, extracted from Curcuma longa L., has antioxidant

properties and is now commonly used as a food additive. (Gao et al.,
2022). A large number of studies have shown that curcumin inhibits
the progression of non-small cell lung cancer (NSCLC) (Tang et al.,
2021a), colorectal cancer (Miyazaki et al., 2023), follicular thyroid
cancer (Chen et al., 2023b), clear cell renal cell carcinoma (ccRCC)
(Xu et al., 2021a), and breast cancer (Li et al., 2020; Cao et al., 2022)
by inducing ferroptosis. EF24, a synthetic analog of curcumin,
induces ferroptosis through upregulating HMOX1 in
osteosarcoma cells (Lin et al., 2021a). While Cao et al.proved
that curcumin exerts anti-breast cancer activity by upregulating
SLAC1A5 to induce lipid peroxidation and MDA accumulation
(Cao et al., 2022).

Curdione, the predominant sesquiterpene in Curcumae
Rhizoma (Xia et al., 2012), enhanced the expression of
METTL14, a methylation transferase, and YTHDF2, a reader
protein associated with m6A, through N6-methyladenosine.
This leads to enhanced methylation of SLC7A11 mRNA and
HOXA13 mRNA. Consequently, the expression of HOXA13 is
reduced, resulting in a decrease in SLC3A2 expression. This
intricate molecular modulation activates ferroptosis in colorectal
cancer (Wang et al., 2023b). System Xc-, cystine/glutamic acid
inverse transporter, can take cystine, excrete glutamic acid, both
for intracellular glutathione synthesis to provide raw materials.
SLC7A11 and SLC3A2 as transporter proteins play a key role in
ferroptosis activated by GSH depletion. Inhibition of
SLC7A11 expression serves as a trigger for inducing ferroptosis.
Notably, HOXA13, functioning as a transcription factor, promotes
the transcription of SLC3A2 and contributes to the promotion,
growth, and therapeutic resistance observed in various

malignancies (Gu et al., 2009; Quagliata et al., 2018; Ma
et al., 2021).

2.2.2 Erianin
Dendrobium was first recorded in the earliest Chinese

pharmaceutical classic Shennong Bencao Jing. Erianin is a
bibenzyl natural product extracted from Dendrobium
chrysotoxum that have been reported to inhibit growth of cancer
cells nowaday (Su et al., 2017; Ouyang et al., 2018; Zhang et al.,
2019b). Chen, P., et al. reported After treatment of lung cancer cells
with erianin, mitochondrial matrix coagulation and enlarged cristae
of cancer cells were observed under electron microscope. In
addition, HO-1 and TRF expression increased significantly,
whereas GPX4, CHAC2, SLC40A1, SLC7A11 and glutaminase
expression decreased significantly. This is the first demonstration
that lanolin induces ROS accumulation, lipid peroxidation and GSH
depletion in lung cancer cells, ultimately triggering ferroptosis
(Chen et al., 2020b). Shen et al. confirmed that erianin
significantly hampered the proliferation, invasion in Human
renal cancer stem cells (HuRCSCs) while inducing oxidative
stress injury and iron ion accumulation. Erianin’s mechanism of
inducing ferroptosis in renal cancer stem cells involves inhibiting the
expression of GPX4 and promoting the N6-methyladenosine
modification of ALOX12/P53 mRNA. Ultimately, this process
contributes to slowing down the development of renal cancer
(Shen et al., 2023).

2.2.3 Gallic acid
The process of obtaining gallic acid from gallnuts by

fermentation was described in Li Ting’s Introduction to Medicine
(1575) of the Ming Dynasty. Gallic acid (3,4,5-trihydroxybenzoic
acid), a polyhydroxyphenolic compound, is the earliest documented
organic acid (Hsu et al., 2011) that has inflammatory, antioxidant,
antiviral, antianxiety and antineoplastic effects (Hsu et al., 2011;
Mori et al., 2020), especially in liver cancer (Sun et al., 2016). Xie, J.,
et al. reported that GA could downregulate the expression of amino
acid transporter SLC7A11 and ferroptosis signaling protein GPX4 in
hepatocellular carcinoma cells by blocking β-catenin transport from
the nucleus to the cytoplasm, thus inducing HepG2 ferroptosis (Xie
et al., 2023).

2.3 Quinones

2.3.1 Salvia miltiorrhiza bunge
Salvia miltiorrhiza Bunge, belonging to the Dicotyledonaceae

family, is a perennial upright herb commonly known as Sage. In
traditional Chinese medicine (TCM), the dried root and rhizome of
salvia are utilized. This medicinal herb is known for its properties in
activating blood circulation, removing stasis, dredging channels,
relieving pain, and eliminating carbuncles (Song et al., 2013). Guan
et al. documented that tanshinone IIA, extracted from Salvia
miltiorrhiza, has the capacity to inhibit the proliferation of
gastric cancer cells. This inhibitory effect is achieved through the
induction of p53 upregulation-mediated ferroptosis (Guan et al.,
2020). Haiwei Ni et al. demonstrated that tanshinone IIA suppresses
the stemness of gastric cancer cells by triggering the activation of
ferroptosis (Ni et al., 2022a). Lin et al. reported that
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dihydroisotanshinone I (DT), one of the main effective components
of Salvia miltiorrhiza Bunge, has many biological activities and can
inhibit the growth of breast carcinoma cells such as MCF-7 cells and
MDA-MB-231 cells. In addition, DT treatment also significantly
inhibited tumor proliferation in xenograft nude mice models in vivo
without side effects. DT anti-tumor mechanism is associated with
ferroptosis induced by down-regulating GPX4 protein expression
(Lin et al., 2019).

A parallel mechanism is observed in another Danshen extract,
cryptotanshinone (CTS), which exhibits the dual capability of
activating caspase-3 to promote apoptosis and triggering
ferroptosis in lung cancer by inhibiting GPX4 activity (Cao
et al., 2021).

2.4 Saponins

2.4.1 Ginsenoside
Ginsenoside is a steroidal compound found only in plants of the

genus Ginseng and has a wide range of biological activities,
including immunoregulatory (Shin et al., 2020), anti-
inflammatory (Wang et al., 2018; Im, 2020), and antioxidative (Li
et al., 2009) activities; in addition to its antitumor effects (Zhu et al.,
2021). Rh4 inhibits colorectal cancer (CRC) cell proliferation by
activating ROS/p53 signaling pathway, up-regulating p53 expression
activates autophagy, downregulates GPX4, SLC7A11, and induces
ferroptosis (Wu et al., 2022).

2.4.2 Timosaponin (Tim-AIII)
Timosaponin AIII (Tim-AIII), classified as a steroid saponin,

stands out as the primary active ingredient derived from
Anemarrhena asphodeloides Bunge. Timosaponin AIII also has
strong anticancer effects on liver cancer (Wang et al., 2013; Nho
et al., 2016) and breast cancer (Sy et al., 2008; King et al., 2009),
especially lung cancer (Zhou et al., 2023a). Zhou et al. disclosed
that Timosaponin AIII (Tim-AIII) binds to HSP90, forming a
complex that subsequently targets the degradation of GPX4 and
promotes the ubiquitination of GPX4. Furthermore, Tim-AIII
induces the accumulation of reactive oxygen species (ROS) and
iron ions, as well as the production of malondialdehyde (MDA)
and depletion of glutathione (GSH). These combined effects
ultimately lead to therapeutic outcomes by inhibiting cell
growth and reducing tumor volume through the induction of
ferroptosis in non-small cell lung cancer (NSCLC) cell lines
(Zhou et al., 2023b).

2.4.3 Ophiopogon in B (OP-B)
Ophiopogon in B (OP-B) is extracted from Radix

Ophiopogon japonicus and has been reported to exert
anticancer effects on different types of cancer, such as
nasopharyngeal carcinoma (Dong et al., 2021), hepatocellular
carcinoma (Yuan et al., 2022), lung cancer (Cheng et al., 2022).
Previous findings have shown that OP-B has anticancer effects
through the noniron ferroptosis pathway (Chen et al., 2016;
Zhang et al., 2022). OP-B has been observed to significantly
degrade glutathione peroxidase 4 (GPX4) and solute carrier
family seven member 11 (SLC7A11) following treatment of
gastric cancer cells in vitro. Morever, the tumor volume and

weight of AGS decreased after OP-B administration in vivo. It
suggested that OP-B may induce ferroptosis in gastric cancer cells
by inhibiting GPX4/Xc−, inducing ROS accumulation and
glutathione deficiency (Zhang et al., 2022).

2.4.4 Saikosaponin a (SsA)
Radix Bupleuri (RB) is derived from the dried roots of

Bupleurum chinense or Bupleurum scorzonerifolium Willd.
These plants are commonly found in sandy grasslands and
dune meadows.

Saikosaponin A (SsA), a natural bioactive triterpenoid
saponin extracted from RB (Wang et al., 2023a), has
demonstrated potent antitumor activity against various types
of tumors, including breast cancer (Zhang et al., 2021),
cervical cancer (Du et al., 2021), pancreatic cancer (Shi et al.,
2023), bladder cancer (Zhou et al., 2022), and colon cancer (Kang
et al., 2017). Lan et al. reported that SsA induces ferroptosis in
hepatocellular carcinoma (HCC) cells. This is achieved by
activating endoplasmic reticulum (ER) stress-induced
ATF3 upregulation and concurrently inhibiting the expression
of the cystine transporter solute carrier family seven member 11
(SLC7A11) (Lan et al., 2023). (Figure 1)

2.5 Prescriptions

2.5.1 Fu Fang Ku Shen injection (FKI)
Fu Fang Ku Shen injection has been widely used in adjuvant

cancer therapy (Zhu et al., 2011; Zhao et al., 2014; Liu et al., 2017).
Compared with single drugs, the combination of Fu Fang Ku
Shen and chemotherapy drugs can improve leukaemia and relieve
adverse reactions of digestive system gastric cancer (Yang et al.,
2013; Lu et al., 2021a). Sophoridine is a natural plant monomer
alkaloid obtained from Sophora alopecuroides and the main
active compound of the Chinese traditional medicine Fu Fang
Ku Shen (Qi et al., 2013). Sophoridine derivative 6j upregulates
ATF3 expression through endoplasmic reticulum stress,
promoting intracellular accumulation of iron ion, lipid oxygen
species (ROS) and MDA, and activates ferroptosis in
hepatocellular carcinoma cells (Tian et al., 2023).

2.5.2 Qing Re Huo Xue Formula (QRHXF)
The main ingredient of Qing Re Huo Xue Formula are Radix

Paeoniae Rubra and Scutellaria baicalensis (Xu et al., 2017). The
majority of these chemical components play a role in regulating
the biological process of oxidative stress and have an impact on
the balance of antioxidants (Lin et al., 2021b; Han et al., 2022b).
Studies have confirmed that Qing Re Huo Xue Fang has
therapeutic effects on lung diseases including pulmonary
fibrosis (Yang et al., 2023), chronic obstructive pulmonary
disease (Lin et al., 2016) and lung cancer (Xu et al., 2017).
Qing Re Huo Xue Formula significantly improved the
accumulation of lipid ROS, iron ion and MDA while reducing
GSH levels and strongly suppressed SLC7A11 and GPX4 protein
levels. Qing Re Huo Xue Formula (QRHXF) activates ferroptosis
to impede the progression of non-small cell lung cancer (NSCLC)
cells through the involvement of the p53 signaling pathway (Xu
et al., 2023).
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2.6 Others

Red ginseng polysaccharide, an active ingredient of the herb
Panax ginseng C. A. Meyer (Araliaceae), exhibits anticancer effects
on human lung cancer and breast cancer. It achieves this by inducing
ferroptosis, primarily through the targeting of GPX4 (Zhai
et al., 2022).

Luteolin, a flavonoid, is naturally found in various medicinal
herbs (Franza et al., 2021). It possesses a wide range of activities,
including antioxidant (Ahmadi et al., 2020), anti-inflammatory
(Wang et al., 2020a; Gendrisch et al., 2021), antifibrotic (Li et al.,
2015), and anticancer properties (Prasher et al., 2022; Matić

et al., 2023). Luteolin has been shown to induce ferroptosis in
prostate cancer by promoting the nuclear translocation of
transcription factor EB (TFEB) and enhancing ferritinophagy
(Fu et al., 2023). Heme oxygenase-1 (HMOX1), an inducible
enzyme, is considered a measurable indicator of oxidative stress
(Maines, 1997). Previous reports have shown that targeting
heme oxygenase-1 (HMOX1) can induce ferroptosis in liver
cancer cells (Zheng et al., 2023) and ovarian cancer (Ni et al.,
2023). Han et al. reported that luteolin exhibits an anticancer
effect on clear renal cell carcinoma by upregulating heme
oxygenase-1 (HO-1) expression, thereby triggering
ferroptosis. It was demonstrated that luteolin exerted potent

FIGURE 1
The names, structural formulas, and molecular formulas of TCMs that target ferroptosis for cancer treatment.
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TABLE 1 Active ingredients of TCMs targeting ferroptosis in cancer.

TCMs Abbreviated
name

Type Effects Cell Cancer Animal References

Dihydroartemisinin DHA Terpenoids PRIM2↓
SLC7A11↓
β-Catenin↓

NCI-H23
XWLC-05

Lung cancer Female nude
mice xenograft
tumor model

Yuan et al.
(2020)

Dihydroartemisinin DHA Terpenoids GPX4↓ NCI-H292 Lung cancer,
Colorectal cancer

Athymic nude
Foxn1nu/Foxn1+
mice xenograft
tumor model

Chen et al.
(2020a)HCT116, HT29,

SW480, MDA-
MB-453, MCF7

Breast cancer

Dihydroartemisinin DHA Terpenoids GPX4↓ MCF7/ADR Breast cancer - Zhang et al.
(2023)

Artesunate ART Terpenoids Nrf2↓, HO-1↑,
Keap1↑, p53↑

HN2–10 Head and neck
cancer

Athymic BALB/c
male nude mice
(nu/nu) xenograft
tumor model

Roh et al. (2017)

Artesunate ART Terpenoids ER Stress (ATF4/
CHOP/

CHAC1 pathway)↑

DAUDI, CA-46 Burkitt’s
lymphoma cell

NOD/SCID mice
xenograft tumor

model

Wang et al.
(2019a)

Artesunate ART Terpenoids GPX4↓ MCF-7, HeLa、
HepG 2, C6

Breast cancer,
Liver cancer,

Rattus norvegicus
Glioma

Female athymic
BALB/c-nude
mice xenograft
tumor model

Yu et al. (2023)

Cucurbitacin B CuB Terpenoids GPX4↓, cyclinB1↓ MCF-7, A2780,
CNE 1, HepG 2,
H157, HCT-8

Breast carcinoma,
Ovarian carcinoma,
Nasopharyngeal
carcinoma, Liver
carcinoma, Lung

carcinoma,
Colorectal
carcinoma

Female BALB/c
nude xenograft
tumor model

Huang et al.
(2021)

Ursolic Acid UA Terpenoids GPX4↓, TFR↑,
NOCA4↓, Beclin-1↑

HOS, 134B Osteosarcoma NU/NU mice
xenograft tumor

model

Tang et al.
(2021a)

Ursolic Acid UA Terpenoids SLC7A11↓, Mcl-1 Hep3B, BEL-
7402, H1299, A-
427, SK-LU-1,

T47D and MCF-7

Hepatoma, Lung
cancer, Breast

cancer

- Li et al. (2022)

Curcumin - Phenols SLC1A5↑, MDA↑ MDA-MB-
453 and MCF-7

Breast cancer Female BALB/c
nude mice

xenograft tumor
model

Cao et al. (2022)

Curdione - Phenols SLC7A11 mRNA N6-
methyladenosine
modification,
METTL14↑,

YTHDF2↑, GPX4 ↓,
SLC7A11↓,

HOXA13↓, SLC3A2↓

CT26, SW480 Colorectal cancer BALB/c nude
male mice

subcutaneous
transplantatio-n
tumor model

Wang et al.
(2023c)

β-elemene - Phenols GPX4↓, SLC7A11↓,
FTH1↓, SLC40A1↓,
HO-1↑, Transferrin↑

HCT116, Lovo
and Caco2

KRAS mutant
colorectal cancer

Female BALB/c
nude xenograft
tumor model

Chen et al.
(2020a)

Erianin - Phenols ALOX12/P53 mRNA
N6-methyladenosine
Modification, GPX4↓,
SLC7A11↓, GPX4↓,
SLC7A11↓, FTH1↓,
p53↑, ALOX12↑

HuRCSC Renal cell
carcinoma

BALB/Cnu/nu
mice xenograft
tumor model

Shen et al.
(2023)

(Continued on following page)
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TABLE 1 (Continued) Active ingredients of TCMs targeting ferroptosis in cancer.

TCMs Abbreviated
name

Type Effects Cell Cancer Animal References

Erianin - Phenols GPX4↓, SLC7A11↓,
SLC40A1↓,

Transferrin↑, CAM↑

H460, H1299 Lung cancer Female BALB/c
nude mice for the

orthotopic
xenograft lung
tumor mouse

model

Chen et al.
(2020b)

Gallic Acid GA Phenols GPX4 ↓, SLC7A11↓,
Catenin↓

HepG2 Hepatocellular
carcinoma

- Xie et al. (2023)

DihydroisotanshinoneI DT Quinones GPX4↓ MCF-7, MDA-
23MB-231

Breast cancer Male Lin et al. (2019)

BALB/c-nu and
female nude mice

Ginsenoside Rh4 - Saponins GPX4↓, p53↑,
SLC7A11↓,

SLC11A2↑, Nrf2↓,
Beclin↑, LC3A/B↑,

Atg7↑

HT29, HCT 116,
DLD1, RKO

Colorectal Cancer BALB/c nude
mice xenograft
tumor model

Wu et al. (2022)

Timosaponin AIII Tim-AIII Saponins GPX4↓, HMOX1↑,
SLC40A1↓,

SLC7A11↓, FTL↓

H1299, A549 Non-small cell
lung cancer
(NSCLC)

C57BL/6J or
BALB/c-nu/nu
nude mice

xenograft tumor
model

Zhou et al.
(2023a)

Ophiopogonin B OP-B Saponins GPX4↓, xCT↓ NCI-N87, AGS Gastric cancer Female nude
mice xenograft
tumor model

Zhang et al.
(2022)

Saikosaponin A SsA Saponins ER stress, ATF3↑,
GPX4↓, SLC7A11↓

HepG2, Huh-7 Hepatocellular
carcinoma

Male BALB/c
nude

mice xenograft
model

Lan et al. (2023)

Sophoridine
Derivative 6j

6j ER stress
ATF3↑

HepG2, PLC/
PRF/5, MHCC-
97H, MHCC-97L,

Bel-7402,
K-Hep-1

liver cancer Female BALB/C
nude mice

xenograft tumor
model

Tian et al.
(2023)

Anomanolide C AC Withanolide GPX4↓ MDA-MB-231,
BT-549

Triple negative
breast cancer

Female
BALB/c nude

xenograft tumor
model

Chen et al.
(2023a)

Osthole - Coumarin GPX4↓, SLC7A11↓,
Transferrin↑

LAMP1↑ FTL↓ FTH↓
AMPKαThr172↓

AktSer473↓
mTORSer2448↓

HCT 116
SW 480

Colorectal cancer Female
Balb/c nude mice
xenograft model

Zhou et al.
(2023a)

Paeoniflorin PF Glycoside GPX4↓, NEDD4L↑,
Nrf2↓

U251, U87 Glioma Athymic nude
mice

subcutaneous
xenograft

tumor model

Nie et al. (2022)

Red ginseng
polysaccharide

RGP Polysaccharide GPX4↓ A549,
MDA-MB-231

Non-small cell
lung cancer cell,
triple-negative

breast cancer cell

- Zhai et al. (2022)

Luteolin LUT Flavonoids GPX4↓, SLC7A11↓,
LC3 I↓, LC3 II↑,

TFEB↓, p62↓, Beclin↑

RWPE-1, DU145
PC-3, VCaP,

LNcaP

Prostate cancer Male nude mice
BALB/c

Fu et al. (2023)

Luteolin LUT Flavonoids HO-1↑, GPX4 ↓,
SLC7A11 ↓, SLC40A1
↓, FTL ↓, FTH1 ↓

786-O and OS-
RC-2

clear cell renal cell
carcinoma

Male BALB/c
nude

Han et al.
(2022a)

mice xenograft
tumor model
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antitumor activity both in vivo and in vitro. (Han et al., 2022a).
(Table 1)

3 TCMs in combination target
ferroptosis

TCM can also be combined with other drugs to exert anticancer
effects synergistically via ferroptosis (Table 3). DHA promotes lipid
peroxidation and ROS accumulation through nanocarriers
combined with tetrandrine (TET), and synergistically inhibits
DOX-resistant breast cancer cell growth (Zhang et al., 2023).
ART, another artemisinin derivative, in combination with
Nrf2 inhibitors promotes ferroptosis in tumor cells, achieving a
more potent anticancer effect without damaging normal cells.
RSL3 or Artesunate alone in the mitochondria could inhibite
GPX4 activity to trigger ferroptosis. While the mitochondria-
targeting artemisinin/RSL3 nanomedicine, A/R-PLGA/CPT/DSSP,
treatment resulted in the strongest GPX4 inhibition compared with
RSL3-PLGA/CPT/DSSP or ART-PLGA/CPT/DSSP. Carbon

centered free radicals and ROS are produced in mitochondria to
induce ferroptosis (Yu et al., 2023). β-Elemene, derived and purified
from the roots and stems of the traditional Chinese medicine
turmeric, is classified as a second-class anticancer drug. It has
been used to participate in the treatment of some cancers (Wang
et al., 2012; Wang et al., 2019a; Xiaomeng et al., 2020; Chen et al.,
2021a). β-Elemene as a complementary drug in combination with
cetuximab inhibites tumor growth and migration of KRAS mutant
CRC cells by inducing ferroptosis. (Chen et al., 2020c).

Ursolic acid (UA) is a naturally occurring triterpenoid that is
widely found in common fruits and herbs. Previous studies have
shown that UA can inhibit the proliferation of prostate, lung,
pancreatic and other tumor cells by inducing apoptosis (Chen
et al., 2019; Lin et al., 2020; Kornel et al., 2023). Ursolic acid not
only synergized with low doses of cisplatin in a mouse osteosarcoma
xenograft model, significantly reducing tumor growth, but also
reduced cisplatin-induced weight loss in mice. Detailed molecular
studies have shown that ursolic acid activates autophagy first, then
degrades ferritin, intracellular ferrous ion overload, and triggers
ferroptosis ultimately. In addition, ursolic acid elevated the ability of

FIGURE 2
The Four Main Pathways of TCM Targeted Ferroptosis. Inhibiting GPX4:GPX4 undergoes ubiquitination degradation or translation inhibition
mediated by different factors, thereby promoting the conversion of GSH to GSSG, reducing the reduction of phospholipid peroxides to phospholipid
alcohols and increase lipid peroxidation. Inhibiting system Xc−: SLC7A11 and SLC3A2, as two components of the system Xc−, output glutamic acid and
take up cysteine. Cysteine further participates in the synthesis of glutathione. When the system Xc− is inhibited, insufficient GSH conversion leads to
the accumulation of lipid peroxidation products and ferroptosis. Activating endoplasmic reticulum stress: Upregulation of ATF3 expression or activation
of the ATF4-CHOP-CHAC1 pathway by endoplasmic reticulum stress promotes the production of lipid ROS and inhibits system Xc−. Imbalance of iron
ion homeostasis: Most Fe2+is stored in the form of an labile iron pool in ferritin. When ferritin autophagy occurs, excessive free iron is released, driving the
Fenton reaction. The iron homeostasis regulation system IRP/IRE can be disrupted, receiving low iron signals, causing IRP to bind to the 5′ IRE, blocking
ferritin synthesis, and promoting excessive free iron generation. ER, endoplasmic reticulum; ATF3, Activating Transcription Factor 3; ATF4, Activating
Transcription Factor 4; GPX4, glutathione peroxidase 4; System Xc−,cystine/glutamate antiporter system; ROS, reactive oxygen species; CHAC1,
Glutathione-specific gamma-glutamylcyclotransferase 1; PRIM2, DNA primase subunit 2; HSP90, Heat Shock Protein90; GSK3β, Glycogen synthase
kinase 3β; GSH, Glutathione; GSSG, Glutathione disulfide; HO-1, heme oxygenase-1; IRP, Iron regulatory protein; IRE, iron-responsive element; HO-1,
Heme oxygenase1; NEDD4L, Neural precursor cell expressed developmentally downregulated gene 4-like; STAT3, signal transducer and activator of
transcription 3; Nrf2, nuclear factor erythroid 2-related factor 2; PLOH, phospholipid alcohol; PLOOH, phospholipid hydroperoxides; SLC7A11, Solute
Carrier Family 7 Member 11; SLC3A2, Solute Carrier Family 3 Member two.
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cisplatin to destroy DNA damage in osteosarcoma cells (Tang et al.,
2021b). Notably, In another study, ursolic acid combined with
sorafenib treatment of HCT116 resulted in accumulation of lipid
ROS, and downregulation of the apoptosis-related proteins Mcl-1
and ferroptosis -associated protein SLC7A11. Therefore, these
results suggest that the synergistic antitumor mechanism of
sorafenib/UA may also trigger ferroptosis by inducing apoptosis.
(Li et al., 2022).

Osthole, chemically known as 7-methoxy-8-(3-methyl-2-
butenyl)-2H-1-benzopyran-2-one, is a natural coumarin extracted
from Cnidium spp. and various other plants belonging to the
Apiaceae family (Sun et al., 2021). An increasing number of
studies have demonstrated that osthole has anticancer effects on
a variety of cancers (Shokoohinia et al., 2018), including glioma
(Huangfu et al., 2021), endometrial cancer (Liang et al., 2021), and
colorectal cancer (Huang et al., 2014; Zhou et al., 2021). Zhou et al.
revealed that osthole can reduce the phosphorylation of AMPK, Akt
and mTOR in HCT116 and SW480 cells and induce Ferroptosis by
inhibiting the AMPK/Akt/mTOR signaling pathway. Combinative
treatment of β-elemene and cetuximab enhance anticancer effect of
cetuximab. Thus osthole plays an antitumor role in colorectal cancer
cells with KRAS mutations (Zhou et al., 2023a).

Sheng Mai Yin(SMY), as a decoction of traditional Chinese
medicine, comes from the Jin Dynasty Chinese medicine classic
“Medical Qiyuan,” which is mainly composed of Radix ginseng,
Ophiopogon and Schisandra. According to the testing of
researchers, it was found that the active ingredients of Sheng Mai
Yin mainly include triterpenoid saponins, steroidal saponins,
lignans, etc. (Zheng et al., 2009; Liu et al., 2016; Wang et al.,
2020b; Xu et al., 2021b). Sheng Mai Yin has previously been
reported to have therapeutic effects on acute lymphoblastic
leukemia (Guo et al., 2023), cardiac hypertrophy (Ming et al.,
2022), heart failure (Kan et al., 2022), type 2 diabetes mellitus
(T2DM) (Li et al., 2019). In addition, Sheng Mai Yin has been
shown to inhibit the toxic side effects of doxorubicin and induced
ferroptosis by modulating HMOX1, assisting cancer treatment and
reducing patient complications (Meng et al., 2023).

4 Summary and outlook

Since ferroptosis was first defined in 2012, it has become a hot
topic in the field of various diseases. The relationship between
traditional Chinese medicine and ferroptosis and the
corresponding regulatory mechanism in cancer are new research
directions. Although several articles have reported the anticancer
effects of Traditional Chinese Medicines (TCMs) by regulating
ferroptosis, there is a limited summary of the underlying
mechanisms. Combining these research results, the anticancer
effects of TCMs through ferroptosis can be broadly categorized
into four pathways: (1) inhibiting GPX4, (2) inhibiting system Xc−,
(3) activating endoplasmic reticulum stress, and (4) imbalance of
iron ion homeostasis (Figure 2).

Glutathione peroxidase 4 (GPX4), an antioxidant enzyme
belonging to the GPX protein family, is a critical aspect in
defending against ferroptosis. GPX4, a selenium-containing
cysteine enzyme, serves as a key defense mechanism against this
form of cell death. Both GSH and GPX4 are important molecules in

regulating cellular oxidative environment. GSH is also an essential
cofactor of GPX4, so GPX4 is inhibited when GSH is depleted. (Cao
and Dixon, 2016). It uses reduced GSH to convert toxic
phospholipid hydroperoxides (PLOOHs) into nontoxic
phospholipid alcohols (PLOHs) (Jiang et al., 2021). When
GPX4 decreases, with an increase in toxic PLOOH, the
membrane structure is destroyed to stimulate ferroptosis.
(Stockwell et al., 2020). The Tim-AIII-HSP90 complex triggers
ferroptosis in non-small cell lung cancer (NSCLC) through
targeting ubiquitination and degradation of GPX4 (Zhou et al.,
2023b). Anomanolide C (AC) reduces the expression of
GPX4 through ubiquitination and inhibits triple-negative breast
cancer (TNBC) proliferation and metastasis both in vitro and in vivo
(Chen et al., 2023a). Paeoniflorin suppressd Nrl2 and GPX4 via
upregulation of NEDD4L and ubiquitination of STAT3 (Nie et al.,
2022). Dihydroisotanshinone I induces ferroptosis in Breast cancer
cells by inhibiting GPX4, leading to depletion of intracellular
glutathione and a sharp increase in GSSG(Ahmadi et al., 2020).
Similarly,OP-B (Zhang et al., 2022) and cucurbitacin B (Huang et al.,
2021)induce ferroptosis by inhibiting GPX4.

The cystine/glutamate reverse transport system (system xc -)
exports glutamate out of the cell and imports cystine into the cell in
equivalent proportions, which plays a key role in the synthesis of
glutathione (GSH), an important antioxidant (Niu et al., 2021).
Upon entering the cell, cystine undergoes rapid conversion to
L-cysteine, playing a pivotal role as a key constituent in the
synthesis of intracellular glutathione (GSH). Glutathione is a
substance that contains γ- Tripeptides with amide bonds and
thiol groups, as antioxidants, are present in almost every cell of
the mammalian body. It serves to restore intracellular reduction‒
oxidation (REDOX) balance subsequent to reactive oxygen species
(ROS) production, thus preventing cellular damage from free
radicals, peroxides, and lipid peroxides. Additionally, it acts as an
essential substrate for the enzymatic activity of GPX4 (Niu et al.,
2021). Inhibiting the Xc− system indirectly results in GSH depletion,
disrupting endogenous antioxidant mechanisms and leading to a
substantial accumulation of ROS, ultimately triggering ferroptosis
(Yu et al., 2017). Iron overload, accumulation of reactive oxygen
species (ROS) and phospholipid hydroperoxides (PLOOH),
initiation of Fenton reaction and further release of PLOOH are
markers of Ferroptosis (Conrad and Pratt, 2019; Liang et al., 2022).
SLC7A11, an amino acid transporter, regulates cystine uptake and
the biosynthesis of glutathione and promotes the establishment of
the antioxidant defense system. Targeted inhibition of
SLC7A11 promotes intracellular lipid peroxide accumulation,
induce tumor cell ferroptosis, and enhances sensitivity to
immunotherapy, radiotherapy, and chemotherapy (Koppula et al.,
2021; Yan et al., 2023). Dihydroartemisinin downregulate the level
of PRIM2/SLC7A11 axis so that induce ferroptosis and inhibits the
proliferation of lung cancer cell (Yuan et al., 2020). Gallic acid
inhibit SLC7A11 and Wnt/β-catenin signaling to promote
hepatocellular carcinoma ferroptosis (Xie et al., 2023).
Qingrehuoxue Formula activated GSK-3β phosphorylation while
reduced GSH and SLC7A11 level. Ferroptosis in NSCLC is
subsequently activated with the accumulation of ROS and MDA
(Xu et al., 2023). Curcumin suppresses breast cancer by elevating
solute carrier family one member 5 (SLC1A5) and enhanced
glutamine uptake (Cao et al., 2022).
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Endoplasmic reticulum (ER) stressis a cellular response
triggered by protein misfolding, accumulation of unfolded
proteins, and disturbances in calcium homeostasis within the ER
lumen. This activates unfolded protein responses, ER overload
responses, and, in severe cases, apoptosis (Wei et al., 2021).

There is increasing evidence suggesting a close relationship
between ferroptosis and endoplasmic reticulum (ER) stress
(Dixon et al., 2014). Moreover, the mechanism by which certain
natural products induce ferroptosis is closely related to endoplasmic
reticulum (ER) stress (Lu et al., 2021b). Saikosaponin A (SsA) (Lan

FIGURE 3
Mechanisms of Four Other Targeted Ferroptosis Pathways in TCMs. Activation of ART by heme produces ROS and alkyl radicals in cancer cell
mitochondria, which damage membrane structures and damage mitochondria. Osthole supresses GSH generation and lipid ROS accumulation by
activating AMPK/Akt/mTOR pathway phosphorylation. Erianin-activated calmodulin regulates LVDCC, increasing absorption of Fe2+ and Ca2+.
Excessive calcium and iron ions induce lipid peroxidation. Erianin upregulates METTL3 to promote ALOX12 and P53mRNAmethylation and increases
ROS accumulation. Curdione upregulates METTL14 to promote SLC7A11mRNA and HOXA13mRNA methylation, reduce YTHDF2 stability, and inhibit
expression of SLC7A11 and SLC3A2. ER, endoplasmic reticulum; ATF3, Activating Transcription Factor 3; ATF4, Activating Transcription Factor 4; GPX4,
glutathione peroxidase 4; System Xc−,cystine/glutamate antiporter system; ROS, reactive oxygen species; CHAC1, Glutathione-specific gamma-
glutamylcyclotransferase 1; PRIM2, DNAprimase subunit 2; HSP90, Heat Shock Protein90; GSK3β, Glycogen synthase kinase 3β; GSH, Glutathione; GSSG,
Glutathione disulfide; HO-1, heme oxygenase-1; IRP, Iron regulatory protein; IRE, iron-responsive element; HO-1, Heme oxygenase1; NEDD4L, Neural
precursor cell expressed developmentally downregulated gene 4-like; STAT3, signal transducer and activator of transcription 3; Nrf2, nuclear factor
erythroid 2-related factor 2; PLOH, phospholipid alcohol; PLOOH, phospholipid hydroperoxides; SLC7A11, Solute Carrier Family 7 Member 11; SLC3A2,
Solute Carrier Family 3 Member two.

TABLE 2 TCMs impact on classic inducers (erastin or RSL3) of ferroptosis.

TCMs Cell Effect Mechanism References

Dihydroartemisinin MEFs,HT1080 Promotes cysteine starvation (STV)-induced
ferroptosis in a time-and dose-dependent manner

Sensitizes cells to ferroptosis through inducing the
lysosomal degradation of ferritin and IRE/IRP axis

suppressing ferritin synthesis

Chen et al.
(2020b)

Improved the sen sitivity of erastin,RSL-3,FIN56

Increase lipid peroxide generation

Artesunate HN3-cisR, HN4-cisR,
and HN9-cisR

Decreases cisplatin-resistant HNC cell lines glu-
tathione (GSH) levels and causee lipid ROS

accumulation

like the ferroptosis inducer erastin, activates Nrf2 by
inhibiting Keap1

Roh et al. (2017)

Artesunate MCF-7,COS7 Mitochondria-targeting ART and
RSL3 nanomedicine synergistically enhances

anticancer effect in vitro and in vivo

Heme activates ART to generate a lot of ROS in
mitochondria, further enhancing GPX4 inhibitor

RSL3 induced ferroptosis

Yu et al. (2023)

Paeoniflorin U251, U87 Combination of RSL3 and PF more signifcantly
inhibites cell proliferation

Inhibit Nrf2 and GPX4 by regulating NEDD4L Nie et al. (2022)
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et al., 2023) and the sophoridine derivative 6j (Tian et al., 2023)
induced ferroptosis in hepatocellular carcinoma (HCC) cells by
activating ER stress. Artesunate (ART) enhances ferroptosis in
Burkitt’s lymphoma cell lines by activating the ATF4/CHOP/
CHAC1 pathway, an endoplasmic reticulum stress response
(Wang et al., 2019b).

Some studies have suggested that ferroptosis is an autophagy-
dependent form of cell death. Excessive autophagy can activate
ferroptosis through the accumulation of iron ions or lipid reactive
oxygen species (ROS). Ferritin autophagy, a process in which ferritin
is degraded through autophagy, has been identified as triggering
ferroptosis in various cancer cells (Gao et al., 2016; Hou et al., 2016).
Luteolin (Fu et al., 2023), Rh4 (Wu et al., 2022) and ursolic acid
(Tang et al., 2021a)promote ferroptosis by increasing autophagy.
Ferritin is a cytoplasmic iron storage protein, negative feedback
protein of Ferroptosis. It consists of two subunits, ferritin heavy
chain 1 (FTH1) and ferritin light chain (FTL) (Xing et al., 2023).
When ferritin autophagy degrades, it releases large amounts of free
ferrous ions that combine with hydrogen peroxide to trigger the
Fenton reaction that activates Ferroptosis (Dixon et al., 2012).
Therefore, the death mode of ferritinophagy is essentially an iron
metabolism disorder in cells, and iron homeostasis is unbalanced.
Luteolin demonstrates an anticancer effect on clear renal cell
carcinoma by upregulating heme oxygenase-1 (HO-1) expression
and activating labile iron pool (LIP)directly, thus triggering
ferroptosis (Han et al., 2022b).

In addition to the four main pathways mentioned above earlier,
there are other ways of regulation (Figure 3). Erianin has the capacity to
induce ferroptosis in renal cancer stem cells by promoting the N6-
methyladenosine modification of ALOX12/P53 mRNA (Shen et al.,

2023). Curdione can activate ferroptosis by enhancing the methylation
of SLC7A11mRNAandHOXA13mRNA (Wang et al., 2023b). Erianin
triggered ferroptosis in lung cancer cells by activating Ca2+/CaM
signaling (Chen et al., 2020c). Heme activates artemisinin to
generate alkyl radicals and/or ROS in mitochondria of cancer cells.
RSL-3 inhibits GPX4 and further induces mitochondrial lipid
peroxidation (Yu et al., 2023). AMP-activated protein kinase
(AMPK) has been shown to inhibit tumor growth by resisting
ferroptosis in some studies (Lee et al., 2020). Yi et al. have suggested
that upregulation of PI3K-AKT-mTOR signaling inhibit ferroptosis
though SREBP-mediated lipogenesis (Yi et al., 2020). Activation of
PI3K/AKT/Nrf2 was shown to improve cognitive impairment after
cerebral ischemia by up-regulating GPX4 to inhibit ferroptosis (Fu et al.,
2022). Similarly, osthole decreases AMPK phosphorylation and exactly
promotes ferroptosis in KRAS-mutant colorectal cancer cells (Zhou
et al., 2023a). These regulatory pathways involving key physiological
and biochemical targets shed light on whether we might be able to use
related factor inhibitors to aid in cancer prevention in the future.
Certainly, this needs to be studied more thoroughly and in conjunction
with clinical trials.

Indeed, several researchers have employed nanoparticles as
tools to induce ferroptosis in tumor cells. The unique properties
of nanoparticles make them promising agents for targeted
therapeutic strategies, including the induction of ferroptosis
in cancer cells (Jiang et al., 2021). For example, Ni et al. used
atranorin complexes comprising superparamagnetic iron oxide
nanoparticles (SPIONs) (Atranorin@SPION) to induce
ferroptosis in GCSCs by decreasing the expression level of
the Xc−/GPX4 axis and enhancing the 5-
hydroxymethylcytosine modification of mRNAs in the

TABLE 3 TCMs used in combination with other drugs.

TCMs Drugs Combination medication Ferroptosis effect Alleviate the toxic
side effects

References

Dihydroartemisinin Tetrandrine
(TET)

DHA-TET pH-sensitive LPs Exerts synergistic effects in tumor cell
proliferation and inhibit doxorubicin

(DOX) resistance

Reducing the cardio-toxicity
from doxorubicin (DOX)

Zhang et al.
(2023)

Artesunate RSL-3 A/R-PLGA/CPT/DSSP nanomedicine
(A/R = 11.1/1)

Exerts synergistic effects of anticancer
in vitro and in vivo by activation of
ART and generation of alkyl radicals

and/or ROS in mitochondria

The cytotoxicity against nomal
cells (COS 7) was significantly
lower than that of cancer cells

(MCF-70)

Yu et al. (2023)

β-elemene Cetuximab β-elemene (125 μg/mL) was
combined with cetuximab (25 μg/mL)

or intraperitoneally

Inhibites KRAS mutant tumor growth
and suppresses the

No notable Chen et al.
(2020c)

injected with 100 μL of PBS,
β-elemene (50 mg/kg),

migration of KRAS mutant CRC cells Toxicity was found in organs
after H&E stained

cetuximab (50 mg/kg)

Ursolic Acid Cisplatin 35 μM UA combined with 20 μM Ci Exerts synergistic effects with cisplatin
on inhibiting tumour cell proliferation
by activating autophagy and degrade

ferritin

Reduced the toxicity and side
effects of Cis

Tang et al.
(2021b)

Osthole Cetuximab 50 μM osthole combined with 100 ng/
mL cetuximab or 20 mg/kg osthole
combined with 10 mg/kg cetuximab

Increased the anticancer effect of
cetuximab by reducing

phosphorylation of AMPK/Akt

- Zhou et al.
(2023b)

Sheng-Mai-Yin DOX SMY-L (135 mg/kg/day) group, SMY-
H (270 mg/kg/day) and receivrd DOX

(10 mg/kg)

Reduced iron overload and lipid
oxidation by inhibiting expression of

HMOX1

Reducing the cardio-toxicity
from doxorubicin (DOX)

Meng et al.
(2023)

intraperitoneally on the sixth day
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pathway, thereby achieving therapeutic effects on gastric cancer
(Ni et al., 2022b). Additionally, Yu et al. first demonstrated that
artemisinin, a mitochondrial targeting agent, was much more
toxic in vitro and in vivo than free artemisinin and non-targeted
artemisinin nanodrugs against a variety of cancer cells,
including MCF-7, HeLa, HepG2 and C6 cells. Mitochondrial
artemisinin toxicity is mainly caused by free radicals and/or
ROS-related apoptosis associated with artemisinin induced
ferroptosis (Yu et al., 2023).

Some studies have also compared the effects of TCMs with
classical ferroptosis inducers RSL-3 or erastin, which tend to
increase the sensitivity of tumor cells to ferroptosis, resulting in
mutual promotion (Table 2). Additionally, TCMs not only promote
anticancer effects alone but also produce additive or synergistic
effects when combined with Western medicines (Table 3). On the
one hand, TCMs enhance the inhibition of tumor growth and
metastasis by targeting iron death, and on the other hand, they
alleviate the toxic side effects caused by chemotherapy drugs. After
all, drug toxicity is an important consideration in terminal treatment
options for cancer patients. These advantages make TCMs
promising antitumor drugs.

Despite rapid and promising advances in research into the
role of TCMs in iron death in cancer therapy, implementation
into clinical use remains challenging. Activating ferroptosis can
kill cancer cells, but whether normal tissues are damaged at the
same time raises concerns about potential complications
associated with the use of iron death inducers (Sui et al.,
2019). Moreover, there are still doubts about the nonstandard
compatibility, inaccurate dosage and nonsingle extract of
traditional Chinese medicine. While Traditional Chinese
Medicines (TCMs) and their active ingredients have been
reported to have regulatory effects on ferroptosis,
encompassing additional targets, stable structures, high safety,
low cost, and easy availability, there is a notable insufficiency in
the accumulation of related studies. Clinical trials are also
lacking, and for many drugs, the mechanisms of action have
not been fully elucidated. Therefore, to apply TCMs more
rigorously and scientifically in the clinical treatment of cancer,
future research should include additional large sample

multicenter double-blind randomized controlled trials and
related molecular cell biology experiments to further examine
the mechanism of action, effectiveness and safety of TCMs. We
hope that eventually TCMs can really slow down the progression
of the disease, alleviate the suffering of patients, and improve the
quality of life.
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