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The pathogenesis of age-related macular degeneration (AMD), a degenerative
retinopathy, remains unclear. Administration of anti-vascular endothelial growth
factor agents, antioxidants, fundus lasers, photodynamic therapy, and transpupillary
warming has proven effective in alleviating symptoms; however, these interventions
cannot prevent or reverse AMD. Increasing evidence suggests that AMD risk is linked
to changes in the composition, abundance, and diversity of the gutmicrobiota (GM).
Activation of multiple signaling pathways by GM metabolites, including
lipopolysaccharides, oxysterols, short-chain fatty acids (SCFAs), and bile acids
(BAs), influences retinal physiology. Traditional Chinese medicine (TCM), known
for itsmulti-component andmulti-target advantages, can help treat AMDby altering
GM composition and regulating the levels of certain substances, such as
lipopolysaccharides, reducing oxysterols, and increasing SCFA and BA contents.
This review explores the correlation betweenGMand AMDand interventions for the
two to provide new perspectives on treating AMD with TCM.
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1 Introduction

Globally, age-related macular degeneration (AMD) is the third major factor
contributing to substantial and irreversible vision impairment following cataracts and
glaucoma. Advanced retinal pigment epithelial (RPE) atrophy or choroidal
neovascularization can contribute to moderate to severe vision loss in patients with
AMD (Ferris et al., 2013). The prevalence of AMD continues to rise worldwide and
remarkably increases with age despite significant geographic and lifestyle differences.
Currently, the global estimate of AMD prevalence is 196 million, projected to rise to
288 million by 2040 (Xiao et al., 2023), and is anticipated to exceed 498 million by 2050
(Lima-Fontes et al., 2022). The progression of AMD is significantly influenced by factors
such as aging, photodamage, obesity (Tian et al., 2023), dyslipidemia, chronic
inflammation (Ghosh et al., 2022; de Almeida Torres et al., 2022), hypertension
(Zhang et al., 2022), smoking, and internal eye surgery (Ng Yin Ling et al., 2021;
Abusharkh et al., 2023; Muraleva and Kolosova, 2023) (Figure 1). In Western
medicine, treatments such as anti-vascular endothelial growth factor (anti-VEGF)
(Al-Zamil and Yassin, 2017; Williamson et al., 2023), corticosteroids (Kaya et al.,
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2019), antioxidants (Evans and Lawrenson, 2017; Kushwah et al.,
2023), laser therapy (Cohn et al., 2021), and photodynamic therapy
(Ando et al., 2023) are utilized. Although these approaches can
relieve symptoms, they cannot inhibit the development of AMD,
and the treatment options for non-neovascular AMD are
particularly limited.

Gut microbiota (GM) coexists with the human body, playing an
important role in maintaining the homeostasis of the internal
environment and influencing various physiological functions.
These functions include metabolism, synthesis of vitamins and
other nutrients, antitoxicity, intestinal defense, regulation of
immune organ development and maturation, and hematopoiesis
(Afzaal et al., 2022; Ahlawat et al., 2021; Saxami et al., 2023). GM
colonizes the gastrointestinal tract, influences the intestinal
environment, and engages in bi-directional interactions with other
organs (Ahlawat et al., 2021). This interaction has given rise to the
concept of the “gut-organ axis,” which includes gut-brain, gut-liver,
gut-lung, gut-cardiac, and gut-ocular axes (Guo et al., 2023a)
(Figure 2). GM can convert environmental signals and dietary
molecules into metabolite signals, facilitating communication with
various organs and tissues of the host via various signaling pathways.

Recently, considerable evidence has accumulated suggesting a
correlation between GM and AMD and its associated risks (Liu et al.,

2023; Luo and Skondra, 2023; Mao et al., 2023). Regulating the GM
is a potential therapeutic strategy for preventing AMD. Moreover,
given its multi-component, multi-pathway, multi-target, multi-
efficacy nature and low side effects, traditional Chinese medicine
(TCM) has been used to manage similar fundus lesions since at least
620 CE (Cao et al., 2022). Recent research (Li et al., 2022a) has
revealed that TCM is efficacious in treating AMD by modulating the
GM, offering a novel approach to preventing and managing AMD.
This review seeks to present the existing association between GM
and AMD, evaluate the influence of TCM on GM, and explore the
relationship of TCM and GM with AMD, aiming to provide new
insights into treating AMD with TCM.

2 GM composition and metabolites
influence AMD development

The GM is an intricate environment consisting of numerous
microorganisms, such as viruses, bacteria, archaea, fungi, and
protozoans, including up to 1,000 bacterial species. Healthy
adults have up to 1×1014 bacteria in their intestines (Wang and
Sun, 2022). Approximately 3.3 million genes exist in the humanGM,
corresponding to approximately 150 times the number of genes in

FIGURE 1
Risk factors associated with age-related macular degeneration.
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the human genome (Rinninella et al., 2018). The GM includes the
phyla Firmicutes, Fusobacteria, Actinobacteria, Bacteroidetes,
Verrucomicrobia, and Proteobacteria. Among these, Firmicutes
and Bacteroidetes are the most prevalent GM phyla, and the
Firmicutes/Bacteroidetes (F/B) ratio is an important measure of
microbial equilibrium in the whole gut.

The GM components are classified as probiotic, neutrophilic, or
pathogenic based on their pathogenicity. The appropriate balance
between probiotic and pathogenic bacteria can safeguard the
intestinal mucosal barrier, promote digestion and absorption of
nutrients, enhance immunity, and impede the invasion of
pathogenic microorganisms into the body.

GM can further impact human health via the metabolites they
release, such as lipopolysaccharides (LPS) (He et al., 2023a),
oxysterols (Lefort and Cani, 2021), short-chain fatty acids
(SCFAs), and bile acids (BAs) (Enriquez et al., 2023; Xiang et al.,
2023). These metabolites function as signalingmolecules that govern

metabolic, immune, and inflammatory reactions in
individuals with AMD.

2.1 GM composition influences AMD
development

The occurrence and progression of AMD are linked to abnormal
alterations in the GM composition. Although the relationship is
unclear, GM dysregulation may play a role in AMD progression
by enhancing the signaling pathway to activate the complement
system abnormally (Xue et al., 2023). When the complement
system is over-activated or dysregulated, the out-of-control
complement system becomes a key link in triggering infection and
inflammation. Enteric pathogens can break through the intestinal
mucosal barrier, enter the eye via the somatic circulation, and trigger a
localized inflammatory reaction, subsequently leading to a rise in the

FIGURE 2
Representation of the “gut-organ axis.”
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generation of interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α),
and vascular endothelial growth factor (VEGF-A). These cytokines
were linked to the development of neovascular AMD (Zinkernagel
et al., 2017). Investigation of the intestinal flora of patients with AMD
using metagenomic sequencing revealed that the AMD group
exhibited a notably diminished presence of Firmicutes and an
elevated prevalence of Proteobacteria and Bacteroidetes compared
with the control group. Moreover, the AMD group displayed a
significant increase in Escherichia-Shigella at the genus level
compared with that seen in the control group, whereas the
proportions ofBlautia andAnaerostipeswere lower (Zhang et al., 2023).

Additionally, changes in the GM composition have been linked to
oxidative stress, activation of the complement system, inflammation,
and altered choroidal hemodynamics. Zinkernagel et al. (2017)
conducted sequencing of intestinal macro-genomes in patients with
AMD and healthy controls. They observed a higher abundance of
Anaerotruncus, Oscillibacter, Ruminococcus torques, and Eubacterium
ventriosum among individuals with AMD. In mice, these organisms
are linked to the activation of proinflammatory chemokines, whereas
in humans, they are associated with increased IL-6 and IL-8 levels. In a
clinical case-control study (involving 85 patients with advanced AMD
and 49 healthy individuals), Lin et al. discovered dysregulation of
intestinal ecology that resulted in an increased abundance of
Holdemanella, Prevotella, Desulfovibrio, and other bacteria.
However, compared to that seen in the control group, Oscillospira,
Dorea, and Blautia were reduced in abundance, indicating a
correlation between certain bacteria and oxidative stress,
inflammation, and heightened intestinal permeability in patients
with AMD (Lin et al., 2021). Zysset-Burri et al. (2020) identified
Negativicutes as a potential biomarker of neovascular AMD and found
single nucleotide polymorphisms in the recombinant human
complement factor H gene linked to AMD. Negativicutes correlated
positively with the AMD-associated complement factor H risk allele.

GM-based studies conducted inmousemodels have demonstrated
a correlation between Clostridials and Firmicutes with retinal damage,
whereas Bacteroidales have been associated with AMD repair. A
positive correlation was observed between the relative abundance of
Clostridials and Firmicutes unknown species-level genome bins and
lesion size, central pit thickness, hemorrhage size, and angiographic
leakage. In contrast, a negative correlation was observed between lesion
and hemorrhage size and the relative abundance of Bacteroidales (Xue
et al., 2023).

In addition, alterations in the GM may impact the metabolic risk
factors for AMD. Firmicutes may promote obesity and chronic
inflammation. The elevated abundance of Firmicutes following the
intake of high-fat foods allows greater energy acquisition, leading to
weight gain and obesity (Ley et al., 2006). Feeding mice a high-fat diet
(HFD) can contribute to obesity, chronic low-grade inflammation,
increased intestinal permeability, and ultimately worsen choroidal
neovascularization by increasing the abundance of Firmicutes (Xiao
et al., 2022). Moreover, Lactobacillus acidophilus is negatively
associated with obesity. By reducing the F/B ratio and controlling
the expression of genes associated with lipolysis, lipid synthesis, and
energy metabolism, this bacteria effectively counteracts HFD-induced
dysbiosis of intestinal ecology and upholds the integrity of the
intestinal barrier (Kang et al., 2022).

Additionally, a decrease in the F/B ratio signals senescence.
Compared to healthy young adults, who have a high proportion of

Firmicutes, older adults demonstrate a decrease in Bifidobacteria and
an increase in Bacteroidetes, as well as a decline in gut microbial
diversity, with a reduction in the relative abundance of core species
and an augment in the colonization of opportunistic species
(Betaproteobacteria) (Biagi et al., 2017). Bacteroidetes and
Firmicutes are the most common bacteria found in the GM of
older individuals (Wu et al., 2021). Older individuals have a high
percentage of Bacteroidetes and an increased relative abundance of
Clostridium in their GM compared to younger individuals, and there
is also a reduced abundance of Ruminococcus torque and Prevotella
in this age group. Bacteroidetes constitute the majority (53%) of the
primary microbiota in older individuals, in contrast to the reduced
level (8%–27%) present in healthy young individuals.

Bifidobacteria are believed to reduce inflammatory responses in
older individuals. A randomized controlled double-blind crossover
trial (Macfarlane et al., 2013) showed that combined administration of
Bifidobacteria and the prebiotic inulin led to an increase in
Bifidobacteria and a reduction in Proteobacteria in the host. This
regimen also increased butyrate production and significantly decreased
TNF-α, a proinflammatory cytokine, in the peripheral blood.

GM dysbiosis is an imbalance between probiotics and pathogenic
bacteria. The composition and function of intestinal microorganisms
change with host genes, diet, internal environment, and other factors.
When the equilibrium of the intestinal microecology is disturbed, the
number of foreign microorganisms and pathogenic bacteria in the
body increases, inducing intestinal metabolic disorders and immune
system dysfunction, leading to morbidity. The body can mobilize
more probiotics to restore a balanced and healthy microecological
environment to combat these pathogens.

2.2 GM metabolites influence AMD
development

2.2.1 Lipopolysaccharides influence AMD
development

The outer membrane of Gram-negative bacteria contains LPS,
which consist of a hydrophobic domain-endotoxin-lipid A, a
hydrophilic O-antigen, and a central polysaccharide (Brodzikowska
et al., 2022). Two molecules of 3-hydroxy fatty acids are esterified to
the glucosamine backbone of lipid A, and another two are connected
via an amide linkage. Lipid A serves as the pathogen-associated
molecular pattern of LPS. Increased LPS concentrations act as
potent immune activators and toll-like receptor (TLR) 4 (TLR4)
ligands, triggering inflammation (Chassaing and Gewirtz, 2014;
Scott et al., 2017). Within the eye, various cells, such as
perivascular macrophages, microglia, photoreceptors, dendritic
cells, and RPE cells, exhibit proinflammatory signals via LPS
(Tsioti et al., 2022). LPS-induced retinal explants exhibited a
notable neuroinflammatory reaction, marked by deterioration of
neurons and increased levels of various cytokines (Ghosh et al., 2018).

Furthermore, emerging evidence strongly suggests that low-
grade inflammation caused by LPS plays a role in the progression
of AMD. Larsen et al. (2023) observed increased levels of esterified 3-
hydroxy fatty acids (indicative of LPS burden) in blood samples,
indicating a potential role of LPS exposure in the early stages of
AMD pathophysiology. The above suggests that LPS leads to a range
of acute and chronic inflammatory responses, generating edema,
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exudation, and neovascularization, further affecting the
development and progression of AMD (Ibbett et al., 2014).

Researchers have explained the risk of LPS-induced AMD via
various mechanisms, such as immune inflammation, peroxidative
damage, and RPE senescence. Liu et al. (2019) proposed that LPS
promotes the production of inflammatory cytokines and apoptosis
of RPE cells by inducing miR-21-3p expression, which can lead to
AMD. LPS-induced miR-21-3p overexpression increased the
protein and mRNA levels of the inflammatory cytokines
monocyte chemoattractant protein-1 (MCP-1) and IL-6 in RPE
cells while elevating apoptosis, caspase-3 activity, and levels of
cleaved caspase-3 and poly-(ADP-ribose) polymerase proteins,
which exacerbate inflammatory responses and apoptosis. LPS not
only stimulates the phosphorylation of extracellular signal-regulated
kinase (ERK1/2) and nuclear factor kappa-B (NF-κB), but also
strongly increases the expression levels of IL-1β, IL-6, IL-12,
VEGF, TNF, and TNF-related apoptosis-inducing ligand.
Furthermore, exposure to LPS increases the expression of
glutathione peroxidase and mitochondrial manganese superoxide
dismutase, leading to oxidative stress in the cells. However, Ozal
et al. (2018) found that esculetin downregulates the secretion of
proinflammatory cytokines and decreases NF-κB activation, ERK1/
2 phosphorylation, and VEGF levels, consequently suppressing
oxidative stress and inflammation, protecting against LPS-
mediated RPE cell death, and preventing AMD development.

LPS production by Gram-negative bacteria in the intestinal flora
is involved in HFD-induced obesity. Gram-negative bacteria secrete
LPS, which binds to the complex receptor CD4/TLR4 on the surface
of immune cells, releasing proinflammatory cytokines and
developing inflammatory responses and metabolic disorders,
ultimately leading to diseases such as obesity (Davis, 2016).
Therefore, therapeutic options that balance LPS levels are of
interest in AMD.

2.2.2 Oxysterols influence AMD development
Oxysterols are cholesterol derivatives produced via enzymatic or

free radical oxidation associated with oxidative stress, inflammation,
and apoptosis (Testa et al., 2018; Zarrouk et al., 2020; de Medina
et al., 2022). Several studies have suggested a correlation between
retinal degeneration and cholesterol metabolism, specifically the
transformation of cholesterol into oxysterols and the degeneration
of the retina (Pfeffer et al., 2021; Zhang et al., 2021). Dasari et al.
(2011) observed that providing rabbits with a diet high in cholesterol
for 12 weeks resulted in heightened β-amyloid (Aβ) levels in the
retina, oxidative harm, apoptosis, and elevated accumulation of
cholesterol and oxysterols (24-hydroxycholesterol (24-OH), 27-
hydroxycholesterol (27-OH), 4β-hydroxycholesterol, 7α-
hydroxycholesterol, 25-hydroxycholesterol (25-OH), 7-
ketocholesterol (7KC), and 7β-hydroxycholesterol (7β-OH)). A
prior study (Dasari et al., 2010) revealed that 27-OH induced
toxicity in RPE cells via the stimulation of Aβ1–42 peptide
production, elevation of stress markers specific to the
endoplasmic reticulum (cysteinyl asparaginase-12 and C/EBP
homologous protein), reduction in dysregulation of Ca2+

homeostasis, mitochondrial membrane potential, oxidative stress
(as indicated by glutathione depletion and reactive oxygen species
(ROS) production), and apoptosis. Studies have demonstrated that
cholesterol metabolism and its oxidation byproducts, including

7KC, can adversely affect RPE cells, as 7KC triggers oxidative
stress and cell death. Various alterations have been noted in RPE
cells in the presence of 7KC, such as damage to mtDNA,
mitochondrial dysfunction, increased production of ROS/reactive
nitrogen species (Gramajo et al., 2010), and activation of caspase-8,
-12, and -3 (Neekhra et al., 2007). 7β-OH induces a caspase-3-
independent mode of cell death related to lysosomal destabilization,
which plays a significant role in the signaling pathways resulting in
cell death (Malvitte et al., 2008). These findings collectively
demonstrate the association between oxysterols and AMD.

Furthermore, oxysterols cause a rise in inflammatory cytokines
in retinal cells. The presence of 25-OH (20–30 μg/mL) in human
retinal pigment epithelium (ARPE-19) cells triggered the release of
IL-8 (via the MEK/ERK1/2 pathway), VEGF, and MCP-1. The
administration of 25-OH upregulated IL-8 transcription and
secretion, facilitated by ERK1/2 and phosphoinositol-3 kinase
activities and the involvement of transcription factor activator
protein 1 and NF-κB. The presence of 7KC and 7β-OH elevated
the secretion of IL-1β and IL-6 in ARPE-19 cells (Dugas et al., 2010).
Huang et al. (2012) also demonstrated that 7KC (8 μM) enhanced
levels of TNF-α, IL-1β, IL-6, IL-8, transforming growth factor beta 1
(TGF-β1), and VEGF by a mechanism that may involve
endoplasmic reticulum stress. Larrayoz et al. (2010) found that
7KC induced cytokine production via the kinase signaling
pathways ERK, p38MAPK, and AKT-PKCζ-NF-κB via
interactions in the plasma membrane. The activation of NF-κB
was linked to theMAPK/ERK pathway. These findings illustrate that
oxysterols, particularly 25-OH, 7βOH, and 7KC, can trigger
oxidative stress, apoptosis, and inflammation in RPE cells,
thereby inducing retinal degeneration. Therefore, lowering
oxysterol levels may be beneficial in preventing and treating AMD.

2.2.3 Other GM metabolites influence AMD
development

Organic fatty acids with a carbon chain length of less than six,
known as short-chain fatty acids (SCFAs), are generated by bacteria in
the gut, including 41 families, such as Lactobacillaceae,Clostridiaceae,
Christensenellaceae Bifidobacteriaceae, Lachnospiraceae, and
Akkermansia muciniphila. The main components of SCFAs are
acetate, propionate, and butyrate. Acetate, constituting 50%–60%
of SCFAs, is produced by Bifidobacteria and Lactobacilli, along
with bacteria such as Clostridium spp., Anaerotruncus,
Lachnospira, Akkermansia Muciniphila, and Streptococcus spp. The
Bacteroidetes and Negativicutes class of Firmicutes synthesize
propionate via a succinate route, utilizing vitamin B12 to
transform succinate into propionate. Other Negativicutes bacteria
form propionate from lactate via the succinate, such as Veillonella
spp. or acrylate pathways, such asCoprococcus catus, Lachnospiraceae,
and Megasphaera elsdenii. Eubacterium rectale and Roseburia spp.,
members of the Clostridium coccoides group (clostridial cluster XIVa),
along with Faecalibacterium prausnitzii, a member of the Clostridium
leptum group (clostridial cluster IV), are capable of producing
butyrate. Besides the two prevalent human clusters, clostridial
clusters I, III, XV, and XVI can also produce butyrate. SCFAs
enter the bloodstream via the intestine, directly influencing the
functioning of peripheral tissues and metabolic processes. SCFAs
are crucial in regulating gene expression, controlling host metabolic
processes (cell proliferation, diversification, and apoptosis),
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inflammatory reactions, and energy supply (Abdalkareem Jasim et al.,
2022; Fillier et al., 2022; Rekha et al., 2022; Anachad et al., 2023; Ney
et al., 2023). The metabolic responses mediated by SCFA receptors
also influence obesity, contributing to AMD (Tian et al., 2023).
Propionic acid increases peptide YY and glucagon-like peptide 1
(GLP-1) production and secretion, which helps to control obesity.
Propionate and butyrate have the potential to combat obesity by
stimulating intestinal gluconeogenesis, thereby enhancing metabolic
wellbeing. Butyric acid upregulates the lipocalin-mediated AMP-
activated protein kinase (AMPK) pathway, promoting
mitochondrial biosynthesis and fatty acid oxidation by inhibiting
histone deacetylases and augmenting peroxisome proliferator-
activated receptor alpha (PPAR-α). SCFAs further ameliorate
obesity by decreasing PPAR-α expression, increasing adipose tissue
metabolism, and reducing body fat accumulation (Anachad
et al., 2023).

Additionally, SCFAs may exert anti-inflammatory effects.
SCFAs can traverse the blood–ocular barrier via the circulatory
system. Chen et al. (2021) demonstrated the ability of high-dose,
intraperitoneally administered SCFAs to reach the eye and impede
LPS-induced endophthalmitis. SCFAs hinder TNF-α, IL-6, and the
chemokines C-X-C motif chemokine ligand 1 and C-X-C motif
chemokine ligand 12 when exposed to inflammatory stimuli in vitro,
including ligands for TLR and IL-17. SCFAs reduce inflammatory
mediators produced by LPS-stimulated retinal astrocytes and
enhance the ability of retinal astrocytes to activate T cells,
thereby treating AMD. Growing evidence indicates that SCFAs
help to improve AMD and its associated risk factors. However,
further clinical trials and animal experiments are required to validate
these findings.

Bile acids (BAs) are synthesized from cholesterol within
hepatocytes. The gallbladder stores BAs, which are then released
into the intestine, aiding in the absorption of dietary fats and
vitamins. Research indicates that GM significantly influences BA
metabolism (Wahlström et al., 2016). Primary BAs—cholic acid and
chenodeoxycholic acid—are produced from liver cholesterol,
whereas GM generates secondary BAs via hydroxylation,
deconjugation, epimerization, or oxidation processes. Both
primary and secondary BAs in the liver are typically linked to
glycine or taurine. Research has demonstrated that BAs positively
impact experimental models studying retinal disorders. Warden
et al. (2020) found that tauroursodeoxycholic acid promotes the
phagocytosis of outer segments of photoreceptor cells by RPE cells,
inhibits human retinal endothelial cell proliferation in vitro, and
inhibits choroidal neovascularization. The BA taurocholic acid
shields HRPEpiC primary retinal epithelial cells from oxidative
stress-induced damage to their structure and function while also
inhibiting VEGF-induced angiogenesis in choroidal endothelial
cells. Moreover, glycine-bound BAs protect RPE cells from
oxidative harm and impede VEGF-triggered angiogenesis in
choroidal endothelial cells. Glycine-bound BAs offer protection
against both atrophic and neovascular AMD.

In summary, LPS and oxysterols can cause oxidative stress,
cellular senescence, and various acute and chronic inflammatory
responses that further affect the occurrence and development of
AMD (Figure 3). SCFAs improve AMD symptoms by regulating cell
proliferation, differentiation, and apoptosis, inhibiting
inflammatory responses, and providing energy. BAs improve

lipid metabolism, protect oxidative stress-induced RPE cells, and
inhibit choroidal neoangiogenesis. Consequently, the progression of
AMD can be significantly slowed and postponed via the regulation
of intestinal flora metabolites, including LPS balance, oxysterol
reduction, and an increase in SCFAs and BAs (Guo et al., 2023b).

3 Mechanisms by which the GM plays a
role in TCM on AMD

The spleen and stomach are important organs in the digestive
system of the human body, with the functions of digesting and
absorbing food and maintaining normal metabolism and energy
supply. TCM theory suggests that the spleen and stomach have
physiological functions analogous to those of the GM. After
preliminary digestion by the stomach, filtering, and absorption by
the small intestine, food is transformed into subtle substances, that
is, qi and blood, by the spleen. These substances are subsequently
circulated throughout the body to sustain the regular physiological
functions of other organs and tissues. Proper spleen and stomach
functioning facilitates sustained energy metabolism, and improves
immunity against pathogen invasion (Wu et al., 2020; Ye et al.,
2022). Studies have shown that when the “transformation” and
“defense” functions of the spleen and stomach are normal, they are
similar to the role of the intestinal flora on the body’s metabolism
and immune function. When the intestinal flora maintains
homeostasis, the body’s nutrient metabolism functions normally,
and the spleen and stomach transform food into nutrients. In
contrast, when the intestinal microecology is disturbed, the host
is susceptible to pathogens, and the spleen and stomach
malfunction, leading to qi and blood deficiencies, as well as
poisonous metabolites.

The defining feature of AMD is the degeneration of the macular
region. According to the principles of TCM, the spleen and stomach
are intricately linked to this disease, and AMD is characterized by
weakness in the spleen and stomach. Food preferences, improper
rest, stress, anxiety, and old age can lead to malfunction of the spleen
and stomach, making it difficult to generate qi and blood. Weak qi
and blood impede nutrient supply to the eye tissues, fostering
disease. The poisonous metabolites produced accumulate in tissue
cells over time and the functional structure of the retina is impaired
(Yang and Jia, 2013; Li, 2022).

The metabolism of the intestinal flora is intricately linked to the
functions of the spleen and stomach. LPS and oxysterols are
biomarkers of poisonous metabolites in TCM. The GM converts
LPS and oxysterols from food and is associated with oxidative stress,
various acute and chronic inflammatory responses, and apoptosis.
Dysbiosis of the microbiota and an increase in pathogenic bacteria
can be regarded as “external toxins.” In addition, the dysfunction of
microbiota-derived metabolites can be seen as “internal toxins,”
leading to inflammation, oxidative stress, dyslipidemia, obesity,
aging, and VEGF production. This is also the pathological basis
of AMD, which explains the poisonous metabolites of TCM from a
modern microbiological perspective. Furthermore, GM metabolites,
such as SCFAs and BAs, can protect the retinal pigment epithelium
from oxidative damage, inflammatory stimuli, and apoptosis, which
can have a protective effect against retinal damage, such as light-
induced retinopathy and AMD. This suggests that TCM can be used

Frontiers in Pharmacology frontiersin.org06

Yu et al. 10.3389/fphar.2024.1356324

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1356324


to intervene in AMD by adjusting the intestinal flora, increasing
SCFAs and BAs, and ameliorating oxidative damage, apoptosis,
inflammation, and altered choroidal hemodynamics.

4 Therapeutic intervention for AMD
with TCM

Most botanical drugs are orally ingested and absorbed through the
digestive system. The components of these botanical drugs are

metabolized or transformed by intestinal microorganisms, producing
new biologically active molecules that facilitate drug absorption into the
bloodstream. The composition and structure of the GM are affected by
TCM metabolites, which in turn affect the function of diseased organs
and tissues via the action of the intestinal flora. Research has indicated
that a single botanical drug’s components andmetabolitesmay improve
AMD symptoms and risk factors by modulating intestinal
microorganisms. Below, we review therapeutic interventions using
botanical drugs based on categorizing natural chemical components,
single botanical drugs, and botanical drug decoctions.

FIGURE 3
Mechanism underlying the effects of gut microbiota metabolites on age-related macular degeneration.
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4.1 Natural chemical components

4.1.1 Flavonoids
Flavonoids are compounds that are abundantly found in plants

(Table 1). They have different phenolic structures consisting of two
benzene rings with phenolic hydroxyl groups, primarily in glycosidic
and free forms. These compounds exhibit antioxidative, anti-
inflammatory (Guo et al., 2023c), antimicrobial, anti-apoptotic,
neovascularization inhibiting, and central nervous and cardiovascular
system protective effects (Lan et al., 2023a). Typically, flavonoid
glycosides contain glucose bonds. Glucosides with water-soluble
sugar components have low pharmacological activity and are
difficult to absorb in the intestine, leading to a lack of bioavailability.
Nevertheless, enzymatic degradation, hydrolysis, reduction,
dehydroxylation, and other reactions involving intestinal microbiota
can convert most flavonoids into simple phenolic acids, leading to their
absorption and subsequent bioavailability enhancement.

Flavonoids can be divided into two primary groups depending
on how they control the GM. Some flavonoids can be metabolized by
the GM and act as substrates for various catalytic reactions involving
various enzyme systems produced by the GM. Consequently, the
bacteria responsible for these reactions tend to propagate (Feng
et al., 2018). In contrast, some flavonoids influence the cell
membranes of specific bacteria (such as Staphylococcus aureus
and Escherichia coli), either by directly disrupting the lipid

bilayer of the cell membrane or by modifying the permeability of
the cell membrane, ultimately hindering the proliferation of these
bacteria (Xie et al., 2015). Flavonoids modulate the relative
abundance of probiotic and harmful bacteria. Pan et al. (2023)
found that certain flavonoids (particularly hesperidin-7-O-
glucoside, prunin, and isoquercitrin) possess bactericidal,
antiviral, and anti-inflammatory properties.

Moreover, flavonoids also modulate the abundance and number
of intestinal microbiota, leading to a considerable reduction in total
SCFA production. By using in vitro simulated fermentation
technology to study the fecal microbial composition of healthy
individuals, it has been demonstrated that hesperidin-7-O-
glucoside, prunin, and isoquercetin increase Bifidobacterium and
result in a decrease in the relative abundance of Bilophila,
Lachnoclostridium, promoting intestinal mucosal absorption and
digestion, biobarrier function (Odamaki et al., 2016), and
immunomodulation (Milani et al., 2017). Flavonoids reduce the
effects of harmful bacteria. Hesperidin-7-O-glucoside, naringenin,
and lisin all significantly reduce the levels of Haemophilus and the
relative abundance of harmful bacteria, such as Clostridium
pullulans and Bacteroides, suggesting that flavonoids can regulate
signaling pathways, such as TLR4/NF-κB, NOD-like receptor family
pyrin domain containing 3, andMAPK, along with the expression of
the genes encoding matrix metalloproteinase-9, IL-1β, IL-6, IL-8,
soluble intercellular adhesion molecule-1, MCP-1, and other

TABLE 1 Natural chemical components and gut microbiota.

Natural chemical
components

Physiological function related to
gut microbiota

Gut microbiota References

Flavonoids (1) Regulate the number and abundance of gut
microbiota

Increased: Bifidobacterium
Decreased: Bilophila, Lachnoclostridium,
and Haemophilus, Bacteroides and
Clostridium pullulans

Pan et al. (2023), Odamaki et al. (2016), Sun
et al. (2023), Carrera-Quintanar et al. (2018)

(2) Regulate inflammatory factor gene expression
and inhibit inflammatory responses

(3) Reduce ROS production, alter AKT/GSK-3β
and NrF2/ARE signaling pathways, and
regulate antioxidant gene expression

(4) Inhibit adipogenesis to regulate obesity

Berberine (1) Inhibits the LPS/NF-κB signaling pathway to
improve the metabolic and inflammatory
state of organisms

Increased: Ruminococcus, Desulfovibrio
vulnificus, Lactobacillus, and Akkermansia
muciniphila
Decreased: Aspergillus, Trematode
spirochetes, and the ratio of Firmicutes to
Bacteroidetes

Zhang et al. (2012), Li et al. (2018), Liao et al.
(2020), Shen et al. (2021), Yang et al. (2022)

(2) Activates AMPK pathway to combat
oxidative stress

(3) Promotes the production of SCFAs

(4) Corrects the imbalance of the GM ratio

Resveratrol (1) Promotes the metabolism of SCFAs and
increases the level of butyric acid

Increased: Bacillus anthropophilus,
Lactobacillus, Bifidobacterium, and the ratio
of Firmicutes to Bacteroidetes
Decreased: Firmicutes and Enterococcus
faecalis

Qiao et al. (2014), Zhang et al. (2015), Chen
et al. (2016), Maugeri et al. (2018), Alrafas
et al. (2019), Dull et al. (2019), Li et al. (2022b)

(2) Anti-inflammatory and anti-metabolic
disorder effects through various pathways, such
as NF-κB, arachidonic acid, AP-1, or AHR

(3) Reduces the extent of oxidative stress damage
in RPE cells

(4) Activates SIRT1 and downregulates HIF-1α
expression and VEGF secretion in RPE cells

(5) Improves hyperlipidemia

Frontiers in Pharmacology frontiersin.org08

Yu et al. 10.3389/fphar.2024.1356324

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1356324


inflammatory factors, suppressing the inflammatory response (Sun
et al., 2023). The presence of flavonols, a type of flavonoid, facilitates
the proliferation of beneficial bacteria, such as Lactobacillus and
Bifidobacterium, while diminishing the presence of Clostridium
spp. Taken together, hesperidin-7-O-glucoside, lisinin, and
isoquercitrin, which are flavonoid monoglycosides containing
only one glucose group in their structures, can lead to an
increase in beneficial intestinal bacteria and a decline in harmful
intestinal bacteria. This action helps ameliorate intestinal dysbiosis
and diminish the impact of other factors on the intestinal flora.

Natural flavonoid products also have antioxidant properties that
reduce oxidative stress and inhibit the activation of various signaling
pathways to ameliorate inflammatory diseases. By improving the
dysregulation of intestinal dynamic homeostasis in vivo, ROS
production is reduced, the AKT/glycogen synthase kinase-3-beta
(GSK-3β) and Nuclear factor erythroid-derived-2-like 2 (Nrf2)/
antioxidant response element (ARE) signaling pathways are
directly altered, and the expression of antioxidant genes, such as
NAD(P)H quinone oxidoreductase 1, heme oxygenase-1, glutamate-
cysteine ligase modifier, glutathione, and superoxide dismutase
(SOD), are regulated (Sun et al., 2023).

Increasingly, flavonoid metabolites, which are biologically active
compounds, play a role in influencing the gut microbiome and
reducing signs of obesity by hindering adipogenesis. Flavonoids,
with their anti-inflammatory and antioxidant properties, impede the
production of ROS and the cyclooxygenase (COX)-2 and NF-κB
signaling pathways, thereby influencing obesity development and
inflammatory responses (Carrera-Quintanar et al., 2018). Detaram
et al. (2021) suggested that intake of higher levels of certain
flavonoids may improve vision outcomes in patients with AMD.
These findings were consistent with those of the BlueMountains Eye
Study, which revealed a connection between the overall
consumption of flavonoids and reduced probability of AMD.

These findings suggest that flavonoids help control the
development of AMD by modulating the gut microbial
composition to slow inflammation, oxidative stress, dyslipidemia,
and obesity.

4.1.2 Berberine
Berberine (BBR) or BBR hydrochloride is an isoquinoline

alkaloid derived from Coptis chinensis Franch. [Ranunculaceae;
coptidis rhizoma]. It exhibits pharmacological properties,
including anti-inflammatory, cardioprotective, and hypoglycemic
effects (Miao and Cui, 2022; Saha et al., 2023). Intestinal flora
enhances the bioavailability of orally administered BBR. The
intestinal microbiota transforms BBR into absorbable
dihydroberberine, which is five times more absorbable than BBR.
Dihydroberberine is not stable in solution and can be reoxidized to
BBR in intestinal tissues (Cheng et al., 2021).

BBR may inhibit inflammatory responses, oxidative stress, and
apoptosis by altering the growth of various intestinal bacteria. It can
reduce pathogenic bacteria and improve the metabolic and
inflammatory state of organisms by inhibiting the LPS/NF-κB
signaling pathway to promote the production of SCFAs,
improving the relative abundance of GM, augmenting the relative
abundance of SCFA-producing flora, and diminishing endotoxins
(Shen et al., 2021). Yang et al. (2022) found that BBR modulates the
GM and inhibits the initiation of the TLR4 signaling pathway, as

well as the release of the nucleotide-binding oligomerization
domain-like receptor protein 3 inflammasome and its cytokines.
Li et al. (2018) also found that BBR inhibits oxidative damage caused
by hydrogen peroxide (H2O2) in the human D407 RPE cell line.
Pretreatment of D407 cells with BBR effectively inhibited apoptosis
caused by H2O2 by rectifying irregular alterations in the nuclear
structure, impeding the reduction in mitochondrial membrane
potential, decreasing lactate dehydrogenase release, and impeding
the activity of caspase 3/7 induced by H2O2. Western blot analysis
revealed that BBR induced the phosphorylation and activation of
AMPK in D407 cells in a manner that is dependent on the amount of
time and dosage administered. In contrast, the action of BBR was
inhibited by treating cells with compound C or reducing AMPK
levels with specific siRNAs. Primary cultured human RPE cells
yielded comparable outcomes. The collective findings indicate
that BBR can protect RPE cells against oxidative stress via
AMPK pathway activation, thereby addressing and slowing the
progression of AMD.

Moreover, BBR can correct dyslipidemia by regulating the GM
to improve AMD. BBR can boost the presence of Ruminococcus,
Desulfovibrio vulnificus, Lactobacillus, and A. muciniphila, decline
pathogenic bacteria, such as Aspergillus and Trematode spirochetes,
promote the production of intestinal microbial metabolites such as
SCFAs, and restore the breakdown and assimilation of glycolysis,
amino acid metabolism, and carbohydrates (Liao et al., 2020),
rectifying the imbalance in the rat intestinal flora ratio caused by
a HFD, reducing the proportion of Firmicutes to Bacteroidetes,
safeguarding the intestinal mucosal barrier, improving intestinal
permeability, and preventing hyperlipidemia (Zhang et al., 2012).

4.1.3 Resveratrol
Resveratrol is a polyphenolic compound with a low molecular

weight naturally found in grapes, berries, and mulberries. It is
recognized as a natural anti-inflammatory agent with a broad
spectrum of medicinal effects, including anti-inflammatory,
antimicrobial, antioxidant, immune-modulatory, anti-
cardiovascular, and hepatocyte-protective activities (Boldyreva
et al., 2023; Ghavidel et al., 2023; Santos et al., 2023). However,
its notably low bioavailability poses a challenge in explaining the
material basis of its in vivo pharmacodynamic effects. Several recent
studies have shown that the exertion of its pharmacodynamic effects
is associated with intestinal flora. Regarding intestinal flora
regulation, resveratrol reduces the number of Bacteroidetes,
promotes the metabolism of SCFAs, increases the level of butyric
acid, and restores the intestinal flora to a homeostatic level (Alrafas
et al., 2019).

Resveratrol has the potential to regulate the abundance of GM,
thereby exerting antioxidant, anti-inflammatory, and anti-VEGF
properties. Dull et al. (2019) showed that resveratrol can regulate the
composition of gut bacteria, such as raising the amount of
Bifidobacterium, Bacillus anthropophilus, and Lactobacillus and
decreasing the amount of Enterococcus faecalis and Firmicutes. It
may also exert anti-metabolic and anti-inflammatory effects via
various pathways, such as NF-κB, arachidonic acid, activator
protein-1, or aryl hydrocarbon receptor (AHR), diminishing
proinflammatory elements and moderate granulocyte infiltration,
functioning as an anti-proliferative and anti-inflammatory agent (Li
et al., 2022b). Simultaneously, resveratrol can diminish the amount
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of oxidative stress damage in RPE cells by scavenging excess ROS,
enhancing antioxidant enzyme activity, improving mitochondrial
function, agonizing PPAR-α and peroxisome proliferator-activated
receptor-δ, and up-regulating the mRNA expression of antioxidant
genes BCL2 and HO1, thereby inhibiting the development of AMD.
Maugeri et al. (2018) found that resveratrol restored the methylation
levels of long-interspersed nuclear element-1 and reduced the
oxidative stress and inflammatory response in ARPE-19 cells by
regulating the functions of Sirtuin 1 and DNA methyltransferase.
Resveratrol can also inhibit the phosphorylation and activation of
vascular endothelial growth factor receptor 2 in endothelial cells and
exert anti-AMD effects by activating SIRT1, as well as down-
regulating the expression level of hypoxia-inducible factor-1α
(HIF-1α) and VEGF secretion in RPE cells (Zhang et al., 2015).

Resveratrol can ameliorate intestinal flora dysbiosis caused by a
HFD in mice, increase the amount of Bacteroidetes and Firmicutes,
stimulate the propagation of Lactobacillus and Bifidobacterium,
restore the imbalance in lipid metabolism, and significantly boost
the expression of FIAF to reduce the number of blood lipids (Qiao
et al., 2014). Chen et al. (2016) observed the impact of resveratrol on
the GM and trimethylamine-N-oxide (TMAO) levels in
apolipoprotein E knockout and choline-fed C57BL/6J mice. They
found that plasma trimethylamine and TMAO levels decreased in
the choline-fed resveratrol-treated group. Additionally, resveratrol
intervention caused a decrease in Firmicutes and an increase in
Bacteroidetes in the intestinal tracts of these mice, which indicated
that resveratrol could reduce the abundance of detrimental bacteria,
as well as effectively increase the relative abundance of advantageous
microorganisms and the amount of intestinal pathogenic
metabolites. These actions significantly enhance the
hyperlipidemic state, restore the normal level of blood lipids, and
could aid in preventing and controlling AMD by regulating its
risk factors.

4.2 Single botanical drugs

4.2.1 Poria cocos (Schw.) Wolf
[Polyporaceae; Poria]

Poria is a common botanical drug (Table 2). Its main chemical
components are polysaccharides, triterpenoids, sterols, and trace
elements, such as calcium, iron, zinc, selenium, potassium, sodium,
and phosphorus. Poria polysaccharides and triterpenoids have major
pharmacological activities. Contemporary pharmacological research
has demonstrated that Poria coccinea has antioxidant,
immunomodulatory, anti-inflammatory, and intestinal microbiota-
regulatory effects (Xu et al., 2023). Poria increases the beneficial
bacteria Lactobacillus and Bifidobacterium and decreases Vibrio
desulfuricans, inflammation-associated bacteria Mucor spp., and
Staphylococcus to attenuate oxidative stress, inflammatory
responses, and apoptosis (Ye et al., 2023). Huai et al. (2023)
evaluated the unique ability of Poria to promote water metabolism
in the body for the treatment of diabetic macular edema. They ranked
it high among the therapeutic drugs for proliferative diabetic
retinopathy.

Further, a computerized search of clinical cases related to the
treatment of macular edema in the Chinese full-text journal database
and Wanfang database ranked Poria in first place, with a recurrence

rate of 60 times. Kim et al. (2018) reported improved visual acuity
and disappearance of retinal and optic disk hemorrhages in patients
with non-proliferative glycoconjugate network after administration
of Poria-containing Modified-Goshajinkigan (Niucheshenqiwan in
Chinese). Lan et al. (2023b) found that Poria selectively modulated
the abundance of Odoribacter, Muribaculum, Oscillibacter, E. coli,
and Turicibacter, leading to a reduction of the inflammation levels
caused by dextran sodium sulfate (DSS) in mice. Poria aqueous
extract improves metabolic homeostasis and inflammation by
restoring intestinal homeostasis, controlling the relationship
between GM and host metabolites, modulating hypothalamic
neurotransmitters, decreasing proinflammatory cytokines, and
inhibiting the expression of TNF-α/NF-κB signaling pathway
proteins. Additionally, Poria can improve AMD risk factors, such
as hyperlipidemia and obesity, by regulating intestinal bacterial
communities.

Moreover, water-insoluble Poria polysaccharides could improve
intestinal mucosal integrity by regulating the intestinal bacterial
community and increasing the butyrate-producing biomass of
Clostridium perfringens (Sun et al., 2020a), thereby promoting
glucose-stimulated lipid metabolism, alleviating hyperlipidemia
and reducing inflammation and steatosis. Zhu et al. (2022)
investigated the effects of Poria oligosaccharides on glucose and
lipid metabolism disorders in HFD-induced obese mice. Compared
to controls, Poria oligosaccharides improved insulin resistance and
glucose intolerance and reduced insulin and blood glucose levels in
HFD-fed mice. Additionally, Poria oligosaccharides treatment
inhibited the mRNA expression of fatty acid synthesis regulators
in epididymal fat and the expression of proinflammatory factors,
such as TNF-α, IL-1β, IL-6, and MCP-1. Moreover, Poria
oligosaccharides partially rectified the imbalance of GM in HFD-
fed mice, accompanied by decreased various gut metabolites of
significant importance in impairing the intestinal barrier, such as
BAs, SCFAs, and tryptophan.

4.2.2 Panax ginseng C.A.Mey. [Araliaceae;
ginseng radix]

Ginseng, derived from the desiccated root and rhizome of Panax
ginseng C. A. Meyer, a member of the Wujiaceae family, possesses
several health benefits. It comprises a diverse range of active
components, including ginsenosides, polysaccharides, and volatile
oils (Su et al., 2023; Zhou et al., 2023), significantly affecting
immunity, oxidative stress, inflammation, apoptosis, and
coagulation (Zhou et al., 2023). Lee et al. (2015) utilized the
ginsenoside targeted transport pathway to improve nutrient
exchange in Bruch’s membrane of human donors, delaying its
aging and preventing the onset and progression of AMD. Betts
et al. (2012) reported that ginsenoside Rb1 from ginseng root extract
increases the number of cultured adult ARPE-19 cells while
decreasing the release of the angiogenic factor VEGF produced
by ARPE-19 cells, suggesting that Rb1 plays a role in the prevention
of angiogenic ophthalmopathies such as AMD. Cho et al. (2001)
demonstrated that ginsenosides inhibited TNF-α production in
mouse or human macrophages stimulated by LPS, suggesting
that ginseng has a preventive effect on AMD.

Additionally, ginseng ameliorates AMD risk factors by modulating
gut microbes. The ginsenoside Rg5 significantly lowered the F/B ratio
and markedly attenuated inflammatory responses caused by metabolic
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TABLE 2 Single botanical drugs and gut microbiota.

Single
botanical
drugs

Active
ingredients

Physiological function
related to gut microbiota

Gut microbiota References

Poria Poria polysaccharides Regulates intestinal bacterial communities Increases the butyrate-producing biomass of
Clostridium perfringens

Sun et al. (2020a)

Promotes lipid metabolism

Reduces inflammatory response

Poria
oligosaccharides

Restores intestinal homeostasis, modulates
intestinal flora–host metabolite interactions
to improve body metabolic homeostasis
and inflammation

Modulates the abundance of Odoribacter,
Muribaculum, Oscillibacter, Escherichia coli,
and Turicibacter

Lan et al. (2023b)

Restores imbalances in the gut microbiota Increased: Lactobacillus and Clostridium
difficile
Decreased: Helicobacter, Lachnospiraceae
family, Alistipes, Ruminococcus,
Faecalibacterium, Desulfovibrio, and
Helicobacter mucosus

Zhu et al. (2022)

Promotes the production of BAs, SCFAs,
and tryptophan metabolites

Improves disorders of glucose–lipid
metabolism to combat obesity

Ginseng Ginsenoside Increases SCFA levels Increased: Proteobacteria and Bacteroidetes
Decreased: Verrucomicrobia and the ratio of
F/B

Zhuang et al. (2021)

Intervenes in obesity by regulating the
composition of the intestinal flora,
improving glycolipid metabolism and
inflammatory responses

Ginseng pectin Regulates intestinal flora Increased: Akkermansia, Bifidobacterium,
Bacteroides, and Prevotella

Ren et al. (2023)

Increases levels of acetic, propionic, and
butyric acids and of valine

Activation of the AMPK pathway,
improving dyslipidemia and obesity

White ginseng
(WEWG)

Improves gut dysbiosis to fight obesity Increased: Lactobacillus and Parabacteroides
Decreased: F/B ratio, Ruminiclostridium

Zhou et al. (2020)

Red ginseng (WERG) Improves intestinal flora dysbiosis to fight
obesity

Increased: Bifidobacterium, Lactobacillus,
Akkermansia, and Gastrococcus
Decreased: Desulfovibrio and Escherichia
coli

Guo et al. (2015), Zhou et al.
(2020), Peng et al. (2021), Lee
et al. (2022), Eun et al. (2023)

Increases probiotic content for anti-aging
effects

Improves the structure and composition of
the intestinal microbiota to reduce the
inflammatory response

Astragalus Astragalus
polysaccharide (APS)

Improves immunity by improving gut
microbiota and increasing body weight and
immune organ indices

Increased: Parasutterella, Parabacteroides,
Clostridium perfringens XIVb,
Butyricicoccus, Dorea, Lactobacillus,
Bifidobacterium, Rousselaeria, and
Desulfovibrio
Decreased: Pseudoflavonifractor,
Parapovella, Tyzzerella, and
Lachnoclostridium

Li et al. (2023), Wei et al. (2023),
Zhao et al. (2023)

Improvement of gut microbiota, lowering
of IL-1β, IL-6, and endotoxin levels, and
inhibition of the TLR4/NF-κB pathway to
reduce inflammatory responses

Modulates gut microbial abundance,
increases SCFA production, and promotes
anti-inflammatory bacteria

Fermented
Astragalus

Intervenes in the inflammatory state by
regulating the balance of Th1/Th2/Th17/
Treg-related cytokines

Alters the structure of the intestinal
microbiota and enriches Akkermansia and
Aristichthys species

Li et al. (2022c)

Atractylodes
macrocephala

Atractylodes
macrocephala
volatile oil

Reduces inflammatory stimuli Increased: Enterorhabdus, Parvibacter, and
Akkermansia
Decreased: Turicibacter, Parasutterella, and
Erysipelatoclostridium

Cheng et al. (2023)

Atractylodes
polysaccharide

Increases the abundance and diversity of
gut microbiota

Increased: Relative abundance of potentially
beneficial bacteria, such as Bifidobacterium
bifidum

Kai et al. (2022)

(Continued on following page)
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endotoxemia. Moreover, Rg5 markedly decreased the abundance of
Firmicutes and Verrucomicrobia. It augmented the abundance of
Proteobacteria and Bacteroidetes in a mouse model of diabetes at the
phylum level, ameliorating diabetes-associated dysbiosis and metabolic
disorders of the intestinal microbiota. Ginseng saponins inhibit obesity
and its complications by improving the metabolism of endogenous
substances in the gut, reducing inflammation, and altering the
composition of the GM. Ginseng pectin, a mixed pectin containing
the structural domains of rhamnogalacturonan-I and
homogalacturonan, improves the intestinal flora by increasing
Bifidobacterium, Akkermansia, Prevotella, and Bacteroides, which
increases the levels of propionic, acetic, and butyric acids and valine.
These, in turn, participate in cinnamonoside-, 10-hydroxy-8-fen-2-
fenuglone glucoside-, leucovorin-, 24-propylcholesterol-3-ol-, and
other lipid regulation-related pathways in serum metabolite
alterations, and activation of the AMP-activated protein kinase
pathway, to ameliorate lipid disorders in obese rats (Zhuang et al.,
2021; Ren et al., 2023).

Processed ginseng is categorized into white (dried ginseng)
(WEWG) and red (steamed ginseng) (WERG). In HFD-induced
obese mice, aqueous extracts of WEWG and WERG demonstrated
the ability to alleviate intestinal dysbiosis and exhibited anti-obesity
effects, particularly the aqueous extract of WEWG. WEWG
markedly decreased the F/B ratio and the amount of
Ruminiclostridium while augmenting the amount of
Parabacteroides and Lactobacillus. WERG decreased the amount
of Desulfovibrio and augmented the amounts of S24-7 and
Gastrococcus (Zhou et al., 2020). A separate in vitro experiment
demonstrated that WERG stimulated the growth of the probiotics
Lactobacillus and Bifidobacterium bifidum and curbed the
overgrowth of E. coli, thereby enhancing the microbiological
structure of the intestinal tract and reducing in vivo
inflammation (Guo et al., 2015). Peng et al. (2021) revealed that
WERG treatment caused a more pronounced enhancement of
probiotic levels, such as those of B. bifidum and Akkermansia,
than WEWG, indicating the increased anti-aging efficacy of WERG.

Additionally, research on elderly Korean women showed that
the consumption of fermented red ginseng (RG) modified 20 distinct
bacterial species, thereby enhancing overall wellbeing via its impact
on defecation, biochemical parameters, and metabolism (Lee et al.,
2022). Eun et al. (2023) found that the addition of WERG and its
subsequent microbial conversion via the fermentation of RG
resulted in alterations in the composition of the GM, exhibiting

characteristics of both RG and fermented RG, which were linked to
an improved obesity phenotype and glucose balance. These
modifications were also linked to the enhanced integrity of the
gut barrier, thus safeguarding against inflammation caused by heart
failure at both local and systemic levels.

4.2.3 Astragalus mongholicus Bunge [Fabaceae;
astragali radix praeparata cummelle]

Astragalus is the dried root of Astragalus membranaceus. Its
main components are polysaccharides, saponins, flavonoids, amino
acids, and other compounds. Additionally, it contains alkaloids,
glucuronic acid, iodine, silicon, zinc, and other trace elements.
Astragalus polysaccharide (APS) (Zheng et al., 2020) and
astragaloside (Yang et al., 2022) are the main active components
of Astragalus. It has antioxidant, anti-inflammatory, anti-aging,
anti-apoptosis, immunomodulatory, intestinal mucosa protective,
and intestinal flora regulatory effects and modulates signaling
pathways (Zheng et al., 2020; Liang et al., 2023). Li et al. (2002)
studied a mouse model of retinal photoreceptor degeneration
induced by exposure to bright light and the DNA alkylating
agent methyl methanesulfonate. They found that astragaloside A
reduced the expression of genes involved in necroptosis and
inflammatory responses, inhibited microglia activation, and
attenuated retinal oxidative stress and inflammation, thereby
protecting photoreceptor cells. Similarly, Sun et al. (2020b)
discovered that ultrasmall astragaloside-loaded lipid nanocapsule
eye drops improved retinal morphology and function in sodium
iodate (NaIO3)- induced dry AMD mice and protected retinal
function from oxidative stress and apoptosis.

Astragalus can exert anti-inflammatory, antioxidant, and
immunomodulatory effects by regulating GM abundance. APS
altered its composition, enhancing the variety of GM, leading to
the reduction in the relative prevalence of Pseudoflavonifractor and
Parapovella and the increase of Parabacteroides, Parasutterella,
Butyricicoccus, Clostridium perfringens XIVb, and Dorea. APS
also increased the immune organ indexes and body weights,
reduced IL-6, IL-1β, and endotoxin levels, inhibited the TLR4/
NF-κB pathway, and improved immune disorders in rats via
modulating their GM, particularly certain bacteria implicated in
immune and inflammatory responses and production of SCFAs
(Zhao et al., 2023). Wei et al. (2023) found that APS regulated GM
abundance, enhanced the abundance of anti-inflammatory bacteria,
generation of SCFAs, reversed the aberrant expression of NF-κB,

TABLE 2 (Continued) Single botanical drugs and gut microbiota.

Single
botanical
drugs

Active
ingredients

Physiological function
related to gut microbiota

Gut microbiota References

Decreased: Proportion of harmful bacteria,
such as Clostridium strictum 1 and Shigella
coli

Reduces proinflammatory cytokine
overexpression to achieve anti-
inflammatory effects

Decreases systemic LPS Increased: Lactobacillus and Rhodococcus
Decreased: Firmicutes, Clostridium difficile,
and Escherichia coli

He et al. (2023b)

Increases levels of tryptophan metabolites

Regulates the composition of intestinal flora

Regulates disorders of glucose and lipid
metabolism
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NrF2, and their downstream factors in the brain-gut axis, and
exerted anti-inflammatory and antioxidant effects on neuronal
cells. Li et al. (2023) found that APS significantly activated
intestinal TLR4 and MAPK pathways, reversing intestinal flora
disorders in immunocompromised mice. APS resulted in an
increase in bacterial populations at the genus level, including
Lactobacillus, Bifidobacterium, Rousselaeria, and Desulfovibrio,
and a decrease in the abundances of Tyzzerella and
Lachnoclostridium. However, APS did not enhance the immune
system of immunocompromised mice with GM depletion. Li et al.
(2022c) discovered that supplementing mice with fermented
Astragalus (FA) controlled abnormal activation of the intestinal
immune barrier, resulting in decreased levels of MPO and
immunoglobulin E and increased levels of immunoglobulin A.
The levels of TNF-α, IL-1β, IL-6, and IL-17 were downregulated
in the intestines, and those of TGF-β and IL-10, which are anti-
inflammatory, were increased, indicating that FA may affect the
inflammatory process by controlling Th1/Th2/Th17/Treg-
related cytokines.

Furthermore, fatty acid supplementation modified the
composition of the GM and enhanced the presence of
Akkermansia and Aristochthys spp., both of which were associated
with the generation of SCFAs. Fermented Astragalus-induced
microorganisms and their metabolites play a role in preserving the
intestinal mucosal barrier’s integrity by affecting intestinal mucosal
immunity. Mice supplemented with FA exhibited greater expression
of intestinal tight junction protein and mucous-secreting protein ZO-
1 and occludin, as well as MUC2 genes, than those supplemented with
unfermented Astragalus. Repair of the intestinal mucosal barrier by
FA has been validated by regulating apoptosis in intestinal epithelial
cells Li et al. (2022c).

4.2.4 Atractylodes macrocephala Koidz.
[Asteraceae; atractylodis macrocephalae rhizoma]

Atractylodes macrocephala, commonly referred to as “Yuzhu,”
“Xizhu,” or “Wuzhu,” functions as the desiccated rhizome of A.
macrocephala within the Asteraceae family. Atractylodes
macrocephala contains sesquiterpenes, lactones, polysaccharides,
flavonoids, and other chemical components that have antioxidant,
anti-apoptosis, and anti-inflammatory effects, improve gastrointestinal
function and immunity, and lowers blood lipids (Xie et al., 2023). In a
study involving a macular edema formula containing A. macrocephala,
the total volume of the macular center area in diameter of the patients
was significantly reduced, and the visual acuity and visual field
were significantly improved (Zhu et al., 2016). In addition,
Atractylodes may improve AMD risk factors by modulating gut
microbes to act as an anti-inflammatory and lipid-lowering agents.
Atractylodes macrocephala volatile oil reduces harmful bacteria, such as
Parasutterella, Turicibacter, and Erysipelatoclostridium. It increases the
number of beneficial bacteria, such as Parvibacter, Enterorhabdus, and
Akkermansia, attenuating the inflammatory response in DSS-induced
mouse models (Cheng et al., 2023). Kai et al. (2022) found that
Atractylodes polysaccharide modulates the intestinal flora by
increasing the abundance and diversity of intestinal flora, decreasing
the proportion of harmful bacteria, such as Clostridium strictum 1 and
Shigella coli, and increasing the relative abundance of potentially
beneficial bacteria, such as B. bifidum, thereby alleviating DSS-
induced weight loss. It also prevented the overexpression of

proinflammatory cytokines TNF-α, IL-1β, and IL-6, reduced
neutrophil infiltration, and upregulated the expression of
MUC2 and the tight junction protein claudin-1, thus attenuating
DSS-induced intestinal mucosal barrier damage in mice. In a rat
model administered A. macrocephala, He et al. (2023b) observed an
abundance of Lactobacillus and Rhodococcus species in the intestine, as
well as an increase in tryptophan metabolites, such as indole, indole-3-
propionic acid, and tryptophan. This, in turn, increased the expression
of the intestinal AHR. The activation of AHR caused the upregulation
of GLP-1 and IL-22 at proteins and mRNA levels, decreased systemic
LPS, improved gut barrier function, activated the hepatic STAT3/IL-
22R/peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) and pancreatic
GLP-1R/p-CREB signaling pathways, and improved lipid metabolism
and insulin resistance.

4.3 Botanical drug decoction

4.3.1 Shenling Baizhu powder
Shenling Baizhu powder comprises ginseng, Poria, A.

macrocephala, Glycyrrhiza glabra L. [Fabaceae; radix et rhizoma
glycyrrhizae], Dioscorea polystachya Turcz [Dioscoreaceae;
dioscoreae rhizoma], Coix lacryma-jobi var. ma-yuen (Rom.Caill.)
Stapf [Poaceae; coicis semen], Nelumbo nucifera Gaertn.
[Nelumbonaceae; lotus seed], Lablab purpureus subsp. Purpureus
[Fabaceae; semen lablab album], Wurfbainia villosa (Lour.)
Skornick. & A.D.Poulsen [Zingiberaceae; amomi fructus], and
Platycodon grandiflorus (Jacq.) A.DC. [Campanulaceae;
platycodonis radix]. Recent research has shown that this powder
possesses anti-inflammatory, antiviral, and antioxidative properties,
improves immune function, regulates blood lipids, balances intestinal
flora, and safeguards the intestinal mucosal barrier. Ginseng and
Atractylodes Maculatus San protect the blood-retinal barrier,
inhibit the expression of inflammatory factors, balance the
ecological stability of the intestinal tract by regulating the intestinal
bacterial flora, and improve the risk factors for macular edema (Bai
et al., 2023). Polysaccharides of Shenling Baizhu powder alleviate
inflammation by regulating tryptophan metabolism in Bacteroides, B.
bifidum, and Ruminococcus. The tryptophan metabolite kynurenine
activates the expression of polypeptide 1 (CYP1A1) and AHR and
promotes the expression of anti-inflammatory IL-10 (Lv et al., 2022).
Botanical drugs that strengthen the spleen and benefit qi have
demonstrated a significant impact in regulating intestinal flora and
enhancing immunity in animal models of spleen deficiency and
clinical studies (Lima-Fontes et al., 2022). Shenling Baizhu powder
has the potential to enhance the prevalence of the SCFA-producing
bacteria Puccinia and Treponema and decrease the prevalence of the
opportunistic pathogens Vibrio desulfuricans and Cholera spp. It
significantly reduces the level of myeloperoxidase, increases the
levels of catalase and SOD in the serum of rats, and exerts
antimicrobial effects by enhancing the antioxidant capacity and
modulating the intestinal microbiota (Gu et al., 2021).

5 Conclusion

The human gut is home to hundreds of millions of bacteria and
is assumed to be the “second human genome.” Presently, an

Frontiers in Pharmacology frontiersin.org13

Yu et al. 10.3389/fphar.2024.1356324

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1356324


unhealthy lifestyle and the improper use of antibiotics can result in
intestinal flora dysbiosis. The disruption of the GM and alterations
in metabolites, including LPS, oxysterols, SCFAs, and BAs, have
been linked to various factors impacting AMD, including oxidative
stress, apoptosis, aging, inflammation, dyslipidemia, obesity, and
modified choroidal hemodynamics.

Exploring the relationship between TCM and GM could be
highly beneficial. This investigation could provide insight into
how TCM works to prevent and manage AMD, thus broadening
the scope of TCM theory. In recent years, there have been fewer
reports of TCM treating AMD by modulating GM. This review
focused on the correlation between GM and its metabolites and
AMD-related risk factors, drawing upon previous research.
Furthermore, we demonstrated the possible ways TCM
modulates the GM to improve AMD based on classification.
While organizing the data, we found that the diversity of
intestinal flora may be associated with host species, dietary
preferences, and lifestyle habits. Consequently, we
hypothesized that different parts of the intestinal tract harbor
different types and amounts of dominant GM within the same
individual. However, the relationship between various gut
bacteria and the precise mechanisms by which the GM
influences AMD remain unclear. Further studies are required
to identify the precise pharmacodynamics, target pathway, and
mechanism of action of TCM. Consequently, future research
should concentrate on the biotransformation of TCM active
components via the GM and whether these biotransformed
metabolites positively or negatively influence TCM’s efficacy
in treating AMD. Further animal trials and clinical
randomized, controlled, multicenter, large-sample studies
should be conducted to confirm the effectiveness and safety of
TCM in treating AMD via GM regulation and to identify novel
therapeutic objectives for AMD.
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