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Background: Acute myeloid leukemia (AML) is the most common form of
leukemia among adults and is characterized by uncontrolled proliferation and
clonal expansion of hematopoietic cells. There has been a significant
improvement in the treatment of younger patients, however, prognosis in the
elderly AML patients remains poor.

Methods: We used computational methods and machine learning (ML)
techniques to identify and explore the differential high-risk genes (DHRGs) in
AML. The DHRGs were explored through multiple in silico approaches including
genomic and functional analysis, survival analysis, immune infiltration, miRNA co-
expression and stemness features analyses to reveal their prognostic importance
in AML. Furthermore, using different ML algorithms, prognostic models were
constructed and validated using the DHRGs. At the end molecular docking
studies were performed to identify potential drug candidates targeting the
selected DHRGs.

Results: We identified a total of 80 DHRGs by comparing the differentially
expressed genes derived between AML patients and normal controls and
high-risk AML genes identified by Cox regression. Genetic and epigenetic
alteration analyses of the DHRGs revealed a significant association of their
copy number variations and methylation status with overall survival (OS) of
AML patients. Out of the 137 models constructed using different ML
algorithms, the combination of Ridge and plsRcox maintained the highest
mean C-index and was used to build the final model. When AML patients
were classified into low- and high-risk groups based on DHRGs, the low-risk
group had significantly longer OS in the AML training and validation cohorts.
Furthermore, immune infiltration, miRNA coexpression, stemness feature and
hallmark pathway analyses revealed significant differences in the prognosis of the
low- and high-risk AML groups. Drug sensitivity and molecular docking studies
revealed top 5 drugs, including carboplatin and austocystin-D that may
significantly affect the DHRGs in AML.

Conclusion: The findings from the current study identified a set of high-risk
genes that may be used as prognostic and therapeutic markers for AML patients.
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In addition, significant use of the ML algorithms in constructing and validating the
prognostic models in AML was demonstrated. Although our study used extensive
bioinformatics and machine learning methods to identify the hub genes in AML,
their experimental validations using knock-out/-in methods would strengthen
our findings.
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Introduction

Acute myeloid leukemia (AML) is the most common leukemia
among adults and accounts for nearly 80% of all cases (Yamamoto
and Goodman, 2008; Shimony et al., 2023). It is a heterogenous
disease and is characterized by uncontrolled proliferation and clonal
expansion of hematopoietic cells resulting in ineffective
erythropoiesis and bone marrow failure (Shimony et al., 2023;
Papaemmanuil et al., 2016; D’Kouchkovsky and Abdul-Hay,
2016). The estimated five-year survival rate varies greatly between
different age groups, ranging from ~50% in the younger patients to
less than 10% in patients of 60-years age and older (Sasaki et al.,
2021; Shimony et al., 2023). In the United States, the incidence of
AML is about 3–5 cases per 100,000 population, and it increases with
age, with ~12 cases in older patients per 100,000 population. Males
are more predominantly affected compared to females, with a ratio
of 5:3(D’Kouchkovsky and Abdul-Hay, 2016; Siegel et al., 2015). The
pathophysiology of AML involves multiple factors, such as
radiation, chromosomal aberrations, and existing hematopoietic
disorders; however, the primary cause of the disease is recurrent
genetic mutations. More than 90% of AML patients harbor somatic
mutations in several genes including those associated with
hematopoiesis. Some of the frequently mutated genes in AML
include DNMT3A, IDH1, IDH2, TET2, FLT3, and NPM1
(Papaemmanuil et al., 2016; Angenendt et al., 2019; Kantarjian
et al., 2021). Although significant improvements in the treatment
of AML have been witnessed in younger patients, prognosis in the
elderly, the majorly affected group remains poor (D’Kouchkovsky
and Abdul-Hay, 2016; Shah et al., 2013). Therefore, it is important to
gain better insights into the molecular mechanisms associated with
AML and identify candidate genes for improving therapeutic
strategies and disease prognosis.

Advancement in machine learning (ML) techniques and
methods is fueling drug discovery and healthcare research in a
large way. ML algorithms are extensively used in today’s healthcare
research for disease diagnosis, discovering potential prognostic
biomarkers and drug targets in various pathophysiological
conditions starting from viral infections to neurodegeneration
disorders (Barman et al., 2019; Alamro et al., 2023; Taheri and
Habibi, 2023; Turki and Taguchi, 2023). A few of the popular ML
techniques/algorithms used in biological research include support
vector machine (SVM) (Noble, 2006), artificial neural network
(ANN), random forest (RF), and gradient boosting tree (GBT).
Alamro et al., (Alamro et al., 2023), used ranking and feature
selection methods to first shortlist the hub genes associated with
Alzheimer’s disease (AD) and then employed ML and deep learning
(DL) methods to differentiate between AD patients and healthy
controls using the selected gene-sets. Taheri et al., Taheri and

Habibi, (2023) focused on a more recent problem and used three
different unsupervised learning algorithms to rank the important
genes and finally identified a set of 18 key genes related to COVID-
19 disease. Another study that claims to be the first of its kind
developed an ML-based classification approach to discover
infectious disease-associated host genes and achieved the highest
accuracy for a deep neural network (DNN) model with 16 selected
features (Barman et al., 2019). A study by Huang et al. (2022) used
bioinformatics methods along with SVM recursive feature
elimination (SVM-RFE) and RF algorithms to identify hub genes
in coronary artery disease. Our group recently used non-negative
matrix factorization (NMF) to show that this method significantly
improves the enrichment detection of glaucoma genes over the
traditional differential gene expression analysis. Further, application
of NMF with the scoring method developed by us showed great
promise in the identification of marker genes for glaucoma, with its
potential applicability to other conditions and diseases (Huang
et al., 2023).

The ML techniques in the diagnosis of hematologic
malignancies were used two decades ago (Zong et al., 2006);
however, limitations in computational power and unavailability
of large-scale data, such studies were not pursued widely. More
recently, ML techniques and methods are becoming popular in the
diagnosis and prognosis of AML, fortunately, due to freely available
multi-omics online data sets, such as Leukemia Gene Atlas
(Hebestreit et al., 2012) and The Cancer Genome Atlas [TCGA,
Weinstein et al. (2013)]. Lee et al. (2018) proposed a computational
approach to identify robust molecular markers for targeted
treatment of AML by integrating multi-omics data from
30 patients and in vitro sensitivity data corresponding to
160 chemotherapy drugs. (Warnat-Herresthal et al., 2020).
combined multi-omics data including transcriptomic and
genomic data to develop ML classifiers that can accurately detect
AML in a near-automated and low-cost method. The integration of
ML with feature selection methods and comparison of their
performances showed that GBT with an accuracy of >85%,
AUC >0.90, and the feature selection via the Relief algorithm
had the best outcome in predicting the survival rate of AML
patients (Karami et al., 2021). Analyzing the genomic data from
a multicenter cohort of ~6800 AML patients, the researchers were
able to decipher a set of prognostic subgroups predictive of survival
using the recent ML techniques over the traditional methods
(Awada et al., 2021). A review by Eckardt et al., (Eckardt et al.,
2020) discusses in detail the applications of variousMLmethods and
algorithms in the diagnosis, prognosis, and treatment of AML. The
use of ML in understanding AML is comparatively newer and
provides a lot of opportunities to use this method in exploring
the disease in detail.
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In the current study, firstly, we identified high-risk genes in
AML using various genomic and functional analysis approaches. We
then developed a consensus ML-driven signature using the high-risk
genes and different algorithms and selected the best prognostic
model. The prognostic significance of the high-risk genes was
further evaluated using survival analysis, and independent
training and validation cohorts. The immune infiltration, miRNA
co-expression and stemness features analysis of the high-risk genes
confirmed the importance of this gene-set in AML prognosis and
survival. Lastly, using the molecular docking studies, we identified
potential drugs affecting the activity of selected high-risk
genes in AML.

Materials and methods

Data collection

Standardized data for AML (TCGA abbreviation: LAML) and
normal blood were downloaded from the UCSC (https://
xenabrowser.net/) and GTEx (https://gtexportal.org/) databases,
respectively. Additionally, the mRNA expression profiles,
mutation annotation data, copy number variation (CNV) data,
and clinical metadata were obtained from the UCSC database.
Samples with incomplete clinical data were excluded from further
analysis. We also downloaded AML microarray gene expression
datasets, GSE12417 (Metzeler et al., 2008), GSE37642 (Li et al.,
2013b), and RNA sequencing datasets, GSE106291 (Herold et al.,
2018), and GSE146173 (Bamopoulos et al., 2020) from the NCBI
Gene Expression Omnibus (GEO) and Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra), respectively. The combat
function of the sva package (Leek et al., 2012) was used to
remove any batch effects between the TCGA and GTEx datasets.
TCGA AML expression dataset was used as training cohort for the
model construction, while the four GSE datasets were used as
validation cohorts (details in Supplementary Table S1).

Differentially expressed genes (DEGs)

The “limma-voom” algorithm (Law et al., 2014) was used to
identify the DEGs between AML and normal control patients. The
raw read count data across the samples were used as input for the
differential expression analysis, and the genes with an adjusted
p-value < 0.05 and logFC >1 or < −1 were identified as DEGs.

Gene ontology (Go) and kyoto encyclopedia
of genes and genomes (KEGG)
pathway analyses

The GO and KEGG pathway enrichment analyses of the DEGs
between normal controls and AML patients were performed using
the “clusterProfiler” R package (Yu G et al., 2012) with default
parameters. The enriched GO terms, including biological process
(BP), cellular component (CC), and molecular function (MF) and
KEGG pathways with an adjusted p < 0.05 were considered
significant.

Cox regression analysis

We used the survival (v 3.5.7) package for performing Cox
regression analysis to identify the high-risk genes in AML. The genes
that had a p-value < 0.05 and a hazard ratio (HR) > 1 in TCGA
dataset were shortlisted. Further, among these, we selected the ones
that were also identified as risk factors (p < 0.05 and HR > 1) in any
two of the four GSE expression datasets analyzed.

Gene set variation analysis (GSVA)

GSVA, a gene set enrichment method that estimates variation of
pathway activity over a sample population in an unsupervised
manner (Hanzelmann et al., 2013) was employed to identify
distinct hallmark pathways between normal tissue and AML
samples. Additionally, we utilized GSVA to ascertain distinct
hallmark pathways between high- and low-risk AML subtypes.

Protein-protein interaction network analysis

The STRING database (https://string-db.org/) (Bajpai AK et al.,
2020; Szklarczyk et al., 2021) was used to analyze the protein-protein
interactions (PPIs) among the selected risk factors with the
correlation coefficient of more than 0.15. The database contains
PPIs for multiple species that are based on various evidence, such as
text mining, experiments, co-expression, neighborhood, gene fusion,
and co-occurrence.

Construction of a consensus prognostic
model based on machine learning

To construct a consensus prognostic model with high accuracy
and stability, we integrated 11 ML algorithms. These algorithms
include Artificial Neural Network (ANN) (Bayne et al., 2012),
Survival Random Forest (Survival RF) (Rigatti, 2017), Lasso
(Tibshirani, 1997), Enet (Paszke et al., 2016), Supervised
Principal Component Analysis (Supervised PCA) (Bair et al.,
2006), Extreme Gradient Boosting (XGBOOST) (Hou et al.,
2020), Stepwise Cox, Partial Least Squares Regression cox
(plsRcox) (Geladi and Kowalski, 1986), Gradient Boosting
Decision Tree (GBDT) (Friedman, 2001), Ridge (Hastie et al.,
2009), and Survival Support Vector Machine (Survival SVM)
(Zhang et al., 2017). In order to accomplish this, we calculated
all possible combinations for the direction parameter of the
algorithms individually, as well as by combining different
algorithms in pairs. Furthermore, some ML algorithms have
different predictive effects upon changing the parameters. For
example, the ANN algorithm with different number of hidden
layers between the input and output layers will have different
predictive effects. These models were combined with different
sets of parameters. Thus, a total of 137 models were obtained. A
brief detail about the ML algorithms and the rationale behind
selecting them in the current study is provided below.

ANN is a model that imitates the structure and function of
biological neural networks, commonly used in the field of machine
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learning. We use ANN to construct prognostic models because it is a
powerful nonlinear model that can learn and understand the
complex nonlinear relationships in medical data, thereby better
predicting patient prognosis. RF is a classifier that contains
multiple decision trees, which is an ensemble machine learning
algorithm used for classification and regression problems. We adopt
this method to build a prognosis model because it can reduce the risk
of overfitting by integrating the results of multiple decision trees,
and it can calculate the importance of feature variables in the
prognosis model through the variable importance integration
method, which helps us identify key regulatory genes. Lasso is a
linear regression method that uses L1 regularization. It achieves
parameter shrinkage and feature selection by introducing
L1 regularization to the model coefficients, helping to reduce the
complexity of the model and improve its generalization ability. We
use Lasso to build prognostic models because the expression matrix
typically contains a large number of features, but only a portion of
them may be related to prognosis. By introducing L1 regularization
to penalize feature coefficients, Lasso can shrink some coefficients to
zero, thereby achieving the effect of feature selection, that Lasso can
help identify key features related to prognosis, simplifying the model
and improving prediction accuracy. Enet is a linear regression
method that combines L1 regularization with L2 regularization.
We used it for building prognostic models because it combines the
advantages of Lasso and Ridge, which can maintain good group
effects while also selecting key features. This helps improve the
model’s generalization ability and enhance predictive performance.
Supervised PCA is a machine learning algorithm that combines the
ideas of principal component analysis (PCA) and supervised
learning, preserving key feature information while reducing data
dimensions. The reason we use supervised PCA to build prognosis
models is because it can retain key feature variables discriminatively
while reducing data dimensions, allowing us to identify key
regulatory genes. Additionally, by removing interfering features,
we can enhance the predictive accuracy of the model. Ridge is a
linear regression method that uses L2 regularization. Similar to
Lasso, Ridge also uses L2 regularization penalty, which means it
cannot completely reduce the feature coefficients to zero. The reason
we use the Ridgemethod to construct the prognosis model is because
it can complement the shortcomings of Lasso L1 regularization and
maintain group effects. Moreover, Ridge regression adds
L2 regularization, hence, this method can have good
generalization ability when facing complex clinical data. GBDT is
an ensemble model machine learning algorithm of gradient boosting
decision trees, which uses the method of gradient boosting to
iteratively train the model. GBDT was used to build the
prognostic models because it is a type of decision tree that can
handle non-linear relationships well and can fit complex clinical
data effectively. GBDT, as a decision tree, can automatically handle
outliers and noise without the need for additional data
preprocessing, so it has good robustness, which is very helpful
for predicting complex and variable clinical data. XGboost is
based on GBDT, however, it introduces regularization and
multiple classifiers. XGboost was used to build prognostic models
because it improves upon GBDT by introducing regularization to
enhance the generalization ability of the model. Additionally,
custom loss functions allow XGboost to adapt to various types of
classifiers, including ranking and regression, which is beneficial for

handling the complexity of clinical data. CoxBoost is a machine
learning algorithm that combines the principles of gradient boosting
and the Cox proportional hazards model. It utilizes gradient
boosting, allowing it to handle non-linear relationships, which is
a significant improvement over traditional Cox models that can only
handle linear relationships. Additionally, because CoxBoost
combines the Cox model, it can effectively adapt to clinical data.
plsRcox is a method that combines partial least squares regression
and the Cox proportional hazards model. It maps high-dimensional
data to a low-dimensional space and applies Cox in the low-
dimensional space to construct the proportional hazards model.
We adopted the method of plsRCox to build a prognosis model
because it can handle high-dimensional data and multicollinearity,
helping to extract important information from clinical data and
reduce the risk of model overfitting. Stepwise Cox is a statistical
method used for survival analysis, which, in the case of multiple
features, gradually determines the most significant features for
influencing survival time or survival probability. We use Stepwise
Cox to construct a prognostic model because it includes forward
selection, backward selection, and stepwise regression, enabling the
automatic selection of features most relevant to survival time or
survival probability, thus building a simple and effective
prognostic model.

Among the 11 algorithms, for ANN, XGboost, Enet, and
Stepwise Cox different parameters were selected for model
building. For ANN, we chose combinations of 5–15 hidden layer
neurons because the prognosis model is not particularly complex.
Generally, the number of hidden layer neurons is chosen to be
around a dozen, so we selected 5–15 neurons to seek the optimal
solution. In XGboost, we chose the maximum tree depth to be
between 1–5 because the data for the single cancer prognosis model
is limited. After referencing other prognosis models, we decided to
select the optimal tree depth between 1–5. Enet is a combination
algorithm of Lasso and Ridge. When alpha = 0, it is Ridge, and when
alpha = 1, it is Lasso. Therefore, we chose alpha to be between
0.1–0.9 to seek the best alpha for predicting the prognosis based on
different combinations of L1 regularization and L2 regularization.
Stepwise Cox is a special Cox regression statistical method, which
can choose to perform backward selection, starting from including
all feature types, gradually removing one feature at a time, each time
selecting a variable that significantly improves the model fitting after
removal. It can also choose to perform forward selection, starting
from a model that does not include any features, gradually adding
one feature at a time, each time selecting a feature that significantly
improves the model fitting, or a stepwise regression model that
incorporates both modes, due to the complexity of clinical data, we
separately used three different parameters of Stepwise Cox to
construct prognostic models in order to pursue a better
predictive effect.

Survival analysis

We employed Support Vector Machine (SVM), Artificial Neural
Network (ANN), Boruta, Random Forest (RF), and Extreme
Gradient Boosting (XGBOOST) algorithms to individually predict
the prognostic significance of the genes. The weights or importance
values corresponding to the genes was obtained from each
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algorithm. Subsequently, the values were standardized, and the
average value for each gene across the five algorithms was
calculated. Then, the prognostic significance of each gene was
evaluated using the final values derived from the normalization
of z-scores across five algorithms.

Immune infiltration analysis

The “CIBERSORT” algorithm version 1.1.0 (http://cibersort.
stanford.edu/) (Chen et al., 2018) was used to evaluate the tumor
infiltration of immune cells. The normalized gene expression values
corresponding to the AML samples were used as input for the tool.

miRNA co-expression and stemness
feature analysis

ThemiRNA expression data corresponding to 188 AML patients
were obtained from the TCGA database (Weinstein et al., 2013). The
coexpression analysis between the miRNAs and genes was
performed using Pearson correlation method. The associations
with correlation coefficient values (R) > 0.4 or < −0.4 and with
p < 0.05 were considered significant. The positive and negative R
values indicate the positive and negative correlations between the
miRNAs and DHRGs, respectively.

The tumor dryness scores for DNAss (DNA methylation-based
Stemness Scores), EREG-METHss (Epigenetically regulated DNA
methylation-based Stemness Scores), DMPss (Differentially
methylated probes-based Stemness Scores), ENHss (Enhancer
Elements/DNAmethylation-based Stemness Scores), RNAss (RNA
expression-based Stemness Scores), and EREG. EXPss
(Epigenetically regulated RNA expression-based Stemness Scores)
were calculated based on Malta et al.’s (2018) method (Malta et al.,
2018) using mRNA expression and methylation signatures.

Drug sensitivity prediction

Drug sensitivity data were obtained from the Genomics of Drug
Sensitivity in Cancer database (https://www.cancerrxgene.org/)
(Yang et al., 2013). The R package “oncoPredict” version 0.2
(Maeser et al., 2021) was used to download the IC50 values of
each drug. Subsequently, correlation analysis was performed
between drug sensitivity and the expression levels of selected
genes. Additionally, the drug sensitivity differences between high-
and low-risk groups were calculated.

Molecular docking and drug prediction

We used software DOCK (v 6.10; https://dock.compbio.ucsf.
edu/DOCK_6/) to predict the binding patterns of small molecules
and protein complexes. Firstly, we downloaded the three
dimensional protein structures of the selected genes from the
Protein Data Bank database (https://www.rcsb.org/) (Berman
et al., 2000). The proteins were pretreated with UCSF Chimera (v
1.15; https://www.cgl.ucsf.edu/chimera/) by adding hydrogen,

assigning partial charges and protonation states, and energy
minimization (Pettersen et al., 2004). Secondly, we selected a
subset of spheres to represent the binding sites by using the
largest cluster generated by sphgen. Thirdly, the chemical
structures of the active drug compounds were collected using the
ZINC15 database (https://zinc15.docking.org/) (Irwin et al., 2012).
Finally, all compounds were docked into the binding sites of the
target proteins and were visualized in UCSF chimera (v 1.14) and
LigPlus (v 2019).

Results

Identification of DEGs between AML patients
and normal control

We identified a total of 5331 upregulated and
3230 downregulated genes in AML compared to normal blood
samples using RNA-seq data obtained from TCGA and GTEx
databases (Figure 1A; Supplementary Table S1). The functional
enrichment analysis found 2123 GO annotations by the
upregulated genes (Supplementary Table S2), and
339 annotations by the downregulated genes (Supplementary
Table S3). Immune system related BPs and MFs were found to
be significantly enriched by the upregulated genes (Figure 1B),
whereas those related to DNA replication and repair were most
enriched by the downregulated genes (Figure 1C). Furthermore, we
found 154 KEGG pathways to be enriched by the upregulated genes
(Supplementary Table S4), and 27 by the downregulated genes
(Supplementary Table S5). Similar to the GO results, many of
the top 10 upregulated pathways (Figure 1D) were related to
immune response (e.g., chemokine signaling, hematopoietic cell
lineage, and coagulation cascade). The downregulated pathways
were related to cell cycle, DNA replication and repair, as shown
in Figure 1E. Additionally, the GSVA results of the DEGs showed
enrichment of various hallmark pathways associated with immune
response, p53 signaling, cell cycle, DNA replication and repair, and
signaling (Figure 1F).

Identification of differential high-risk
genes (DHRGs)

The high-risk genes in AML were identified by Cox regression
analysis of TCGA and four GSE datasets. The genes identified based
on TCGA data had a p-value < 0.05 and HR > 1. Furthermore,
among these, we selected the ones that were also high-risk factors
(p-value < 0.05 and HR > 1) in any two of the four GSE datasets
analyzed (Figure 2A). By comparing the high-risk genes with the
DEGs, we found 80 genes that were high-risk factors in AML as well
as upregulated in AML compared to normal control. These genes,
henceforth referred to as differential high-risk genes (DHRGs) were
considered for further analysis (Figures 2B, C). Figure 2C;
Supplementary Figure S1 show the HR and p-values of the
DHRGs across TCGA and GSE datasets. The chromosomal
analysis of the 80 DHRGs showed that they are distributed
across all 23 pairs of chromosomes except on 18 and Y
chromosomes (Figure 2D).
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To depict the functional significance of these genes, we
constructed a PPI network using the STRING database. Our
results showed that most of the 80 DHRGs interacted with each
other indicating a close functional relationship among these
proteins (Figure 2E). However, a few proteins including
FBXO6, ECE1, GLTP, and MAST3 were not part of the large
network, while MZT2A had no interaction with any of
the DHRGs.

Genetic and epigenetic alterations in DHRGs
and their effect on survival of AML patients

We used cBioPortal (http://www.cbioportal.org/) to analyze the
genetic alterations associated with the DHRGs. A few of these genes
had mutations, however the frequency was not high (Figure 2F).
Furthermore, based on the data analyzed from 6 different datasets,
including the complete Oregon Health & Science University

(OHSU) AML cohorts (Tyner et al., 2018; Bottomly et al., 2022),
three TCGA datasets (Ley et al., 2013; Tomczak et al., 2015; Hoadley
et al., 2018) and the Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) AML initiative dataset
(Bolouri et al., 2018), and we found that the alteration frequency in
these genes ranged from 4% to 17% (Figure 2G). Together, these
6 datasets contained a total of 3239 samples from 2866 patients.
While the OHSU datasets contributed to maximum number of
samples (n = 1,614), the TARGET and TCGA (3 datasets together)
contributed to 1,025 and 600 samples, respectively. We then focused
on the effect of copy number variations (CNVs) and methylation
status of the DHRGs on their RNA expression and survival of AML
patients. The results revealed an association between the CNVs of
28 DHRGs and overall survival, with CNVs in SH2D3C, HLX, and
AK1 genes significantly affecting the survival of AML patients
(Figure 2H). The correlation between methylation status and
mRNA expression of the DHRGs revealed that the methylation
in TRIB1, OPTN, ARAP1, SUSD3, PPM1F, EHBP1L1, KLF9, IGF2R,

FIGURE 1
Differentially expressed genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Set Variation
Analysis (GSVA). (A) DEGs between AML and normal samples. (B) GO annotations of upregulated and (C) downregulated genes. (D) KEGG pathways of
upregulated and (E) downregulated genes. (F) GSVA analysis of Hallmark pathways between AML and normal samples.
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FIGURE 2
Identification and mutation of DHRGs. (A) Identification of high-risk genes common between TCGA and any two GSE datasets. (B) Venn plot
showing the intersection of DEGs and high-risk genes. (C) Heatmap showing the HR and p values of DHRGs in the TCGA and four GSE datasets (“Risky”:
HR > 1 and p < 0.05, “Protect”: HR < 1 and p < 0.05, “Not,” p < 0.05). (D) Chromosome circular plot showing the distribution of DHRGs on the
chromosomes. (E) Protein-protein interaction (PPI) analysis of DHRGs. (F) Waterfall plot showing the frequency of mutations and copy number
variations of DHRGs. (G) Alteration frequency of DHRGs in 6 different databases. (H) Survival difference between CNV group of DHRGs. (I) Correlation
between methylation and RNA expression of DHRGs. (J) Survival difference between high and low methylation status of DHRGs.
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FIGURE 3
Construction and validation of the DHRGs-derived prognostic signatures via the machine learning-based integrative approach. (A) C-indices of the
test and validation prognostic signature sets for each model. (B–F) The predictive performance of prognostic signature was compared with common
clinical and molecular variables in the TCGA and four GSE datasets. (G) Survival curve of patients in high- and low-risk groups in the TCGA database. (H)
ROC curve showing the AUC value of themodel for different survival times. (I) PCA analysis showing the PC values of high- and low-risk groups. (J,K)
Distribution of the risk score and survival status. (L) Sankey plot showing the proportion of surviving and deceased patients in high- and low-risk groups.
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ICAM3, ALDOC, and IFITM3 negatively regulated their mRNA
expression (Figure 2I). Furthermore, we observed that the
methylation of PF4 and TREML2 were high-risk factors with

HR > 1 (Figure 2J), whereas methylation in 19 genes was found
to be significantly associated with improved survival of AML
patients (p < 0.05 and HR < 1) (Figure 2J).

FIGURE 4
Survival curves, ROC curves and PCA analysis of four GSE datasets. (A–C) GSE12417. (D–F) GSE37642. (G–I) GSE106291. (J–L) GSE146173.
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Development of a robust consensus ML-
driven signature

We used the DHRGs in an ensemble framework to perform a
consensus ML-driven signature analysis. For the TCGA training
cohort, we built consistent models using individual as well as
combination of machine learning algorithms and calculated the
C-index for each model. For the four GSE validation datasets, we
calculated the C-index for each training model and then averaged it
across the four datasets to assess the predictive power of all models
(Figure 3A). C-index, or concordance index, is used to evaluate the
predictive ability of the model. The c-index refers to the proportion
of pairs in which the predicted results of patients are consistent with
the actual results. Among the 137 models, the combination of Ridge
and plsRcox algorithms maintained the highest mean C-index to
build the final model. Furthermore, we compared the performance
of DHRGs with other clinical and molecular variables in predicting
prognosis. As shown in Figures 3B–F, DHRGs had distinctly
superior accuracy compared to other variables, including gender,
treatment, age, FAB stage, CR stage, M stage, and diagnosis.

To further evaluate the prognostic significance of DHRGs, we
categorized the TCGA AML patients into high- and low-risk DHRG
groups based on the median value. The Kaplan-Meier curve for the
overall survival (OS) demonstrated that the low-risk DHRG group
had significantly longer survival in the AML training cohort (Figures
3G, H). The AUCs for 1-, 2-, and 3-year OS were 0.886, 0.864, and
0.844, respectively. Additionally, to highlight the differences in the
expression patterns of DHRGs, we performed principal component
analysis (PCA) based on the DHRGs of the low- and high-risk
groups. The scatter plot showed substantial differences in the
expression patterns of DHRGs between the groups (Figure 3I).
We also calculated the risk score and clinical status between the
two groups (Figures 3J, K) and found that the high-risk group had a
higher mortality rate (Figure 3L). The majority of the low-risk
survival group is younger than 60 years old, while the majority of
the high-risk death group is older than 60 years old (Figure 3L).

Next, we used four GSE datasets as test cohorts to further
validate the feasibility of DHRGs for predicting AML prognosis.
To maintain consistency with the training cohort, we determined
the cutoff values for the low- and high-risk groups based on the
median risk scores. The results of prognostic analysis were
consistent with those of the training cohort. Kaplan-Meier
survival curves showed that OS was poorer in the high-risk
group than in the low-risk group (Figures 4A, D, G, J). The
AUCs for OS were 0.694, 0.741, and 0.746 at 1, 2, and 3 years in
GSE12417, 0.671, 0.697, and 0.681 at 1, 2, and 3 years in GSE37642,
0.674, 0.624, and 0.634 at 1, 2, and 3 years in GSE106291, and 0.684,
0.677, and 0.671 at 1, 2, and 3 years in GSE146173, respectively
(Figures 4B, E, H, K). These relatively lower AUC values may be due
to lower transcriptome differences between the high- and low-risk
groups, higher intra-group variation, and RNA-seq batch effects. To
investigate the batch effect, we performed PCA by combining the
training and the four validation cohorts. There was a batch effect
between the training and validation cohorts (Supplementary Figure
S2). PCA analysis suggested that the expression pattern difference of
DHRGs between the high- and low-risk groups was lower in the four
test cohorts than in the TCGA cohorts (Figures 4C, F, I, L). We also
calculated the risk score and clinical status between the two groups

in the four test datasets, respectively (Supplementary Figures S3A, B,
D, E, G, H, J, K), and our model predicted that over 70% of the high-
risk group patients were deceased (Supplementary Figures S3C, F, I,
L). We also found that the majority of the low-risk survival group is
younger than 60 years old, while the majority of the high-risk death
group is older than 60 years old (Supplementary Figures S3C, F, I, L).

Overall, Kaplan-Meier survival analysis, timeROC curve, and
C-index of one training and four validation cohorts consistently
indicated that DHRGs could accurately and robustly predict the
prognosis of AML patients, suggesting that DHRGs may become an
attractive tool for clinical practice.

Predicting the importance of DHRGs for
prognosis of AML patients

We utilized SVM (Supplementary Figures S4A, B), ANN
(Supplementary Figures S4C, D), Boruta (Supplementary Figures
S4E, F), RF (Supplementary Figures S4G, H), and XGBOOST
(Supplementary Figure S4I) algorithms to individually predict the
significance of DHRGs for prognosis. For each machine learning
algorithm, we normalized the values according to the weights or
important values of genes that affected survival. We identified the
top 6 genes as TREML2, DGAT1, RPL3L, CSTB, AK1, and PRDX5
(Figure 5A). Through ROC analysis, we observed high AUCs of
0.929, 0.847, 0.837, 0.968, 0.999, and 0.985, respectively (Figures
5B–G), which indicated that these genes could effectively predict
normal and AML conditions. Furthermore, we conducted ROC
analysis to predict high and low-risk patients using these 6 genes,
resulting in AUCs of 0.738, 0.659, 0.670, 0.674, 0.697, and 0.719,
respectively (Figures 5H–M). In comparison to predicting the high
and low risks of AML patients, these genes demonstrated superior
predictive ability for AML.

Correlation and immune infiltration analysis

We observed that 76 DHRGs showed significant differences
between the high- and low-risk groups, with higher expressions in
the high group compared to the low-risk group (Supplementary
Figure S5). Subsequently, we calculated correlations among these
DHRGs and identified positive correlations between most genes
(Figure 6A; Supplementary Table S6). For instance, there was a
strong positive correlation between SHARPIN and SLC10A3 (R =
0.833), as well as between ARAP1 and EHBP1L1 (R = 0.855). In the
high group, strong positive correlations were also found between
SHARPIN and SLC10A3 (R = 0.874), between ARAP1 and EHBP1L1
(R = 0.815), and between SLC10A3 and PKN1 (R = 0.853)
(Figure 6B; Supplementary Table S7). Similarly, in the low group,
we observed a strong positive correlation between SHARPIN and
SLC10A3 (R = 0.845), as well as between ARAP1 and EHBP1L1 (R =
0.894) (Figure 6B; Supplementary Table S8). In terms of the
correlation coefficient between SLC10A3 and PKN1, they were
0.639 and 0.737 for all samples and the low-risk group
respectively. Interestingly, changes in the correlation patterns
between genes were observed in the high and low-risk groups,
indicating a decrease in correlation strength in the low group for
some genes that showed strong correlation in the high group.
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FIGURE 5
Prediction of the importance of DHRGs for prognosis of AML patients. (A) Prediction of the importance of DHRGs for prognosis of AML patients by
five machine learning algorithms. (B–G) ROC curves to predict AML and normal conditions for TREML2, DGAT1, RPL3L, CSTB, AK1, and PRDX5
respectively. (H–M) ROC curves to predict high and low-risk patients for TREML2, DGAT1, RPL3L, CSTB, AK1, and PRDX5 respectively.
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Next, we utilized the ssGSVA algorithm in the GSVA package to
estimate the score of 80 DHRGs. We then calculated correlations
between the expression of DHRGs and the estimated scores. In the
low group, we identified several genes including PMM1, MAST3,
NEDD9, SH3TC1, SRXN1, TFE3, and TUBA4A that showed positive
correlations with the estimated score, with correlation coefficients
exceeding 0.4 (Figure 6B; Supplementary Table S9). However,
in the high group, the correlation coefficients between the
DHRGs and the estimated score were less than 0.4 (Figure 6B;
Supplementary Table S10).

The immune infiltration analysis revealed significant differences
in monocytes, activated dendritic cells, and resting mast cells
between the high and low groups (Figure 6C). We aimed to
explore the changes in the linear relationships between immune
cells in the all-, high-, and low-groups. In all-sample group, the
strongest linear relationships were negative correlations between
monocytes and memory resting CD4 T cells (R = −0.46), B cells
(R = −0.43), and CD8 T cells (R = −0.48), respectively (Figure 6D;
Supplementary Table S11). In the high group, monocytes exhibited
negative correlations with plasma cells (R = −0.47), CD8 T cells

FIGURE 6
Correlations between genes and between immune cells. (A) Correlations between DHRGs in all group. (B) Correlations between DHRGs within as
well as between high- and low-risk groups. (C) Differences in immune cell infiltration between high- and low-risk groups. (D) Correlations between
immune cells in the ‘all’ group. (E) Correlations between immune cells as well as between immune cells and DHRGs-score in high- and low-risk groups.
(ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001).
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(R = −0.54), memory resting CD4 T cells (R = −0.68), and
eosinophils (R = −0.41) (Figure 6E; Supplementary Table S12).
On the other hand, in the low group, monocytes were negatively
correlated with plasma cells (R = −0.44), CD8 T cells (R = −0.41),
memory resting CD4 T cells (R = −0.43), resting mast cells
(R = −0.41), and activated mast cells (R = −0.48), while
positively correlated with memory activated CD4 T cells (R =
0.41) (Figure 6E; Supplementary Table S13). Notably, changes in
the correlation patterns between immune cells were observed in the
high and low groups, with more prominent changes compared to
those observed between genes.

Finally, we calculated correlations between DHRGs and
immune cells and observed that in the low-risk group, nearly
one-fourth of the genes positively regulated monocytes and
negatively regulated resting mast cells (p < 0.05). However, in
the high-risk group, the positive correlations between these
genes and monocytes were weak, and the majority of these
genes did not negatively correlate with mast cells
(Supplementary Figure S6).

miRNA coexpression and stemness
features analysis

The correlations between all miRNAs and DHRGs in AML were
analyzed, and the results showed that 33 miRNAs were significantly
associated with DHRGs, with R > 0.4 or < −0.4 (Figure 7A). In the
entire group, hsa-mir-181a-2 negatively regulated 21 genes
(R < −0.4), hsa-mir-181d negatively regulated 16 genes
(R < −0.4), and hsa-mir-582 positively regulated 12 genes (R >
0.4) (Figure 7A; Supplementary Table S14). However, in the high-
risk group, hsa-mir-181a-2 and hsa-mir-181d negatively regulated
only 7 and 10 genes, respectively (R < −0.4), and hsa-mir-
582 positively regulated only 5 genes (R > 0.4). Additionally, hsa-
mir-151a and hsa-mir-151b positively regulated more than 10 genes
each (Figure 7B; Supplementary Table S15). In the low-risk group,
hsa-mir-181a-2 and hsa-mir-181d negatively regulated 33 and
23 genes respectively (R < −0.4), and hsa-mir-582 positively
regulated 21 genes (R > 0.4). Furthermore, hsa-mir-146a and
hsa-mir-92a-1 negatively regulated 23 and 10 genes respectively

FIGURE 7
miRNA coexpression and stemness features analyses. (A) Correlations between miRNAs and DHRGs in the “all” group. (B) Correlations between
miRNAs and DHRGs in high- and low-risk groups. (C) Differences in the expression of miRNAs between high- and low-risk groups. (D) Correlations
between stemness features and DHRGs in the “all” group. (E) Differences in stemness features between high- and low-risk groups. (F) Correlations
between stemness features and DHRGs in the high- and low-risk groups. (ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001).
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(R < −0.4), while hsa-mir-6503 positively regulated 11 genes (R >
0.4) (Figure 7C; Supplementary Table S16).

Next, we calculated the correlations between DHRGs and
stemness features. Almost half of the genes were negatively
correlated with the indicator RNAss (Figure 7D). Furthermore,
there were no differences in the six stemness features between
the high- and low-risk groups (Figure 7E). Overall, the negative
correlation between genes and RNAss decreased in both high- and
low-risk groups (Figure 7F).

Correlation of DHRGs with
hallmark pathways

According to the hallmark pathways of GSVA analysis, we
observed that adipogenesis, allograft rejection, androgen
response, angiogenesis, and apical junction were enriched in
the high-risk group (Figure 8A). Our focus was on the
correlations between the top 10 hallmark pathways and the
DHRGs. Generally, the regulatory relationships of genes in the
low-risk group on pathways were higher than those in the high-
risk group (R > 0.4 or R < −0.4) (Figure 8B; Supplementary Table
S17). In both the risk groups, apical junction was the most

regulated pathway, with 32 and 23 genes regulating it in the
low- and high-risk groups, respectively (R > 0.4 or R < −0.4). The
pathway with the most significant regulatory change from the low
to high-risk group was apical surface. In the low-risk group,
31 genes regulated this pathway, whereas in the high-risk group,
only 12 genes regulated it (R > 0.4 or R < −0.4).

Relationship between drug responses,
DHRGs and immune cells

Furthermore, we utilized the OncoPredict package to predict the
correlations between DHRGs and existing drug responses. The
analysis revealed that 27 drugs had the potential to positively
regulate the RNA expressions of fewer than 40 genes
(Figure 9A). It was observed that the sensitivity of these drugs
was significantly lower in the low-risk group (Figure 9B).
Additionally, we examined the regulatory relationships of drugs
on immune cells and discovered that 12 drugs positively regulated
monocytes, while 14 drugs negatively regulated eosinophils in the
high-risk group (p < 0.01). However, only 1 drug negatively
regulated eosinophils in the low-risk group (p < 0.01)
(Figure 9C). Furthermore, it was observed that 15 drugs

FIGURE 8
GSVA analysis. (A) Analysis of hallmark pathways between high- and low-risk groups. (B)Correlation analysis between top 10 hallmark pathways and
DHRGs. (ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001).
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positively regulated monocytes, and 8 drugs negatively regulated
resting mast cells in the low-risk group (p < 0.01) (Figure 9C).

To estimate the importance of these 27 drugs that affect DHRGs
and prognosis, we employed 5 machine learning algorithms. The
analysis revealed that the top 5 drugs affecting DHRGs score were
BRD4132, SB.525334, BRD.K34099515, BRD.A02303741,
carboplatin, and austocystin. D (Figure 9D). Subsequently, the
top 5 drugs that potentially impacted prognosis were
BRD.M00053801, BRD4132, cytochalasin.B, MST.312, and
BRD.K13185470 (Figure 9E).

Binding of drug molecules with DHRGs

We were able to download the chemical structure of only 6 active
compounds, namely, methotrexate, vandetanib, silmitasertib, erlotinib,
erismodegib, and myricetin from the ZINC15 database. Subsequently,

we selected 6 genes to demonstrate the binding modes between these
genes and the drugs (Figures 10A–F). Methotrexate exhibited the
strongest binding with CCND3 as indicated by the docking score.
According to the 2D and 3D link graphs, methotrexate displayed
stronger interactions with His95 and Lys22 amino acids of CCND3.
Additionally, a pocket was identified on the surface of CCND3 protein
molecule, allowing methotrexate to interact with it, leading to a
relatively stable complex (Figure 10A). In case of CSTB,
methotrexate interacted with Gln17, Ala40, Phe38, and
Arg24 amino acids. Although there was no pocket on the surface of
CSTB protein, the binding remained relatively stable due to the
significant number of hydrogen bonds formed between the small
molecule and the protein (Figure 10B). Furthermore, methotrexate
interacted with Arg31 and Arg28 amino acids of DDIT4 (Figure 10C),
whereas it bound to DGAT1 through the pocket located on its surface
(Figure 10D). In case of LSP1, vandetanib interacted with Thr20 and
adhered to the pocket on the protein surface (Figure 10E). RPL3L

FIGURE 9
Prediction of drugs. (A)Correlations between DHRGs and predicted drug responses. (B)Differences in the sensitivity of the drugs between high- and
low-risk groups. (C) Correlations between the immune cells and predicted drugs. (D) Prediction of the important drugs for DHRGs by five machine
learning algorithms. (E) Prediction of the important drugs for prognosis of AML patients by five machine learning algorithms. (ns: p > 0.05, *: p < 0.05, **:
p < 0.01, ***: p < 0.001, ****: p < 0.0001).
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interacted with methotrexate through Ser101 and Arg28 amino acids
(Figure 10F). The binding patterns of the 6 genes with all 6 drugs has
been shown in Supplementary Figure S7.

Discussion

The current study identified 80 DHRGs in AML based on
differential expression analysis between the disease and control
groups and Cox regression analysis of RNA-seq and microarray

transcriptomic data. The DHRGs were further explored through
PPI analysis, genetic and epigenetic alterations, miRNA-
coexpression, immune infiltration, drug sensitivity and
survival analysis to establish their importance in AML
pathophysiology. Furthermore, 11 ML algorithms were used
to build prognostic models and the one constructed based on
the combination of Ridge and plsRcox algorithms was selected
as the best model with highest mean C-index.

The DHRGs were identified based on two different types of
datasets (microarray and RNA-seq) having a Cox regression

FIGURE 10
Binding of the drug molecules with DHRGs. (A) CCND3. (B) CSTB. (C) DDIT4. (D) DGAT1. (E) LSP1. (F) RPL3L.

Frontiers in Pharmacology frontiersin.org16

Zhang et al. 10.3389/fphar.2024.1359832

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1359832


p-value < 0.05 and HR > 1. Interestingly, the chromosomal analysis
of these genes revealed their distribution across all 23 chromosomes,
with chromosomes (Chr) 1, 6, 8, 9, 10, and 11 harboring
comparatively higher number of genes. The abnormalities in Chr
1 have been reported to be most frequent in myeloid malignancies
(Caramazza et al., 2010). Furthermore, decades of AML research
have discovered several novel anomalies, including insertions,
deletions, and translocations in Chr 1 (Coupland et al., 2002;
Caramazza et al., 2010). Of note, certain regions, especially 1q21-
1q32 and 1p11-13, might harbor pathogenetically relevant genes
(Caramazza et al., 2010). Trisomy 8 is one of the most frequent
cytogenetic alterations in AML (10%–15% cases) (Hemsing et al.,
2019). Although rare, the deletion of the long arm of Chr 9 (del9q) is
considered as an intermediate risk factor for AML, and is
characterized by frequent mutations of DNMT3A, WT1, and
NPM1 genes (Dohner et al., 2010; Herold et al., 2017). The Chr
6; 9 translocation has been reported to be associated with specific
subtype of leukemia (Lindern et al., 1990; Lindern et al., 1992).
Translocation between Chr 10; 11 has been shown to result in the
fusion of MLL-MLLT10 by a significant proportion of studies
(Beverloo et al., 1995; Berger et al., 1996; Van Limbergen et al.,
2002), although fusion of other transcripts has also been reported in
a few cases (Dreyling et al., 1998; Van Limbergen et al., 2002).

Association between CNVs and survival of AML patients indicated
SH2D3C,HLX, andAK1 genes to play key roles. SH2D3C (SH2Domain
Containing 3C) encodes an adaptor protein and is a member of a
cytoplasmic protein family that is involved in cell migration. This gene
has been reported to be hypomethylated in acute lymphoblastic
leukemia (ALL), the most common childhood blood cancer
(Navarrete-Meneses and Perez-Ver, 2017), while a recent study has
identified SH2D3C as a prognostic biomarker of tumor progression and
immune evasion for lung cancer (Yeh et al., 2021). HLX (H2.0 Like
Homeobox), a highly expressed gene in bonemarrow enables sequence-
specific DNA binding activity and predicted to be involved in the
regulation of T-helper cell differentiation. A study by Kawahara et al.,
demonstrated its role in early hematopoiesis and induction of AML in
rodent models and humans (Kawahara et al., 2012). Overexpression of
HLX has been shown to downregulate the genes involved in electron
transport chain and upregulate PPARδ levels as well as activate AMPK
pathway (Piragyte et al., 2018). High expression of AK1 (Adenylate
Kinase 1) has been shown to correlate with poor prognosis of AML
patients undergoing chemotherapy, suggesting that it can be used as an
independent factor for treatment selection (Qin et al., 2020).
Methylation of the DHRGs significantly affected the survival of
AML patients by either negatively or positively regulating the
mRNA expression. Aberrant DNA methylation has been reported as
a hallmark of AML, and the methylated gene sets could be used as
biomarkers for therapeutic decision making and disease prognosis
(Carmona et al., 2016; Li et al., 2016). DNA methylation possibly
prevents activation of hypoxia-responsive genes, while itself is known to
be influenced by hypoxia, which alters metabolic pathways,
transcriptional regulation of epigenetic modulators, and affects the
activity of epigenetic modifiers, suggesting a bidirectional
relationship between epigenetic regulation and hypoxia in AML
(Humphries et al., 2023). In our study, PF4 and TREML2 were
identified as high-risk factors. PF4 (Platelet Factor 4) encodes a
member of the CXC chemokine family, serum levels of which can
be used as potential markers for monitoring the disease and assessing

the clinical outcomes in AML (Humphries et al., 2023). Furthermore,
reduced expression of PF4 has been shown to promote the
proliferations of human hematopoietic stem and progenitor cells
(Meier-Abt et al., 2021). TREML2 (Triggering Receptor Expressed
On Myeloid Cells Like 2) is a cell surface receptor that may play a
role in innate and adaptive immune response. In a study by Zhao et al.,
TREML2 was found to be significantly associated with prognosis and
was used along with five other genes to construct model equations for
AML risk assessment (Zhao et al., 2018). However, further experimental
studies are required to establish its detailed functional role in AML.

Further, the DHRGs were used for developing a consensus
model using multiple ML algorithms individually and in
combination. Out of more than 130 models tested by us, the
combination of Ridge and plsRcox resulted in highest accuracy
and were used for building the final model. While both these
algorithms have been used for cancer research, particularly for
predicting therapy response, prognosis and identifying novel gene
signatures, the usage of Ridge has been more common for AML
(White et al., 2021; Tang et al., 2022; Wei et al., 2022; Chen et al.,
2023; Liu et al., 2022). When using ML for predicting the important
prognostic genes for AML, TREML2 was one of the top 6 with high
AUC of 0.9, further confirming its importance in hematological
malignancies. The other five significant prognostic genes with high
AUCs were DGAT1, RPL3L, CSTB, AK1, and PRDX5. DGAT1
(DiacylGlycerol O-AcylTransferase 1) encodes a multipass
transmembrane protein, which acts as a key metabolic enzyme
and has been explored in a few cancers including AML by a few
studies (He et al., 2021; Liu et al., 2022). A recent study
demonstrated the involvement of ROS/p38 MAPK/DGAT1
pathway in AML progression. The upregulation of DGAT1 due
to the synergistic effects of elevated reactive oxygen species levels
and activated p38MAPK signaling pathway promotes accumulation
of lipid droplets, eventually enhancing lipid peroxidation in AML
cells (Liu et al., 2022). The protein encoded by CSTB (Cystatin B)
functions as an intracellular thiol protease inhibitor. Honnemyr
et al., studied the constitutive protease release by human AML cells
and detected the release of CSTB for most patients (Honnemyr et al.,
2017). Furthermore, Aasebo et al., showed heterogeneity in the
intracellular and released levels of CSTB in AML patients (Aasebo
et al., 2018). PRDX2 (Peroxiredoxin 2) plays an antioxidant
protective role in cells and has been identified as a novel
potential tumor suppressor gene in AML. The expression of
PRDX2 at mRNA and protein level is reduced due to the
epigenetic modifications in its promoter region (Agrawal-Singh
et al., 2012). RPL3L (Ribosomal Protein L3 Like) has also been
reported as an epigenetically silenced tumor suppressor in
endometrial cancer (Takai et al., 2005), however its function in
AML is yet to be explored. Thus, the genes identified in the current
study might pave way for the development of novel diagnostic and
treatment strategies for AML or other hematological malignancies.
Furthermore, the ML approaches that have been used by us for
identifying the high-risk genes could also be employed for
identifying similar candidates for other patho-physiological
conditions. In addition, we have shown that the combination of
ML algorithms could predict better candidates than using them
individually. This method of combining ML algorithms for
identifying prognostic genes provides the advantages of both
algorithms, while complementing the limitations of one another,
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and thus can be used for improving patient outcomes. Furthermore,
the prognostic models can be standardized for specific group of
patients using their gene expression patterns and can be used for
discovering candidate/prognostic genes specific to a subgroup of
patients. There have been several reports promoting the use of AI-
ML techniques in personalized medicine (Schork, 2019; Peng et al.,
2021; Sebastiani et al., 2022). Thus, our study could aid in
personalized medicine of hematological malignancies.

Immune infiltration and correlation analysis indicated
differences in the immune cell abundance between high and low-
risk AML groups that were predicted based on the expression
pattern of DHRGs. Our results indicated that the correlations of
the DHRGs with immune cell abundances vary between high- and
low-risk AML groups. SH3TC1 is one such gene that was
significantly positively correlated with monocytes and negatively
correlated with mast cells in the low-risk group, whereas no such
correlations were observed in the high-risk group. A study by Langer
et al., found that SH3TC1 interacts with MN1, a gene of prognostic
significance for AML (Langer et al., 2009). However, we could not
find studies focusing on this gene in the context of AML, thus
making this a suitable candidate for further exploration. Some of the
other interesting genes potentially differentiating immune cell
infiltration between high- and low-risk groups include ANXA4,
HLX, IL6R, HIP1, CSTB, SLA, and TREML2.

The miRNA-DHRG interaction analysis identified several
miRNAs negatively regulating the mRNA expression of DHRGs
in AML. The hsa-mir-181 miRNA family (i.e., hsa-mir-181a-2, hsa-
mir-181d) was found to be important and affected the expression of
DHRGs in AML patients as well as in the high- and low-risk groups.
The miR-181 family has been identified as a high-risk factor in head
and neck cancers and could distinguish the malignant tumor from
normal samples (Nurul-Syakima et al., 2011). This miRNA family
has also been implicated in regulating the differentiation of B and
T cells, natural killer cells during normal hematopoiesis and has
been linked to the pathophysiology and prognosis of AML (Su et al.,
2015; Weng et al., 2015; Huang et al., 2016; Gao et al., 2018).
According to a study by Gao et al., hsa-mir-181a-2 was predicted to
significantly affect the survival time of AML patients (Gao et al.,
2018). Both mir-181d and mir-181a have been reported to
downregulate the expression of PRKCD, CTDSPL and CAMKK1
in AML patients by Su and his colleagues (Su et al., 2015).
Furthermore, inhibition of the expression of the miR-181 family
partially reversed myeloid differentiation blockage not only in AML
bone marrow (BM) blasts but also in a mouse model of AML (Su
et al., 2015).

When we looked at the hallmark pathways that were enriched in
AML risk groups, adipogenesis was found to be the most enriched
pathway in the high-risk group. A recent study by Azadniv et al.
(2020) compared bone marrow mesenchymal stromal cells (MSCs)
from normal donor and AML patients and found that MSCs derived
from AML patients have higher adipogenic potential and may
impact the survival of leukemia progenitor cells. Furthermore,
using in vitro and in vivo models, Zhang et al. (2022) discovered
that AML-derived exosomes may in turn be partially responsible for
the reprogramming of MSCs, resulting in their differentiation to
adipocytes, through a metabolic shift from glycolysis to oxidative
phosphorylation, indicating the existence of a complex interaction of
leukemia cells with their microenvironment. Chemotherapy

treatment has been shown to reduce the adipocyte content in
AML patients, possibly by promoting the overexpression and
secretion of GDF15 from bone marrow mononuclear cells (Liu
et al., 2018). These studies strongly support the enrichment of
adipogenesis in the high-risk AML group by our DHRGs and
their interactions with the immune cells. When the relationship
between the drugs and immune cells was investigated by us, we
found that a considerable number of drugs positively regulate that
infiltration of monocytes in both high- and low-risk AML groups.

Using ML algorithms, we identified top 5 drugs, including
carboplatin (also known as cisplatin) and austocystin-D that may
significantly affect the DHRGs in AML. Carboplatin, an FDA
approved drug, is used for the treatment of various cancers and
has also been effective against AML. A clinical trial by Bassan et al.
(1998) showed that combination of carboplatin, granulocyte colony-
stimulating factor, high-dose cytarabine on alternate days and
mitoxantrone/idarubicin is well tolerated, and exerted a
significant activity in high-risk AML (Bassan et al., 1998).
Austocystin D is an organic heteropentacyclic compound isolated
from Aspergillus and Aspergillus ustus and possesses cytotoxic and
anti-tumor activity through its selective activation by cytochrome
P450 enzymes, leading to the induction of DNA damage (Marks
et al., 2011). Another study evaluated the anti-tumor activity of
austocystin-D-loaded liposomes (AD-Ls) and suggested that AD-Ls
increase the cure efficiency and decrease the side effects on other
tissues as shown in animal models of liver cancer (Li et al., 2013a).
Cui et al., identified TLN1 as a poor-prognostic biomarker in AML
and showed that this gene may be related to the resistance of
austocystin-D and few other drugs in AML cells (Cui et al.,
2022). The other top drugs that were identified include SB-
525334, BRD-K34099515, BRD-A02303741, and BRD4132. SB-
525334 (6-[2-tert-butyl-5-(6-methyl-pyridin-2-yl)-1H-imidazol-4-
yl]-quinoxaline) has been identified as a selective inhibitor of the
transforming growth factor-beta1 (TGFβ1) receptor (Grygielko
et al., 2005). Heo et al. (2021) showed that SB525334 effectively
attenuates TGF-β1-induced epithelial to mesenchymal transition
(EMT) in human peritoneal mesothelial cells. However, its effect on
AML is yet to be studied. Similarly, the function of the other top
drugs remains to be investigated in the context of AML. The
molecular docking analysis revealed interaction of methotrexate
with important DHRGs, including CCND3, CSTB, and DDIT4,
RPL3L and DGAT1. Methotrexate is an FDA approved drug that
is used for treating severe psoriasis, rheumatoid arthritis, and certain
types of cancers including leukemia and lymphoma (Weinblatt et al.,
2013). The interactions of multiple DHRGs with methotrexate
further supports the key roles of these genes in AML related
pathophysiology. Vandetanib is a tyrosine kinase inhibitor that
acts against several pathways implicated in malignancy
(Carlomagno et al., 2002; Hennequin et al., 2002). Macy et al.,
have demonstrated that vandetanib mediates anti-leukemia activity
via multiple mechanisms and interacts synergistically with DNA
damaging agents (Macy et al., 2012). Silmitasertib, a casein kinase 2
(CK2) inhibitor has been demonstrated as a drug for the treatment
of human hematological malignancies (Chon et al., 2015). It is
interesting to note that silmitasertib was the first drug that entered
into clinical trials for the treatment of both hematological
malignancies and solid tumors (D’Amore et al., 2020). Erlotinib
has been shown to be effective against FLT3-ITD mutant AML and
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has the ability to overcome intratumoral heterogeneity via targeting
FLT3 and Lyn (Cao et al., 2020). A pilot phase II study by Abou
Dalle et al. (2018) has however shown that as a single agent it has
limited clinical efficacy in patients with relapsed/refractory AML.
Erismodegib is under clinical trials for patients with AML, in
combination with other chemotherapies (Yu et al., 2020). It has
been shown to target the Hedgehog signaling pathway (Tibes et al.,
2015). Myricetin is a polyhydroxy flavonol found in a several types
of plants and plays a significant role in cancer prevention via
inhibiting the inflammatory markers, such as inducible nitric
oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) (Rahmani
et al., 2023). Moreover, myricetin increases the chemotherapeutic
potential of other anticancer drugs through modulation of cell
signaling activities (Rahmani et al., 2023).

The current study used extensive bioinformatics along with 11 ML
algorithms to identify the hub genes in AML and predict their
prognostic value. However, there are a few limitations. In the
current study, we tested a total of 137ML models by using pair-
wise combinations to predict the prognostic value of the identified
candidates and found the combination of Ridge and plsRcox to be the
best model. However, the predictive ability of this combination needs to
be validated with larger number of datasets as well as in other subtypes
of leukemia/AML or disease conditions. Additionally, knock-in/-out
animal models can be used to confirm the findings of the current study
and annotate the functional significance of the candidate genes.
Furthermore, the generalizability of the findings across diverse
populations may need to be investigated in future, owing to the lack
of population specific AML cohorts. Furthermore, it is possible that the
sample heterogeneity may potentially impact the model predictions,
which could be assessed in future studies.

Conclusion

The current study used ML algorithms and various
bioinformatics approaches to identify high-risk genes associated
with AML (DHRGs). The expression pattern of DHRGs was able to
successfully classify the AML samples into high- and low-risk
groups. Genetic and epigenetic alterations helped in gaining
better understanding of their regulation. Immune infiltration and
survival analysis demonstrated the significance of DHRGs as
prognostic indicators. Drug sensitivity and molecular docking
studies revealed drugs with potential effect and genes that could
be used a therapeutic drug target for inhibiting the growth and
progression of AML. Further studies including experimental
validations are required to select a few important candidates for
detailed study of their functional roles in AML pathophysiology.
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