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Background: The association between the administration of sodium–glucose
cotransporter 2 inhibitors (SGLT2is) during acute kidney injury (AKI) and the
incidence of major adverse kidney events (MAKEs) is not known.

Methods: This retrospective cohort study included patients with AKI
and compared the outcomes for those who were treated with SGLT2is
during hospitalization and those without SGLT2i treatment. The
associations of SGLT2i use with MAKEs at 10 and 30–90 days, each
individual MAKE component, and the pre-specified patient subgroups
were analyzed.

Results: From 2021 to 2023, 374 patients were included in the
study—316 without SGLT2i use and 58 with SGLT2i use. Patients who were
treated with SGLT2is were older; had a greater prevalence of diabetes,
hypertension, chronic heart failure, and chronic kidney disease; required
hemodialysis less often; and presented stage 3 AKI less frequently than those
who were not treated with SGLT2is. Logistic regression analysis with nearest-
neighbor matching revealed that SGLT2i use was not associated with the risk
of MAKE10 (OR 1.08 [0.45–2.56]) or with MAKE30–90 (OR 0.76 [0.42–1.36]).
For death, the stepwise approach demonstrated that SGLT2i use was
associated with a reduced risk (OR 0.08; 0.01–0.64), and no effect was
found for kidney replacement therapy (KRT). The subgroups of patients
who experienced a reduction in the risk of MAKEs in patients with AKI
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treated with SGLT2is were those older than 61 years, those with an eGFR >81,
and those without a history of hypertension or DM (p ≤ 0.05 for all).

Conclusion: The use of SGLT2is during AKI had no effect on short- or medium-
term MAKEs, but some subgroups of patients may have experienced benefits from
SGLT2i treatment.

KEYWORDS

acute kidney injury, sodium–glucose transporter type 2 inhibitor, major adverse kidney
events, death, kidney replacement therapy

Highlights

• Sodium–glucose cotransporter 2 inhibitors (SGLT2is) have
revolutionized the treatment of chronic kidney disease (CKD).

• Their proven beneficial effects could improve renal function
when administered during an AKI event.

• It would be very useful to know whether SGLT2is have some
positive effects in patients with AKI.

GRAPHICAL ABSTRACT
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• In this cohort of patients who were hospitalized with AKI,
we observed that the use of SGLT2is during this period had
no short- or medium-term effects on MAKEs but may be
beneficial for some subgroups.

• The results may lead to a clinical trial in which patients with
AKI are randomized to receive SGLT2is or placebo while
monitoring medium-term MAKEs as the primary objective.

Introduction

Sodium–glucose cotransporter 2 inhibitors (SGLT2is)
have changed the treatment of chronic kidney disease (CKD)
and have become one of the most relevant findings in the field of
nephrology (Wright, 2021). Over the last decade, SGLT2is have
been shown to reduce major kidney events (MAKEs) by 40% in
people with or without diabetes (Kanda and Nangaku, 2019;
Suzuki et al., 2022). Whether this benefit can be extended to
other more specific kidney conditions, such as kidney
transplantation (Pham and Pham, 2022), glomerular diseases
such as IgA nephropathy, focal and segmental glomerulopathy
(Morales and Galindo, 2022), acute cardiorenal syndrome
(Schulze et al., 2022; Voors et al., 2022), or unusual
pathologies such as Alport syndrome (Ge et al., 2023), and
even to people on dialysis (Alhwiesh et al., 2022; De La Flor
et al., 2023), is currently being explored. In specific scenarios,
such as hospitalized critically ill patients or those with acute
kidney injury (AKI), the nephrology community has been more
cautious because SGLT2is are considered “sick day”
drugs (Watson et al., 2023), which means that during critical
illness or AKI, SGLT2is should not be administered or need to be
suspended due to the reasonable risk of non-hyperglycemic
ketoacidosis (Palmer and Clegg, 2021). Whether to suspend,
continue, or start SGLT2is during AKI treatment has become an
increasingly common question in daily clinical practice since
patients who are usually treated with SGLT2is have a greater risk
of developing AKI due to comorbidities such as diabetes or heart
failure (Sawhney et al., 2020; Xu et al., 2020). AKI
occurs frequently during hospitalization and occurs in up to
23% of critically ill patients, approximately 10% of whom
require kidney replacement therapy (KRT), and
approximately 50% of patients die during follow-up (Chávez-
Íñiguez and Madero, 2022). Until now, there have been no
specific treatments available for recovering kidney function
after an episode of AKI or for reducing the mortality risk
(Kashani et al., 2019). Prescribing SGLT2is during
hospitalization in patients with AKI may improve kidney
function through its mechanism of action, which, in
theory, could protect the nephron, attenuate insults (Dekkers
et al., 2018), and promote recovery (Castoldi et al., 2020; Bailey
et al., 2022). Hence, there may be an association between the
administration of SGLT2is during AKI and the incidence of
MAKEs in the short and intermediate term. To fill this
information gap, we conducted a retrospective cohort
study comprising patients hospitalized with AKI
who received SGLT2i treatment during their
hospitalization to observe whether this treatment was
associated with MAKEs.

Methods

Study design

This was a retrospective cohort study conducted at the Hospital
Civil de Guadalajara Fray Antonio Alcalde, a tertiary referral
academic center located in Mexico. All the patients included had
AKI, received at least three consecutive doses of SGLT2is during
hospitalization, and had sufficient data to analyze the MAKEs. In
Mexico, there are only three SGLT2is available: dapagliflozin,
empagliflozin, and canagliflozin, and patients treated with any of
them were classified into the SGLT2i group. The SGLT2i
administration data were collected by a physician who specifically
looked for the prescription. AKI was diagnosed using the serum
creatinine (sCr) KDIGO criteria, and CKD was defined as an
estimated glomerular filtration rate (eGFR) of less than 60 mL/
min/1.73 m2 for more than 3 months (Kellum et al., 2012). For AKI
events, we chose only those patients who consulted the nephrology
department. We selected the MAKE outcomes because of the
recommendation to assess homogeneous results in studies
conducted on AKI patients (Billings and Shaw, 2014). MAKEs
were defined as death, a new requirement for dialysis, or
worsening of kidney function by a ≥25% decline in the eGFR
from baseline. We chose the MAKE10 criteria (i.e., the incidence
of MAKEs within 10 days of follow-up) because most AKI patients
start KRT and/or die during this timeframe (Kellum et al., 2012).
Finally, for a total follow-up, we assessed MAKEs over 30–90 days
(MAKE30–90) after the index event day (AKI hospitalization with
or without SGLT2i). The patients included in the study had baseline
sCr levels defined as the most recent sCr value in the last 6 months
prior to hospitalization, and those who had sCr levels in the
following months were included in the corresponding MAKE
analyses. The exclusion criteria were AKI 3 months before
hospitalization, CKD grade 5, chronic dialysis, hospital stay less
than 48 h, kidney transplant, pregnancy, and missing data that
would render the analysis incomplete.

The study was approved by the Hospital Civil de Guadalajara
Fray Antonio Alcalde Institutional Review Board (HCG/CEI-0550/
15) and was conducted in accordance with the Declaration of
Helsinki. Informed consent was waived for the study. The study
protocol adhered to the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) guidelines (von
Elm et al., 2009) and the REporting of studies Conducted using
Observational Routinely collected health Data (RECORD)
statement (Benchimol et al., 2015).

Data collection

Clinical characteristics, demographic information, and
laboratory data were collected prospectively via automated
retrieval from the institutional electronic medical record system.
The baseline sCr level was defined as the most recent value within
the 6 months prior to admission. Contributing factors of AKI
include nephrotoxic drugs such as aminoglycosides, NSAIDs,
vancomycin, and amphotericin B, as well as shock
(administration of vasopressors for a mean arterial
pressure <65 mmHg). We re-collected biochemical data such as
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the levels of hemoglobin, platelets, leukocytes, glucose, urea, sCr,
sodium, potassium, chloride, phosphate, and calcium. The
indications for KRT included fluid overload resistance to
diuretics, severe hyperkalemia, severe metabolic acidosis, and
uremic manifestations such as encephalopathy, pericarditis, and
seizures (Kellum et al., 2012), (Negi et al., 2016), (Leaf and
Waikar, 2019).

Study outcomes and objectives

The purpose of this study was to investigate the association
between the use of SGLT2is during an episode of AKI and MAKEs
during a medium-term follow-up.

The primary objective was the risk of MAKEs during the first
10 days of follow-up (MAKE10). The secondary objectives were each
individual MAKE contributor, such as KRT or death, and MAKEs
during the medium follow-up period of 30–90 days (MAKE30–90).
In addition, a stratification analysis for outcomes across different
subgroups was performed, with a separate analysis for the diagnosis
of DM, chronic heart failure (CHF), SAH, those with an
eGFR >81 mL/min/1.73 m2, and age. These subgroups were
considered since we believe that these variables, considered
healthy patients, could influence this relationship. A search was
carried out in the electronic record for the diagnosis of ketosis or
ketoacidosis, trying to identify if SGLT2i consumption was
associated with these events.

Statistical analysis

The distribution of the quantitative variables was visually
examined by histograms, and the Kolmogorov‒Smirnov and
Shapiro‒Wilk tests were used to confirm their non-normal
distribution. Continuous variables are expressed as medians and
interquartile ranges, while categorical variables are expressed as
counts and proportions. Differences in categorical variables between
the SGLT2i and non-SGLT2i groups were analyzed using the χ2 test
or Fisher’s exact test, as appropriate. Continuous variables were
compared with the Wilcoxon rank test.

Logistic regression analysis was used to determine the risk of
MAKE10, MAKE30–90, and the initiation of KRT in three different
models. Model 1 was adjusted for variables with p < 0.1 in the
analysis of differences between groups in terms of baseline
characteristics and clinically relevant characteristics. For Model 2,
we used a forward stepwise analysis, including every variable from
the demographic characteristics and adding to the model those
variables with p < 0.1. In Model 3, we included those variables that
were statistically significant in both of the previously mentioned
models and locked SGLT2i use as a categorical independent variable.
The process was replicated for the primary outcome, MAKE10, and
for MAKE30–90. For death and initiation of KRT, only the stepwise
approach was used.

We estimated the average treatment effect by nearest-neighbor
matching. Nearest-neighbor matching estimators impute the
missing potential outcome for each subject using an average of
the outcomes of similar subjects who receive the other exposure
level. The similarity between the subjects was based on a weighted

function of the covariates for each observation that included
variables of Model 3 in logistic regression. The effects of SGLT2i
use were estimated for MAKE10, MAKE30–90, and death. A
stratification analysis with the calculation of odds ratios (ORs)
for outcomes across different subgroups was performed. p <
0.05 indicates statistical significance. The data were analyzed
using Stata version 16.1 (StataCorp, College Station, TX,
United States of America).

Results

From March 2021 to June 2023, 807 patients had AKI and were
referred to the nephrology department, and 378 patients were
excluded for a lack of information. Hence, 429 patients were
assessed as candidates for the study; 55 patients were excluded
because of a lack of data on any of the outcomes. Ultimately,
374 patients were included in the analysis—58 and 316 patients
with and without SGLT2i therapy, respectively. A flow chart of the
study population is shown in Figure 1.

Table 1 describes the demographic and clinical characteristics of
patients with AKI according to the use of SGLT2is. Significant
differences were found among these groups. Considering the most
relevant, we found that the patients who used SGLT2is, compared to
those who did not, were older (62 vs. 53 years); had a greater prevalence
of diabetes (58.6% vs. 29.7%), hypertension (70.6% vs. 32.3%),
hypothyroidism (8.6% vs. 2.5%), chronic heart failure (41.3% vs.
6.6%), CKD (55.1% vs. 19.6%), and ischemic heart disease (31% vs.
2.2%); and had a lower eGFR (46.2 vs. 90.8 mL/min/1.73 m2) (p for
all <0.05). Those who were treated with SGLT2is used diuretics more
frequently and used fewer vasopressors and antibiotics. Among the
most common etiologies of AKI, those who used SGLT2is had less
frequent diagnoses of sepsis, hypovolemia, obstructive nephropathy,
and, more commonly, cardiorenal syndrome. The SGLT2i group
needed hemodialysis less often during hospitalization. These patients
also presentedwith AKI stage 2 or 3 less frequently and had a 33% lower
mortality rate than the patients without SGLT2is. Mortality was
significantly lower in those who consumed SGLT2is (10% vs. 29%);
this statistical differencewas not observed in the frequency of presenting
WRF (87% vs. 79%) (Table 1).

Primary outcome: the association between
SGLT2i use during AKI and the risk
of MAKE10

MAKE10 was present in 78.6% of the total population and in
79.4% and 74.1% of patients without and with SGLT2is, respectively.
With the aim of exploring the relationship between patients who
have AKI and are treated with SGLT2is during hospitalization with
MAKE10, a multiple-variable logistic regression was performed. In
Model 1, a manual approach revealed that only vasopressors were
associated with MAKE10, with an OR of 2.28 (1.00–5.19). In Model
2, a stepwise approach showed that male sex (OR 0.21; 0.08–0.55)
and hypovolemia (OR 0.37; 0.14–0.96) attenuated the risk. In
contrast, a phosphate OR of 1.44 (1.13–1.83) and a serum
sodium OR of 1.07 (1.01–1.14) were associated with a greater
risk of MAKE10. Finally, in Model 3, logistic regression analysis
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revealed that SGLT2i use was not associated with the risk of
MAKE10 (OR 1.08 [0.45–2.56]), as reported in Table 2 and Figure 2.

Secondary outcomes: the association
between SGLT2i use during AKI and the risk
of MAKE30–90, death, and KRT

MAKE30–90 was present in 59.8% of the total population and in
61.3% and 51.7% of patients treated without and with SGLT2is,
respectively.

Table 3 and Figure 3 show the secondary objectives of the cohort.
According to the manual approach, SGLT2i treatment was associated
with a reduction in the risk of MAKE30–90 (OR 0.36; 0.135–0.972), an
effect that was lost in the final logistic regression model (Figure 3A).

For death, the stepwise approach demonstrated that the
variables associated with a reduced risk were the use of NSAIDs,
male sex, and the use of SGLT2is. Sodium and the use of
vasopressors were associated with an increased risk of death
(Table 3; Figure 3B). The stepwise approach was used to assess
the risk of KRT, and the variables associated with increased risk were
the use of vasopressors, creatinine, CKD, and heart rate. The data are
reported in Table 3 and Figure 3C.

Nearest-neighbor matching

Due to the great heterogeneity of the population of patients with
AKI who were treated with SGLT2is compared to those who were

not, an analysis of nearest-neighbor matching was performed to
assess the effect of SGLT2i use on MAKE10, MAKE30–90, and
death. We also used covariates for the included variables of Model
3 in logistic regression, with a nearest-neighbor ratio of 2:1. A
significant OR was observed for MAKE10 (OR 1.09, 1.00–1.19), and
no effect was found for MAKE30–90, death, or KRT (p = ≤ 0.05 for
all). A detailed description of the analysis is presented in Table 4.

Subgroup analysis for the risk of
MAKE10 and MAKE30–90 in patients with
AKI by SGLT2i treatment status

The subgroups associated with the risk of MAKE10 were those
without a history of diabetes, those >61 years old, and those who did
not have a diagnosis of hypertension (p ≤ 0.05 for all) (Figure 4A).
For the risk of MAKE30–90, we observed that patients with an
eGFR >81 benefited the most from receiving SGLT2is, with a risk
reduction of 66% (Figure 4B). No diagnoses of ketosis or
ketoacidosis were identified in the electronic database.

Discussion

In this retrospective cohort, we observed that in hospitalized
patients with AKI, SGLT2i treatment was not associated with the
risk of MAKE10 orMAKE30–90; however, it was revealed that some
specific subgroups may benefit from SGLT2i use
(Graphical Abstract).

FIGURE 1
Flow chart of the study population selection process.
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TABLE 1 Baseline clinical characteristics of AKI patients according to SGLT2i use.

Variable AKI without SGLT2i AKI with SGLT2i Total p-value

Demographic characteristics

N 316 58 374

Age [years], median (IQR) 53 (40–67) 62 (51–68) 55 (41–67) <0.01

Male sex [N (%)] 192 (60.7) 32 (55.1) 224 (59.8) 0.42

Body mass index 23 (20.7–25.3) 23.5 (21–27.4) 23 (20.76–25.3) 0.40

Systolic BP [N] 114 (100–130) 115 (102–135) 114 (100–130) 0.55

Diastolic BP [N] 69 (60–78) 70 (62–80) 69 (60–79) 0.14

Diabetes [N (%)] 94 (29.7) 34 (58.6) 128 (34.2) <0.01

Hypertension [N (%)] 102 (32.3) 41 (70.6) 143 (38.2) <0.01

Hypothyroidism [N (%)] 8 (2.5) 5 (8.6) 13 (3.48) 0.02

Chronic heart failure [N (%)] 21 (6.6) 24 (41.3) 45 (12) <0.01

Ischemic heart disease [N (%)] 7 (2.2) 18 (31) 25 (6.6) <0.01

Baseline eGFR, mL/min/1.73m2 90.8 (47.9–97) 46.2 (30.7–67.2) 81.7 (42.7–96.8) <0.01

Chronic kidney disease [N (%)] 62 (19.6) 32 (55.1) 94 (25.1) <0.01

Sepsis [N (%)] 146 (46.2) 10 (17.2) 156 (41.7) <0.01

Hypovolemia [N (%)] 87 (27.5) 8 (13.7) 95 (25.4) 0.02

Cardiorenal syndrome [N (%)] 24 (7.5) 34 (58.6) 58 (15.5) <0.01

Nephrotoxic drugs [N (%)] 9 (2.8) 1 (1.7) 10 (2.6) 0.62

Shock [N (%)] 39 (12.3) 5 (8.6) 44 (11.7) 0.41

Obstructive nephropathy [N (%)] 48 (15.1) 2 (3.4) 50 (13.3) 0.01

Hemoglobin, gr/L, mean 9.81 (8.08–11.82) 10.52 (8–13.04) 9.86 (8.01–12.11) 0.30

Platelets, mean 171 (100–270) 196 (136–276) 179 (103–271) 0.17

Leucocytes, mean 13.1 (9.2–18.6) 10.15 (7.64–14.5) 12.6 (8.83–18.42) 0.01

Glucose, mg/dL, mean 114 (86–150) 106.5 (81–146) 114 (85–149) 0.20

Urea, mg/dL, mean 162 (112–223) 159.5 (119–210) 161.5 (115.6–221) 0.88

Creatinine, mg/dL 3.8 (2.4–5.7) 3.5 (2.5–5.8) 3.8 (2.4–5.78) 0.73

Sodium, mmol/L, mean 136 (131.140) 134 (131–137) 136 (131–140) 0.06

Potassium mmol/L, mean 4.7 (4.07–5.5) 4.63 (4.12–5.57) 4.7 (4.1–5.5) 0.75

NSAIDs [N (%)] 113 (35.7) 16 (27.5) 129 (34.4) 0.22

Antibiotics [N (%)] 253 (80) 27 (46.5) 280 (74.8) <0.01

Antihypertensives [N (%)] 79 (25) 43 (74) 122 (32.6) <0.01

Diuretics [N (%)] 113 (35.7) 39 (67.2) 152 (40.6) <0.01

Vasopressor use [N (%)] 108 (34.18) 8 (13.7) 116 (31) <0.01

Statins [N (%)] 30 (9.4) 37 (63.7) 67 (17.9) <0.01

Acetylsalicylic acid [N (%)] 18 (5.7) 25 (43.1) 43 (11.5) <0.01

Kidney replacement therapy

Hemodialysis [N (%)] 87 (27.5) 8 (13.9) 95 (25.4) 0.02

Hyperkalemia [N (%)] 50 (15.8) 4 (6.9) 54 (14.4) 0.07

(Continued on following page)
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Wedid not identify an immediate beneficial effect on the kidney for
those patients who were hospitalized with AKI and treated with
SGLT2is, as evaluated by MAKE10. These findings of no immediate
beneficial effect on kidney function are in line with those presented in
three cohorts, in which the effect of SGLT2is was explored during the
hospitalization of critically ill patients with vulnerable kidneys or AKI.
The first is the DARE-19 clinical trial, in which 1,250 hospitalized
patients with moderate COVID-19 were randomized to receive
dapagliflozin or placebo to determine the effects on a key secondary
kidney outcome (composite of AKI, KRT, or death), and they found no
benefit of SGLT2is (Heerspink et al., 2022). The second is a case-control
study of 90 patients with diabetes hospitalized in the intensive care unit
with an insulin pump. The patients who received empagliflozin did not
experience a change in kidney function during their stay (Mårtensson
et al., 2023). In the third case, in a cohort of patients with AKI,
356 patients with cardiorenal syndrome type 1 (74% had AKI stage
1) received SGLT2i treatment during hospitalization. There was no
improvement in kidney function recovery, but SGLT2i was associated
with a 55% reduction in the risk of death at the 30-day follow-up (Aklilu
et al., 2023). Our findings add to the aforementioned studies, where
SGLT2i treatment may be considered safe for patients at a high risk of
kidney injury or in those with AKI; SGLT2is do not cause further
deterioration of kidney function, and a positive effect may be found.
Notably, compared to those studies, our cohort included patients with
more comorbidities and variables associated with greater AKI severity,
and we included only patients with AKI; 31% had shock, 64% had AKI
stage 3, 25% started hemodialysis, and only 34% had diabetes, which
explains our high mortality rate of approximately 26%.

It is plausible and reasonable to speculate that SGLT2is may have a
positive effect on kidney function during an episode of AKI. There are

multiple possible explanations for this effect, and some of the most
studied mechanisms are the attenuation of the tubular hypoxic
environment (Sano and Goto, 2019), the generation of an adaptive
response to oxygen deprivation, the improved use of nutrients in
tubular cells (Sasako et al., 2021), and a decrease in inflammatory
factors such as KIM1 and IL-6 (Dekkers et al., 2018; Liu et al., 2021).
SGLT2is have demonstrated efficiency in different scenarios and kidney
pathologies that were unexpected, such as IgA nephropathy and focal
and segmental glomerulosclerosis (Morales and Galindo, 2022). During
AKI, these compounds exhibit renoprotective effects via enhanced
ketogenesis, particularly through the amelioration of pathologically
hyperactive mTORC1 signaling in damaged proximal tubular
epithelial cells (Tomita et al., 2020), improved oxidative stress,
fibrosis, and tubular atrophy (Packer, 2021). Through metabolomics,
some benefits have been observed, such as improvements in endothelial
function, energy metabolism, and mitochondrial function, and all of
these mechanisms could also have a profound positive impact on
kidney function (Mulder et al., 2020).

The expected decrease in the eGFR of approximately 5 mL/min/
1.73 m2 in the first 4 weeks after starting SGLT2is (Meraz-Munoz
et al., 2021) could be a reason for not starting SGLT2is in patients
with AKI, considering that this could limit kidney recovery;
however, in our study, we showed that this change does not
occur. During AKI, SGLT2is do not have any impact on the
recovery or deterioration of kidney function. Similarly to what
was reported in two other studies, SGLT2is seem to be safe, as
they do not cause new AKI episodes (Agarwal et al., 2022; Alkas
et al., 2023). These relatively neutral effects contrast with the benefits
reported by Pan et al. (2024), where patients with diabetes who
survived hospitalization with AKI and who were treated with

TABLE 1 (Continued) Baseline clinical characteristics of AKI patients according to SGLT2i use.

Variable AKI without SGLT2i AKI with SGLT2i Total p-value

Metabolic acidosis [N (%)] 48 (15.1) 4 (6.9) 52 (13.9) 0.09

Fluid overload [N (%)] 31 (9.8) 8 (13.7) 39 (10.4) 0.36

Uremic syndrome [N (%)] 50 (15.8) 8 (13.7) 58 (15.5) 0.69

Medical treatment

Fluid adjustment [N (%)] 197 (78.8) 42 (80.7) 239 (79.1) 0.75

Nephrotoxic withdrawal 22 (8.8) 1 (1.9) 23 (7.6) 0.08

Outcomes

KDIGO-1 [N (%)] 15 (4.7) 5 (8.6) 20 (5.3) <0.01

KDIGO-2 [N (%)] 35 (11) 3 (5.1) 38 (10.1)

KDIGO-3 [N (%)] 222 (70.2) 19 (32.7) 241 (64.4)

Acute-on-chronic kidney disease 44 (13.9) 31 (53.4) 75 (20)

MAKEs at 10 days 251 (79.4) 43 (74.1) 294 (78.6) 0.36

MAKEs at 30–90 days 194 (61.3) 30 (51.7) 224 (59.8) 0.16

KRT at 10 days 120 (37.9) 15 (25.8) 135 (36.1) 0.07

Mortality at 10 days [N (%)] 94 (29.7) 6 (10.3) 100 (26.7) <0.01

WRF 277 (87.6) 46 (79.3) 323 (86.3) 0.08

Data are presented in median (IQR) or proportion (%).

Abbreviations: CRRT, continuous renal replacement therapy; MAKE, major adverse kidney event; KRT, kidney replacement therapy; and WRF, worsening of renal function.
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SGLT2is in the first 90 days after being discharged had a reduction in
cardiorenal events and death.

Clinical trials of SGLT2is have consistently demonstrated an
approximately 25% reduction in the risk of developing AKI in
people with and without diabetes (Herrington et al., 2023), even
in four meta-analyses of clinical trials (Gilbert and Thorpe, 2019;
Menne et al., 2019; Zhao et al., 2020; Baigent, 2022). Additionally,
in a cohort of more than 104,000 patients, previous use of

SGLT2is also reduced the risk of starting KRT during AKI
(Chung et al., 2023).

We found an association between reducing the risk of death in
patients who were treated with SGLT2is. This result of the secondary
objective is relevant and important. Our finding is in line with what
was reported by Aklilu et al. (2023), who observed that patients with
AKI who were previously treated with SGLT2is had an adjusted
reduction of the risk of death (HR = 0.45, 95% CI = 0.23–0.87, p =

TABLE 2 Logistic regression analysis for the primary outcome.

MAKE10 OR LCI UCI P

Model 1
Manual approach

SGLT2i use 0.579 0.210 1.599 0.292

Age 1.008 0.986 1.029 0.458

Body mass index 0.890 0.925 1.040 0.923

Diabetes mellitus 0.764 0.338 1.730 0.520

Systemic hypertension 1.179 0.493 2.819 0.711

Hypothyroidism 2.535 0.265 24.252 0.419

Congestive heart failure 0.734 0.254 2.124 0.569

Chronic kidney disease 0.898 0.377 2.135 0.808

Ischemic heart disease 0.616 0.141 2.692 0.520

Glomerular filtration rate 1.008 0.996 1.020 0.163

Use of antihypertensive 1.822 0.787 4.213 0.161

Use of diuretic 1.801 0.866 3.741 0.115

Vasopressor use 2.288 1.008 5.193 0.048

Sepsis 0.951 0.469 1.930 0.891

Hypovolemia 0.769 0.371 1.592 0.480

Model 2
Stepwise approach

Male sex 0.211 0.080 0.559 0.002

Phosphate 1.440 1.131 1.833 0.003

Sodium 1.078 1.014 1.145 0.015

Hypovolemia 0.371 0.142 0.969 0.043

Antibiotic adjustment 3.078 0.952 9,946 0.060

Model 3
Final logistic regression model

SGLT2i use 1.081 0.456 2.563 0.859

Vasopressor use 1.791 0.779 4.115 0.170

Male sex 0.724 0.364 1.441 0.359

Phosphate 1.365 1.148 1.624 <0.001

Sodium 1.049 1.005 1.094 0.026

Hypovolemia 0.486 0.237 0.994 0.048

Antibiotic adjustment 1.475 0.625 3.480 0.375

Abbreviations: CRRT, continuous renal replacement therapy; MAKE, major adverse kidney event; KRT, kidney replacement therapy; and WRF, worsening of renal function.
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0.02), although the observed mortality risk reduction may be too
large to attribute to SGLT2i exposure alone, and confounding by
indication and baseline differences likely contributed to that finding.
Evidence from experimental studies could explain why SGLT2i
therapy can reduce the risk of death by rapidly improving
endothelial function (Chung et al., 2023) and reducing
myocardial oxidative stress-related injury and cardiac fibrosis
(Irace et al., 2018). We believe that the relationship between
mortality and the variables phosphate and vasopressors in AKI
reflects a worse clinical status rather than a direct interaction
with SGLT2is.

Because there were notable differences in the baseline
characteristics of the patients with AKI who received SGLT2is,
we performed nearest-neighbor matching to compare the groups
more fairly. Subsequently, we found a slight but clinically irrelevant
increase in the risk of MAKE10 in patients who used SGLT2is, but
there were no increased risks detected for any of the other criteria
considered.

We found certain subgroups of patients who may experience a
protective effect against MAKEs with the use of SGLT2is during an
episode of AKI, such as those without a history of hypertension or
diabetes and those with a better eGFR (p ≤ 0.05). These findings are
understandable since people considered to have better kidney function
(i.e., those without CKD, diabetes, or hypertension) prior to an episode
of AKI could have kidney tubules that are more amenable to SGLT2i
benefits (Irace et al., 2018) in addition to greater renal reserve
(Venkatachalam et al., 2015); therefore, SGLT2is may provide more
benefit for some patients with AKI than for others, as has been
demonstrated in meta-analyses of clinical trials (Kluger et al., 2019;
Neuen et al., 2019; McGuire et al., 2021).

It is important to emphasize that SGLT2is have not been validated
for use during an AKI episode, and caution should be taken in these
scenarios due to their potential complications and adverse events.

The limitations of our study lie in its nature; as a retrospective
cohort, we can demonstrate only associations and not causal
relationships. In addition, the sample size was relatively small.

FIGURE 2
Logistic regression analysis for MAKE10 in patients according to
the use or absence of SGLT2is.

TABLE 3 Logistic regression analysis for secondary outcomes.

MAKE30–90 OR LCI UCI P

Manual approach

SGLT2i use 0.363 0.135 0.972 0.044

Age 1.001 0.982 1.021 0.855

Body mass index 0.937 0.963 1.032 0.913

Diabetes mellitus 1.088 0.519 2.281 0.822

Systemic hypertension 0.543 0.246 1.200 0.132

Hypothyroidism 1.784 0.340 9.355 0.493

Congestive heart failure 1.024 0.366 2.868 0.963

Chronic kidney disease 1.313 0.577 2.986 0.516

Ischemic heart disease 0.503 0.114 2.213 0.364

Glomerular filtration rate 0.997 0.986 1.008 0.670

Use of antihypertensive 1.884 0.869 4.086 0.108

Use of diuretic 1.112 0.587 2.105 0.743

Vasopressor use 2.988 1.446 6.173 0.003

Sepsis 0.755 0.395 1.442 0.396

Hypovolemia 0.833 0.424 1.638 0.598

Stepwise approach

NSAIDs 0.262 0.116 0.590 0.001

Vasopressor use 5.850 1.970 17.370 0.001

Final logistic regression model

SGLT2i use 0.760 0.422 1.366 0.359

Vasopressor use 2.879 1.736 4.775 <0.001

NSAIDs 0.495 0.316 0.776 0.002

Death OR LCI UCI P

Stepwise approach

Sodium 1.096 1.028 1.168 0.005

NSAIDs 0.366 0.142 0.939 0.037

Vasopressor use 3.452 1.231 9.676 0.018

Male sex 0.124 0.028 0.545 0.006

SGLT2i use 0.081 0.010 0.642 0.017

Statin use 4.232 0.885 20.267 0.071

KRT OR LCI UCI P

Stepwise approach

Vasopressor use 16.697 4.824 57.788 <0.001

Creatinine 1.506 1.202 1.886 <0.001

Chronic kidney disease 4.914 1.476 16.355 0.009

Heart rate 1.031 1.004 1.058 0.021
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FIGURE 3
Logistic regression of the secondary endpoints: MAKE30–90 (A),
death (B), and KRT (C).

TABLE 4 Effect of SGLT2i use on outcomes determined by nearest-neighbor matching.

Outcome OR LIQR UIQR p

MAKE10 1.094498754 1.003324815 1.193957835 0.042

MAKE30–90 0.890561604 0.672957568 1.178529058 0.417

Death 0.870389906 0.662672353 1.143217437 0.318

KRT 1.069707664 0.805469453 1.42063066 0.642

Adjustment for covariates primary diagnosis, age, BMI, diabetes mellitus, hypertension, hypothyroidism, congestive heart failure, chronic kidney disease, ischemic coronary disease, and

vasopressor use.

FIGURE 4
Forest plot analysis of the risk of MAKE10 (A) and MAKE30–90 (B)
in patients in the SGLT2i subgroup.
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Patients withmultiple AKI etiologiesmay have differentmechanisms of
AKI initiation and recovery, which could affect the pathways targeted
by SGLT2is. The characteristics of our patients, who were mostly
critically ill patients with severe AKI, could limit the benefit of
SGLT2i treatment during AKI. We tried to minimize the effect of
baseline imbalance by adjusting for multiple potential confounders in
multivariable models and matching group analysis, although it is likely
that there are unmeasured baseline confounders contributing to an
overestimation of the mortality benefit. Because we did not obtain a
clear indication of the reason for the SGLT2i prescription, we could not
determine whether that reason impacted MAKEs; for example, if
SGLT2i therapy had been indicated during the decongestion of
congestive heart failure (Salah et al., 2022) or for the treatment of
hyperglycemia, the effect of that treatment on MAKEs may have
differed. We do not know if SGLT2is were prescribed after hospital
discharge, which could have impacted our secondary objectives. Finally,
adverse events resulting from SGLT2i use were not systematically
recorded; we reviewed the electronic records of patients who
received SGLT2is and did not find any record of diabetic
ketoacidosis (DKA) or ketosis. We believe that it is possible that
some of these diagnoses could have occurred during the
administration of SGLT2is, but their identification could have been
omitted due to the presence of metabolic acidosis that can
occur during AKI.

Our cohort study has several strengths, the first being that it is
the only one of its kind to have considered only patients with AKI
and to have monitored MAKEs during medium-term follow-up,
which are outcomes considered appropriate for the study of the
trajectory of AKI. A clinical trial is currently being carried out in
patients with AKI who are randomized to receive an SGLT2i or a
placebo to evaluate the transition to CKD (NCT05713851); these
findings will surely contribute to a better understanding of the effects
of this class of drugs in these highly vulnerable patients.

In conclusion, the use of SGLT2is during AKI had no effect on
MAKEs in the short or medium term but may be beneficial in some
patient subgroups. Our findings give rise to the design of a clinical
trial in which SGLT2is are administered during AKI to evaluate their
impact on MAKEs.
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