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Background: Ubiquitin-specific peptidases (USPs), also known as
deubiquitinating enzymes (DUBs), play a crucial role in maintaining cellular
homeostasis by selectively removing ubiquitin molecules from targeted
proteins. This process affects protein stability, subcellular localization, and
activity, thereby influencing processes such as DNA repair, cell cycle
regulation, and apoptosis. Abnormal USP activities have been linked to various
diseases, including cancer. Emerging evidence in lymphoma studies highlights
the significance of USPs in controlling signaling pathways related to cancer
initiation and progression and presents them as potential therapeutic targets.

Aim: This study aimed to elucidate the multifaceted roles of USPs in lymphoma.

Methods: This systematic review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Articles published in English up toMay 2023were retrieved from PubMed, Web of
Science, and Scopus. The inclusion criteria focused on studies investigating the
role of USPs in lymphoma cancer, involving human subjects or relevant
lymphoma cell lines, exploring molecular mechanisms and signaling pathways,
and assessing diagnostic or prognostic value.

Results: After the selection process, 23 studies were selected for analysis. USPs
were found to affect various aspects of lymphoma development and progression.
Specific USPs were identified with roles in cell-cycle regulation, apoptosis
modulation, drug resistance, DNA repair, and influence of key oncogenic
pathways, such as B cell receptor (BCR) signaling.

Conclusion: This systematic review underscores the emerging role of USPs in
lymphoma and their potential as therapeutic targets. Inhibitors of USPs, such as
USP14 inhibitors, show promise in overcoming drug resistance. The dynamic
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interplay betweenUSPs and lymphoma biology presents an exciting opportunity for
future research and the development of more effective treatments for patients with
lymphoma. Understanding the intricate functions of USPs in lymphoma offers new
insights into potential therapeutic strategies, emphasizing the significance of these
enzymes in the context of cancer biology.
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1 Introduction

Ubiquitin-specific peptidases (USPs), also known as
deubiquitins (DUBs), play an important role in maintaining
cellular homeostasis by selectively cleaving ubiquitin molecules
from targeted proteins. This deubiquitination process affects
protein stability, subcellular localization, and activity, allowing
complex cellular processes, such as deoxyribonucleic acid (DNA)
repair, cell-cycle regulation, resistance to infection, and apoptosis.
Given the diverse nature of these enzymes, it is not surprising that
their abnormal activities have been linked to many human diseases,
including cancer (Bhattacharya et al., 2020; Gatti et al., 2020; Qin
et al., 2022; Ramakrishna et al., 2015; Yuan et al., 2018).

In the field of lymphoma, emerging evidence indicates the
significant influence of USPs, which play important roles in the
cancer process. These enzymes control important signaling
pathways involved in the initiation and progression of
lymphoma, including the regulation of survival, growth, and
immunity. As researchers have uncovered the subtleties of these
interactions, USPs have emerged as promising therapeutic targets in
lymphoma (Hariri and St-Arnaud, 2021; Rojo-Arreola et al., 2020;
Shen et al., 2023).

The ubiquitin–protease system (UPS) is likely involved in
human brain development since a defect in the gene encoding
the E3 ligase E6-AP has been directly implicated in the cause of
Angelman syndrome. The UPS operates through several enzymatic
steps, including ubiquitin ligases that bind ubiquitin molecules to
target proteins and USPs that degrade the molecules and determine
the fate of the tagged proteins (Bachiller et al., 2020; Crawford and
Irvine, 2013; Lescouzeres and Bomont, 2020; Morrow et al., 2015;
Thapa et al., 2020; Yang et al., 2016).

USPs are part of the UPS and contribute to the balance between
protein synthesis and degradation. Disruption of this balance can
lead to abnormal or damaged cells, resulting in cancer and other
diseases. In lymphoma, disruption of the protein degradation
pathway can lead to uncontrolled cell proliferation, apoptosis
evasion, and a boost of the immune system (Crawford and
Irvine, 2013; Kukharsky et al., 2022; Liu et al., 2023; McKinnon
and Tabrizi, 2014).

The repertoire of deubiquitination enzymes is broad and
diverse, with more than 100 members having different
substrate specificities and cellular localizations. Various
enzymes have been implicated in the development of
lymphoma. For example, USP9X, a DUB known for its role in
DNA repair and cell cycle, is overexpressed in certain lymphoma
subtypes and contributes to cell survival and disease resistance.
Conversely, USP7, a key regulator of p53 stability, plays a role in
promoting lymphomagenesis through its ability to inhibit p53-

mediated apoptosis (Li et al., 2021; Li et al., 2022; Park et al., 2022;
Pawlak et al., 2021; Qi et al., 2020; Qian et al., 2015; Toloczko
et al., 2017; Wang et al., 2019; Zhan et al., 2017; Zhou et al., 2018).

Another member of the USP family, USP15, is indirectly
involved in nuclear factor kappa B (NF-κB) signaling. NF-κB is a
regulator of inflammation and the immune system and is often
dysregulated in lymphoma. USP15 potentiates key components of
the NF-κB pathway, leading to activation and subsequent
oncogenicity. These examples illustrate the subtle and complex
roles of deubiquitination enzymes in the development of
lymphoma biology (Zhang et al., 2015; Zhong et al., 2021; Zhou
et al., 2020).

Lymphomagenesis is a multifactorial process that is usually
driven by the activation of specific signals that promote the
growth and survival of cancer cells. USPs have emerged as
important regulators because of their ability to regulate the
stability and function of proteins involved in these pathways
(DeKroon et al., 2018; Jakos et al., 2020; Jiang and Cong, 2016).

One of the most studied pathways in lymphoma is the B-cell
receptor (BCR) signaling pathway. Dysfunction of this pathway can
lead to uncontrolled B-cell proliferation and lymphoma
development. Here, USPs such as OTU deubiquitinase (OTUB1)
and CYLD were identified as key regulators that exert their potential
by controlling the degradation of key signals in the BCR pathway.
For example, OTUB1 supports B-cell survival by stabilizing B-cell
lymphoma 6 (BCL6), a transcriptional repressor associated with
lymphomagenesis (De Santis et al., 2022; Jiao et al., 2020; Schneider
et al., 2016).

The interaction between ubiquitin-specific peptidases
and lymphoma provides an interesting explanation for the
development of the cancer microenvironment. This review assessed
the complex functions of UPS in signaling, protein stability, and
immune system regulation during lymphomagenesis.

2 Materials and methods

2.1 Data sources and search strategies

This study was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Moher et al., 2015). We have included
articles published in English until May 2023. Three databases,
namely, PubMed, Web of Science, and Scopus, were searched for
relevant studies. The exact search strategies used in this study
are presented in Table 1. EndNote version 21 was used to
manage and deduplicate the retrieved articles and the
screening process.
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2.2 Inclusion and exclusion criteria

The following inclusion and exclusion criteria were used to
select appropriate articles:

Inclusion criteria: 1) studies that investigated the role of USPs
in lymphoma cancer; 2) studies published in English; 3) original
articles; 4) studies focusing on human subjects or relevant
lymphoma cell lines; 5) articles that provide insights into the
involvement of USPs in the pathogenesis, progression,
diagnosis, prognosis, or treatment of lymphoma; 6) studies
that explore the molecular mechanisms or signaling pathways
associated with USPs in lymphoma; 7) articles that investigate
the potential of USPs as therapeutic targets in lymphoma; 8)
studies examining the diagnostic or prognostic value of USPs
in lymphoma.

Exclusion criteria: 1) studies not directly related to the role of
USPs in lymphoma cancer; 2) non-English publications; 3) non-
original articles such as review studies, conference abstracts,
editorials, or letters; 4) animal or in vitro studies not directly
applicable to lymphoma; 5) duplicate articles or studies with

insufficient data; 6) studies that primarily focus on other types of
cancer without substantial inclusion of lymphoma.

3 Results

3.1 Study selection

In total, 354 records were extracted from all databases (Figure 1
represents the study selection approach). After excluding duplicates,
non-original (including review articles, letters, and editorials), and
irrelevant articles, 23 studies were selected for an accurate evaluation
of the role of USPs in lymphoma cancer (Table 2).

3.1.1 USPs regulate cell cycle progression by
regulating cycle-related factors

USP2 stabilizes cyclin D1, which participates in homologous
recombination (HR)-mediated DNA repair. In numerous cell types,
it promotes cell-cycle progression from G1 to S. USP2 becomes
active or overexpressed in several cancers, such as mantle cell

TABLE 1 Queries used to systematically search the databases.

Database Search strategy

PubMed ((Lymphoma Cancer[Title/Abstract] OR lymphatic cancer[Title/Abstract] OR lymphoid neoplasm[Title/Abstract]
OR lymphoproliferative disorder[Title/Abstract] OR Hodgkin lymphoma[Title/Abstract] OR non-Hodgkin
lymphoma[Title/Abstract] OR b-cell lymphoma[Title/Abstract] OR t-cell lymphoma[Title/Abstract] OR diffuse
large b-cell lymphoma[Title/Abstract] OR follicular lymphoma[Title/Abstract] OR mantle cell lymphoma[Title/
Abstract] OR Burkitt lymphoma[Title/Abstract] OR primary mediastinal b-cell lymphoma[Title/Abstract] OR
anaplastic large cell lymphoma[Title/Abstract] OR cutaneous lymphoma[Title/Abstract] OR extra nodal lymphoma
[Title/Abstract] OR lymphomatous infiltration[Title/Abstract] OR lymphadenopathy[Title/Abstract] OR malignant
lymphoma[Title/Abstract] OR lymphoma subtypes[Title/Abstract]) OR (Lymphoma Cancer[MeSH Terms])) AND
(((((((((((((((Ubiquitin Specific Proteases[Title/Abstract]) OR (Ubiquitin-Specific Peptidase[Title/Abstract])) OR
(Peptidase, Ubiquitin-Specific[Title/Abstract])) OR (Ubiquitin Specific Peptidase[Title/Abstract])) OR (Ubiquitin-
Specific Peptidases[Title/Abstract])) OR (Peptidases, Ubiquitin-Specific[Title/Abstract])) OR (Ubiquitin Specific
Peptidases[Title/Abstract])) OR (Ubiquitin-Specific Protease[Title/Abstract])) OR (Protease, Ubiquitin-Specific
[Title/Abstract])) OR (Ubiquitin Specific Protease[Title/Abstract])) OR (Ubiquitin-Specific Protease Family[Title/
Abstract])) OR (Protease Family, Ubiquitin-Specific[Title/Abstract])) OR (Ubiquitin Specific Protease Family[Title/
Abstract])) OR ((Ubiquitin-Specific Peptidase[MeSH Terms]) OR (Ubiquitin Specific Proteases[MeSH Terms]))))

Scopus (TITLE-ABS-KEY ( lymphoma AND cancer) OR TITLE-ABS-KEY (lymphatic AND cancer) OR TITLE-ABS-KEY
(lymphoid AND neoplasm) OR TITLE-ABS-KEY (lymphoproliferative AND disorder) OR TITLE-ABS-KEY
(hodgkin AND lymphoma) OR TITLE-ABS-KEY (non-hodgkin AND lymphoma) OR TITLE-ABS-KEY (b-cell
AND lymphoma) OR TITLE-ABS-KEY (t-cell AND lymphoma) OR TITLE-ABS-KEY (diffuse AND large AND
b-cell AND lymphoma) OR TITLE-ABS-KEY (follicular AND lymphoma) OR TITLE-ABS-KEY (mantle AND cell
AND lymphoma[) OR TITLE-ABS-KEY (burkitt AND lymphoma) OR TITLE-ABS-KEY (primary AND
mediastinal AND b-cell AND lymphoma) OR TITLE-ABS-KEY (anaplastic AND large AND cell AND lymphoma)
OR TITLE-ABS-KEY (cutaneous AND lymphoma[) OR TITLE-ABS-KEY (extra AND nodal AND lymphoma) OR
TITLE-ABS-KEY (lymphomatous AND infiltration) OR TITLE-ABS-KEY (lymphadenopathy) OR TITLE-ABS-
KEY (malignant AND lymphoma) OR TITLE-ABS-KEY (lymphoma AND subtypes) ) AND (( TITLE-ABS-KEY (
ubiquitin AND specific AND proteases) OR TITLE-ABS-KEY (ubiquitin-specific AND peptidase) OR TITLE-ABS-
KEY (peptidase, AND ubiquitin-specific) OR TITLE-ABS-KEY (ubiquitin AND specific AND peptidase) OR TITLE-
ABS-KEY (ubiquitin-specific AND peptidases) OR TITLE-ABS-KEY (peptidases, AND ubiquitin-specific) OR
TITLE-ABS-KEY (ubiquitin AND specific AND peptidases) OR TITLE-ABS-KEY (ubiquitin-specific AND protease)
OR TITLE-ABS-KEY (protease, AND ubiquitin-specific) OR TITLE-ABS-KEY (ubiquitin AND specific AND
protease) OR TITLE-ABS-KEY (ubiquitin-specific AND protease AND family) OR TITLE-ABS-KEY (protease AND
family, AND ubiquitin-specific) OR TITLE-ABS-KEY (ubiquitin AND specific AND protease AND family) ))

Web of Science (Lymphoma Cancer) OR (lymphatic cancer) OR (lymphoid neoplasm) OR (lymphoproliferative disorder) OR
(Hodgkin lymphoma) OR (non-Hodgkin lymphoma) OR (b-cell lymphoma) OR (t-cell lymphoma) OR (diffuse large
b-cell lymphoma) OR (follicular lymphoma) OR (mantle cell lymphoma) OR (Burkitt lymphoma) OR (primary
mediastinal b-cell lymphoma) OR (anaplastic large cell lymphoma) OR (cutaneous lymphoma) OR (extranodal
lymphoma) OR (lymphomatous infiltration) OR (lymphadenopathy) OR (malignant lymphoma) OR (lymphoma
subtypes) (Topic) AND (Ubiquitin Specific Proteases) OR (Ubiquitin-Specific Peptidase) OR (Peptidase, Ubiquitin-
Specific) OR (Ubiquitin Specific Peptidase) OR (Ubiquitin-Specific Peptidases) OR (Peptidases, Ubiquitin-Specific)
OR (Ubiquitin Specific Peptidases) OR (Ubiquitin-Specific Protease) OR (Protease, Ubiquitin-Specific) OR
(Ubiquitin Specific Protease) OR (Ubiquitin-Specific Protease Family) OR (Protease Family, Ubiquitin-Specific) OR
(Ubiquitin Specific Protease Family) (Topic)
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lymphoma, a subtype of non-Hodgkin’s lymphoma. It has been
demonstrated that ML364 (small-molecule USP2 and
USP8 inhibitor) induces cell-cycle arrest through cyclin
D1 degradation by inhibiting USP2.

In CD4+ T cells, USP12 stabilizes B-cell lymphoma/leukemia 10
(BCL10), leading to the activation of the NF-κB signaling pathway.
USP12 plays an important role in the differentiation, activation, and
proliferation of the CD4+ T cell phenotype, but it is not observed in
CD8+ T cells. According to a recent study, USP12 plays a critical role
in prostate cancer through deubiquitination of androgen receptors
to increase Ak strain transforming (AKT) signaling. Knockdown of
USP12 in HeLa cells leads to cell-cycle arrest and reduced
transcription of BMI-1, c-Myc, and cyclin D2; therefore,
USP12 may adjust cell-cycle progression (Fu et al., 2021).

USP44 is a significant regulator of the cell cycle, DNA repair, and
gene expression. USP44 deficiency in the Emu-Myc mouse B-cell
lymphoma model causes early lethality (Lin et al., 2019).

3.1.2 The role of USPs in apoptosis
Several key factors have been recognized to play important roles

in apoptosis, one of the most important being the tumor suppressor
gene p53, and its activity inhibits the generation of tumors. USP2 is
described as an oncogene due to its capability to inhibit apoptosis.
USP2a has been investigated in numerous cancers, and it has been
revealed that higher expression of USP2a is related to advanced
stages. In advanced cutaneous T-cell lymphoma (CTCL), the
expression of USP2a was lower than that of normal
T-lymphocytes, suggesting that it is a tumor suppressor in CTCL,
unlike in solid cancers. Wei et al. demonstrated that the knockdown
of USP2 causes increased apoptosis after PUVA treatment in MyLa
2000, suggesting that USP2 can display therapeutic resistance. They
showed that p53 activation can promote USP2 induction. They also
illustrated that USP2 stabilized mouse double minute 2 homolog

(Mdm2), but more evidence is needed to link USP2 deubiquitinase
activity with Mdm2-p53 signaling. They also explained that
USP2 may play an anti-apoptotic role in CTCL and exert a
reverse effect in PUVA (Wei et al., 2016).

Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses a
series of open reading frames (ORFs) to prevent premature
apoptosis and support its viability. Considering that USP7 is a
p53 deubiquitinase, KSHV ORF45 inhibits the interactions
between USP7 and p53 by binding to p53. As a result, the
accumulation and localization of p53 decrease in the cytoplasm,
and its transcriptional function decreases.

Under normal circumstances, USP7 binds to human double
minute 2 (HDM2) via the death domain-associated protein death-
associated protein 6 (DAXX), which prevents the self-ubiquitination
of HDM2 and causes the degradation of p53 by
HDM2 accumulation. However, in the context of DNA damage,
HDM2 dissociates from the USP7–DAXX complex, resulting in self-
ubiquitination and subsequent degradation of HDM2, and then
USP7 binds to p53 (Alzhanova et al., 2021). USP15 stabilizes
MDM2 and regulates p53 function, thus boosting tumor cell
survival (Qu et al., 2018).

Based on a recent experiment, USP9X overexpression was found
associated with diffuse large B-cell lymphoma (DLBCL)
development and progression. USP9X expression was four times
greater in malignant cells, including Farage and Pfeiffer cells, than in
normal B cells. Inhibition of this USP using siRNA downregulates
the expression of Mcl-1 and upregulates the expression of caspase-3,
Bak, and cytochrome C; therefore, knockdown of USP9X induces
cell apoptosis and decreases cell proliferation in DLBCL (Peng
et al., 2020).

Furthermore, USP9X upregulation plays a key role in the
formation of mantle cell lymphoma (MCL) via different
pathways, including enhanced cell proliferation and cell cycle,

FIGURE 1
Flowchart of the study selection procedure. The flow diagram was made based on the PRISMA guidelines.

Frontiers in Pharmacology frontiersin.org04

Samareh Salavatipour et al. 10.3389/fphar.2024.1356634

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1356634


TABLE 2 Summary of the data extracted from the articles included in this study.

No. Author(year) Gene
symbol

Role, function, and
remarks

Cellular
location

Target Inhibitor References

1 Alzhanova D
(2021)

USP7 p53 deubiquitination,
regulation of

p53 accumulation,
localization of p53 to the
cytoplasm, its diminished
transcriptional activity, and

ORF45-USP7
protein–protein interaction.

Cytoplasm p53 ORF45 Alzhanova et al.
(2021)

2 Chappell DL
(2023)

USP9X Potential interactor of vPK
(viral protein kinase),
regulation of viral

reactivation and infectious
virion production, and
regulation of viral kinase

activity.

N/A vPK N/A Chappell et al.
(2023)

3 Davis MI (2016) USP2 Cell cycle, DNA repair, and
tumor cell growth. Induction
of growth arrest in cells. HR-

mediated DNA repair.

N/A Cyclin D1 ML364 Davis et al. (2016)

4 Delforoush M
(2016)

USP14 New targets for proteasome
inhibitors in DLBCL.

Cytoplasm N/A N/A Delforoush et al.
(2017)

5 Zhao C (2021) USP18 Key immune gene in EN
DLBCL, modulation of the
MAPK pathway, activation
of dendritic cells (aDCs),

modulation of DC-mediated
immune responses,

development of EN DLBCL,
correlation with the top three
immune gene sets, type I IFN
response, and regulatory

T cells (Tregs).

N/A MAPK N/A Zhao et al. (2021)

6 Wu YY (2022) USP7 Drastic effect on ABC-
DLBCL, but not GCB-

DLBCL cells. Regulation of
BCR-signaling. Stabilization

of WDR5 and MLL2.

N/A BCR signaling (MYC
and IRF4)

N/A Wu et al., 2022b

8 Ruf IK (2009) UBP43
(USP18)

Regulation of interferon
signaling, regulator of IFN-α,
and STAT phosphorylation.

N/A ISG15, STAT1, and
IFN-α.

N/A Ruf et al. (2009)

9 Robinson JE (2020) USP24 SMZL pathogenesis,
diagnosis, and staging of

SMZL.

N/A N/A N/A Robinson et al.
(2020)

10 Peng W (2020) USP9X Regulation of Mcl-1,
caspase-3, Bak, and

cytochrome C activity. Cell
proliferation, apoptosis,

progression, and
development of DLBCL and
its associated pathways.

N/A Mcl-1 i N/A Peng et al. (2020)

11 Fu Y (2021) USP12 CD4+ T-cell differentiation,
activation, and proliferation,

but not CD8+ T cell.
Stabilization of BCL10.
Activation of the NF-κB
signaling pathway, and
stabilization of the TCR

complex.

N/A NF-κB N/A Fu et al. (2021)

12 Huang G (2022) USP9X Proliferation, cell cycle, cell
apoptosis, angiogenesis, cell
migration, tumor formation,

N/A SOX11 and CCND1. N/A Huang et al.,
2022b

(Continued on following page)
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TABLE 2 (Continued) Summary of the data extracted from the articles included in this study.

No. Author(year) Gene
symbol

Role, function, and
remarks

Cellular
location

Target Inhibitor References

and tube formation in
HUVECs. Mediating cyclin
D1 (CCND1)-mediated
SOX11 expression.

Regulating CDK4, CDK6,
PCNA, and P21 protein

level.

13 Hulse M (2021) USP2a Mediates fatty acid synthase
(FASN) stability. Interaction

with FASN.

N/A FASN protein ML364 Hulse et al. (2021)

14 Hunter JE (2022) USP1 Regulation of CHK1 protein
levels, mediating resistance

to CHK1 inhibition,
correlation with USP14, and
affecting the clonogenic

potential.

N/A CHK1 ML323 Hunter et al.
(2022a)

15 Kamran DES
(2023)

USP28,
USP36 and
USP37

Positive association with the
overexpression of c-MYC in
the ABC subtype of DLBCL

but not with the GCB
subtype.

N/A c-MYC Peptidyl
disruptor

Kamran et al.
(2023)

16 Li C (2018) USP34 Association with older age,
GCB subtype, multiple extra-
nodal involvement and high

IPI scores and DFS of
DLBCL.

Nucleus of DLBCL
cells; the cytoplasm
and/or nucleus of
reactive lymphoid
hyperplasia cells.

NF-κB signaling N/A Li et al. (2018)

17 Li XY (2023) USP1 Cell growth, cell-cycle arrest,
and autophagy.

USP1 directly interacted
with MAX, a MYC-binding
protein, and maintained the
stability of MAX, which

promoted the transcription
of MYC target genes.

Nucleus and
cytoplasm.

MAX, a MYC-binding
protein.

Pimozide Li et al. (2023)

18 Lin YH (2019) Usp44 Regulator of cell cycle, gene
expression, and genomic

stability. Role in
hematopoietic and immune
systems. Maintenance of
hematopoietic stem cell

numbers. Immunoglobulin
class switching. Antibody
response to immunization.

Nuclear N/A N/A Lin et al. (2019)

19 Ma H (2021) USP21 Cell proliferation. No
obvious effect on cell death.
Stabilizing EZH2 (a protein
required for germinal center
formation and lymphoma

formation).

EZH2 siRNA Ma et al. (2021)

21 Qu CJ (2018) USP8, USP9X,
and USP15

USP8: SMO-mediated
regulation of TRAF6.

USP9X: cell survival and
chemoresistance.

USP15: stabilization of
MDM2 and regulating
p53 function; tumor-cell

survival.

N/A K48-Ub on SMO. N/A Qu et al. (2018)

22 Ruan GX (2022) Usp39 Transition of pre-pro-B to
pro-B cells in the bone

marrow, B-cell development,
regulation of

immunoglobulin gene

At the interface
between U4/U6 and

U5 snRNPs
(spliceosome
component).

c-Myc; immunoglobulin
gene rearrangement in a
spliceosome-dependent
manner and chromatin

N/A Ruan et al.
(2022a)

(Continued on following page)

Frontiers in Pharmacology frontiersin.org06

Samareh Salavatipour et al. 10.3389/fphar.2024.1356634

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1356634


inhibition of cell death, and induction of angiogenesis. USP9X is
present at high levels in both peripheral blood mononuclear cells
(PBMCs) and MCL cells of patients with MCL. Because USP9X
affects cell migration and angiogenesis by elevating CCND1-
mediated SOX11 expression, USP9X suppression leads to the
downregulation of USP9X protein levels in Z-138 and Jeko-1 cell
lines and inhibits tumor development in mice in vivo. In addition,
USP9X knockdown shortens the duration of the S stage; reduces the
expression of cyclin-dependent kinase 4 (CDK4), cyclin-dependent
kinase 6 (CDK6), and proliferating cell nuclear antigen (PCNA); and
increases P21 protein expression (Huang et al., 2022a).

USP21 was shown to be overexpressed in the DLBCL lymphoid
tissue compared with matching healthy tissues and cell lines such as
A20 and SU-DHL-4. It increases the growth of DLBCL cells through
cysteine 221 (the catalytic site of USP21), but it does not affect cell
death. In addition, USP21 participates in the development of
lymphoma through the stabilization of enhancer of zeste
homolog 2 (EZH2), which is required for generating germinal
centers and lymphoma tumors. There is a positive correlation
between the elevated expression of USP21 and high mortality in
patients; therefore, small interfering RNA (siRNA) knockdown of
USP21 and consequent reduction of tumor cell proliferation may be
a promising treatment for DLBCL (Ma et al., 2021).

LIM homeobox 2 (LHX2) is an oncogene that promotes
malignancy in breast cancer and pancreatic ductal
adenocarcinoma. LHX2 adjusts USP18 expression in cancers with
poor prognosis. In addition, the reduction of the expression of the
immune gene USP18 can decrease the number of activated dendritic
cells (aDC), resulting in poor prognosis (Zhao et al., 2021). In
addition, a disorder in USP18 expression in Burkitt lymphoma can
lead to interferon (IFN)-stimulated gene expression. Therefore, it is
likely that USP18 regulates IFN-I-associated immune responses to
develop extranodal diffuse large B-cell lymphoma (ENDLBCL) with
poor prognosis. The mitogen-activated protein kinase (MAPK)
pathway is a possible downstream pathway of USP18 that plays a
role in cellular processes such as proliferation, differentiation, and
apoptosis. Overall, USP18 plays a potential role via the MAPK
pathway and aDCs in EN DLBCL. In addition to USP12, it regulates
theMAPK signaling pathway because its knockout leads to impaired
MAPK activity in cells (Zhao et al., 2021).

USP7 regulates various activities, including DNA repair, cell
cycle progression, protein localization, and apoptosis. USP7 is
overexpressed in lymphomas in dogs, and P5091 is an inhibitor
that has cytotoxic effects in canine lymphoma and cancer cells.
USP7i likely stabilizes the p53 protein and, therefore, may cause
apoptosis (Pawlak et al., 2021).

3.1.3 USP function in the DNA repair pathway
USP44 plays an important role in DNA repair through its DUB

catalytic function on the histones H2B and H2A and promotes gene
silencing. USP44 deficiency and overexpression are prone to errors
in chromosome separation, aneuploidy, and cancer; for example, its
overexpression was noted in T-cell acute lymphoblastic leukemia
(Lin et al., 2019). USP34 expression increases in the germinal center
B-cell-like (GCB) subtype of DLBCL cases, and USP34 is correlated
with Wnt signaling activation by destabilization of β-catenin. In
addition, USP34 responds to DNA damage and is a downstream
target of mutant ataxia telangiectasia in DNA damage (Li
et al., 2018).

UBP43, also known as USP18, is encoded by an interferon-
stimulated gene (ISG) and functions as a remover of the
ISG15 polypeptide from ISGylated proteins. This protease
negatively regulates IFN-I signaling by blocking STAT
phosphorylation, leading to a reduction in the induction of ISGs.
This inhibition occurs via the direct displacement of Janus kinase 1
(JAK1) from the IFN-α/β receptor. A reduction in the IFN-inducible
expression of UBP43 leads to a notable delay in the negative
feedback regulation of type-I interferon signaling in Burkitt
lymphoma (BL) cell lines (including Akata A.2 and A.15),
regardless of their Epstein–Barr virus (EBV) status (Ruf et al., 2009).

3.1.4 USPs and drug resistance
The use of drugs that inhibit proteasome (mainly bortezomib)

activity in multiple myeloma is currently a standard therapy. One
way of targeting the proteasome is through USPs such as USP14 for
different cancer types, including lymphoma, and even cancer cells
resistant to bortezomib (Delforoush et al., 2017).

USP24 has anti-apoptotic tumoral activity in myeloma cells and
is overexpressed in drug-resistant cells. It was also found that
enhanced USP24 expression was regularly observed in the

TABLE 2 (Continued) Summary of the data extracted from the articles included in this study.

No. Author(year) Gene
symbol

Role, function, and
remarks

Cellular
location

Target Inhibitor References

rearrangement in a
spliceosome-dependent

manner, and progression of
B cell lymphomagenesis.

interaction at the Igh
locus.

23 Tu R (2021) USP29 Coordinates with MYC and
HIF1α transcriptional
programs. Regulator of
tumor cell metabolism.

Tumorigenesis.

N/A MYC and HIF1α. 26 S proteasome
inhibitor,
MG132.

Tu et al. (2021)

24 Wei T (2016) USP2 Cell apoptosis via
p53 signaling. Interaction

with Mdm2 protein level and
p53 transcriptional activity.
Therapeutic resistance.

N/A Mdm2, p53, and p21. N/A Wei et al. (2016)
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interfollicular zones of splenic marginal zone lymphoma (SMZL)
patients. Given its role in regulating tumor microenvironment
signaling, USP24 has been identified as a potential therapeutic
target (Robinson et al., 2020).

USP1 can act as an oncogene and is highly expressed in DLBCL
patients. High expression of USP1 is associated with poor prognosis
in DLBCL. USP1 plays an important role in the rituximab/
chemotherapy resistance of DLBCL via deubiquitination of MAX
(highly expressed in DLBCL cells). Knockdown of USP1 leads to
inhibition of cell proliferation, cell-cycle arrest, reducedMAX/MYC,
and autophagy in DLBCL cells (Li et al., 2023).

Some members of the USP family are considered possible targets of
anticancer agents, such as USP7, which targets c-Myc. USP7 inhibition
destabilizes the CHK1 protein, resulting in AML cells being sensitized to
the chemotherapeutic factor cytarabine. Targeting USP1 may also be
another therapeutic strategy for MYC-related tumors. Eµ-Myc/cRel−/−

lymphomas have downregulated the expression of USP1 and checkpoint
kinase 1 (CHK1) protein that results in resistance to treatment by specific
CHK1i. The loss of the CHK1 pathway is related to the downregulation
of CHK1, and USP1 inhibition with ML323 can contribute to
CHK1 inhibitor resistance (Hunter et al., 2022b).

USP39 elimination in the B-cell lineage prevented the transition
from pre-pro-B cells to pro-B cells in the bone marrow, resulting in
substantial reduction in mature B cells in peripheral tissues.
USP39 ablation in Em-Myc mice successfully controls the
expansion of malignant pre-B cells, lowered B-cell
lymphomagenesis, and boosted survival. Because the spliceosome
component of USP39 has a role in B-cell development and in
controlling the rearrangement of immunoglobulin genes,
targeting USP39 could represent a promising therapeutic strategy
for treating B-cell lymphoma (Ruan et al., 2022).

USP37 expression is positively associated with c-MYC
expression in activated B-cell-like-DLBCL (ABC-DLBCL) but not
with its GCB subtype. USP37 stabilizes c-MYC and causes unusual
cell growth. USP22 and USP36 regulate the cellular turnover of
c-MYC in breast cancer, and c-MYC expression is stabilized by
USP28 and USP37 in colon carcinoma and lung cancer, respectively.
Other USPs, including USP13, USP16, USP17, and USP22, can
maintain c-MYC expression in the GCB subtype of DLBCL
(Kamran et al., 2023).

Viruses such as Kaposi’s sarcoma-associated herpesvirus
(KSHV) control deubiquitination. KSHV is the causative agent of
Kaposi’s sarcoma, primal effusion lymphoma, and the plasmablastic
shape of multicentric Castleman disease. Here, USP9X plays a pro-
viral role, and its depletion prevents virus reactivation and the
production of infectious virions (Chappell et al., 2023).

3.1.5 USPs as targets for drug development in
cancer prevention

USP29 stabilizes MYC and hypoxia-inducible factor 1-alpha
(HIF1α); therefore, it enables tumor cells to respond to both
normoxia and hypoxia. Knockout of Usp29 significantly prolongs
the survival of tumor-bearing mice by reducing the expressions of
MYC and HIF1α in neuroblastoma and B-cell lymphoma.
Therefore, USP29 can be used as a new therapeutic target for
treating cancer (Tu et al., 2021).

USP7 expression was significantly increased in three cancer
types, including DLBCL. ABC-DLBCL is a subtype of non-

Hodgkin’s lymphoma with a poor prognosis; its survival is
related to the activation of BCR signaling. USP7 stabilizes WD
repeat-containing protein 5 (WDR5) and mixed-lineage leukemia 2
(MLL2) (parts of lysine-specific methyltransferase complex) in
ABC-DLBCL cells. The expression of USP7 is upregulated in
ABC-DLBCL cells and downregulated in GCB-DLBCL cells;
therefore, USP7 inhibition has a serious effect on ABC-DLBCL
cells, contrary to that observed in GCB-DLBCL cells. ABC-DLBCL
cells upregulate the expression of some components of BCR
signaling, and USP7 inhibition decreases the expression of
upregulated parts of BCR signaling and plays an important role
in therapeutic targets (Wu et al., 2022a).

Latent membrane protein 1 (LMP1) is expressed in EBV-
associated lymphomas. USP2a is detected in LMP1-positive
Burkitt’s lymphoma (BL) cells and mediates the stabilization of
fatty acid synthase (FASN). FASN expression is notably correlated
with distant lymph node metastasis. USP2a inhibition through
ML364 decreased FASN levels and inhibited the proliferation of
LMP1-positive BL cell lines. Targeting USP2a is an effective strategy
for future investigation of ML364 treatment in malignancies with
LMP1-positive expression (Hulse et al., 2021).

The fact that we only considered three databases (PubMed, Web
of Science, and Scopus) may prove to be a limitation to our study. In
addition, the exclusion of studies published in other languages may
constitute another limitation of our study.

4 Conclusion

In conclusion, this systematic review delved into the emerging
and intricate role of USPs in lymphoma, shedding light on their
potential as therapeutic targets. The landscape of research on USPs
in lymphoma has revealed a novel and promising avenue for
understanding and potentially treating this complex group of
hematologic malignancies. Through an extensive literature
review, this article highlights the diverse functions of USPs,
which span critical cellular processes such as cell-cycle regulation,
apoptosis, DNA repair, and drug resistance. A comprehensive
understanding of how USPs influence these processes in the
context of lymphoma is essential for researchers and clinicians
seeking to unravel the intricacies of this disease.

As our understanding of the intricate roles of USPs in
lymphoma deepens, the prospect of developing more effective
and targeted treatment options for patients with lymphoma
becomes increasingly feasible. The dynamic interplay between
USPs and lymphoma biology presents an exciting opportunity
for further research and clinical exploration to improve the
outcomes and quality of life for patients affected by this
heterogeneous group of malignancies. Future investigations in
this field may unveil novel and innovative strategies for
combating lymphoma, reaffirming the significance of USPs as a
focal point of interest in cancer research and therapy.

5 Key points

1. USPs and cellular homeostasis: USPs, also known as
deubiquitinase (DUBs), are essential for maintaining cellular
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balance by selectively removing ubiquitin molecules from
target proteins. The deubiquitination process influences
protein stability, subcellular localization, and activity,
contributing to critical cellular processes such as DNA
repair, cell-cycle regulation, immunity, and apoptosis.

2. USPs and human diseases: dysregulation of USP activities is
associated with various human diseases, including cancer.
Abnormalities in these enzymes can lead to disruption of
cellular processes, resulting in conditions such as cancer.
The versatile nature of USPs makes them a potential
therapeutic target.

3. USPs in lymphoma: in lymphoma, USPs play a significant
role in controlling the signaling pathways that affect
cancer initiation and progression. They regulate critical
factors involved in cell survival, growth, and immunity.
The abnormal activities of USPs are linked to the
development of lymphoma, highlighting their potential as
therapeutic targets.

4. Ubiquitin–proteasome system (UPS): understanding the
effects of USPs on lymphoma requires a better
understanding of the ubiquitin–proteasome system (UPS).
The UPS regulates protein degradation and function
through a series of enzymatic steps, including ubiquitin
ligases and USPs. Aberrations in this system can lead to
cancer and other diseases by disrupting the balance between
protein synthesis and degradation.

5. Diverse roles of USPs: with more than 100 members, USPs
exhibit diverse substrate specificity and cellular localizations.
Specific USPs are implicated in the development of lymphoma,
influencing processes such as DNA repair, cell-cycle
progression, apoptosis, and immune response regulation.

6. Targeting USPs for therapy: given the intricate roles of USPs in
lymphomagenesis, they are potential targets for therapeutic
intervention. Inhibiting specific USPs could disrupt cancer-
promoting pathways, thereby leading to new treatment
strategies for lymphoma and related malignancies.
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Nomenclature
USPs ubiquitin-specific peptidases.

DUBs deubiquitinases.

UPS ubiquitin–proteasome system.

DNA deoxyribonucleic acid.

DLBCL diffuse large B-cell lymphoma.

NF-κB nuclear factor Kappa B.

BCR B-cell receptor.

CTCL cutaneous T-cell lymphoma.

IFN interferon.

EBV Epstein–Barr virus.

LMP1 latent membrane protein 1.

GCB germinal center B-cell-like.

ABC activated B-cell-like.

HDM2 human double minute 2.

DAXX death-associated protein 6.

CDK4 cyclin-dependent kinase 4.

CDK6 cyclin-dependent kinase 6.

PCNA proliferating cell nuclear antigen.

EZH2 enhancer of zeste homolog 2.

siRNA small interfering RNA.

MAPK mitogen-activated protein kinase.

IFN interferon.

JAK1 Janus kinase 1.

CHK1 checkpoint kinase 1.

HIF1α hypoxia-inducible factor 1-alpha.

MLL2 mixed-lineage leukemia 2.

WDR5 WD repeat-containing protein 5.

OTUB1 OTU deubiquitinase.

HR homologous recombination.

AKT Ak strain transforming.

Mdm2 mouse double minute 2 homolog.

HDM2 human double minute 2.
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