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Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor
prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent
therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an
endogenous hormone, was found to be valid in preventing I/R injury in a variety of
organs. However, a systematic review covering all neuroprotective effects of
melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a
comprehensive overview of the influence of melatonin on cerebral I/R injury by
collecting all available literature exploring the latent effect of melatonin on
cerebral I/R injury as well as ischemic stroke. In this systematic review, we
outline the extensive scientific studies and summarize the beneficial functions
of melatonin, including reducing infarct volume, decreasing brain edema,
improving neurological functions and attenuating blood-brain barrier
breakdown, as well as its key protective mechanisms on almost every aspect
of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation,
apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial
dysfunction. Subsequently, we also review the predictive and therapeutic
implications of melatonin on ischemic stroke reported in clinical studies. We
hope that our systematic review can provide the most comprehensive
introduction of current advancements on melatonin in cerebral I/R injury and
new insights into personalized diagnosis and treatment of ischemic stroke.
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1 Introduction

Ischemic stroke is one of the main causes of mortality and the leading cause of adult
disability worldwide. It affects the lives of millions of patients and imposes a heavy financial
burden on the society (Regenhardt et al., 2018; Zhou et al., 2018; Datta et al., 2020).
According to estimates in 2020, the average costs of hospitalization on ischemic stroke per
person was amounted to $18,154 and the 3-year follow-up cost was $44,347 in the
United States (Yousufuddin et al., 2020). Currently, therapeutic options for ischemic
stroke are still very limited and the only drug authorized by FDA is recombinant tissue
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plasminogen activator (t-PA), which can accelerate clot dissolution
and blood reperfusion. However, administration of t-PA is only
suitable for about 5% of ischemic stroke patients due to the narrow
therapeutic window (Zhou et al., 2018; Powers et al., 2019).
Moreover, it may paradoxically result in cerebral I/R injury
owing to blood flow restoration, which can lead to reactive
oxygen free radical accumulation and thus cause brain edema,
neurological deficits as well as individual death through a series
of mechanisms, including oxidative stress, neuroinflammation,
apoptosis, excessive autophagy, glutamate excitotoxicity, and
mitochondrial dysfunction (Duehrkop and Rieben, 2014; Sarmah
et al., 2018; Datta et al., 2020). Nowadays, a valid treatment for
cerebral I/R injury has not been determined. Despite several
substances have shown neuroprotective effects on cerebral I/R
injury models, consistent results are not be obtained in further
clinical trials. Thus, more potentially effective substances are being
actively studied, among which melatonin is the most concerned.

Melatonin (N-acetyl-5-methoxytrytamine), an amine hormone
discovered by Aaron Lerner half a century ago, is mostly secreted by
the pineal gland and exists in extra-pineal sites including the retina,
gastrointestinal tract, and bone marrow as well (Zawilska JolantaB.
et al., 2009; Samantaray et al., 2009; Venegas et al., 2012). The timing
of melatonin secretion adapts to the light-dark cycle (Zawilska,
Skene, and Arendt, 2009a). Therefore, it is originally considered to
be responsible for controlling circadian rhythms, including sleep-
wake rhythm, neuroendocrine rhythm as well as seasonal response,
by providing night information and mediating dark signals
(Claustrat, Brun, and Chazot, 2005). Moreover, melatonin is
involved in lowering core body temperature at night and
promotes sleep tendency, whereas its secretion is disrupted upon
exposure to light, thus causing wakefulness (Akerstedt et al., 1979).
Additionally, melatonin plays important physiological roles in
multiple other systems: cardiovascular system, respiratory system,
reproductive system, immune system, and endocrine system, etc.,
For example, recent studies have indicated that melatonin could take
participate in the regulation of blood pressure and heart rate via
endothelium-dependent vasodilation and sympathovagal
autonomic modulation (Girouard et al., 2001; Baker and
Kimpinski, 2018). Besides, when combing with melatonin
receptors on pancreatic islets, melatonin could induce the
production of insulin growth factors, and subsequently promote
insulin receptor tyrosine phosphorylation, thereby modulating
insulin sensitivity and glucose homeostasis (Sharma et al., 2015).

To date, melatonin is thought to exert various physiological
effects primarily through its action on two specific membrane
receptors, MT1 and MT2. As members of the seven-
transmembrane G protein-coupled receptor family, these two MT
receptors are widely distributed throughout the central nervous
system, including cerebral cortex, hippocampus, cerebellum,
midbrain and especially hypothalamus and suprachiasmatic
nucleus (Ekmekcioglu, 2006; Ng et al., 2017). Moreover,
MT1 receptors are more abundant than MT2 receptors in most
brain regions. Recent researches have demonstrated that in the
various CNS regions, melatonin may exert multiple
neuroprotective effects by direct binding to MT1 and
MT2 receptors. In mouse primary neurons, Liu et al. observed
that melatonin supplementation could activate Akt/GSK-3β/
CRMP-2 signaling by acting on MT2 receptors, subsequently

enhance excitatory synaptic transmission and thus promote
functional and synaptic formation (Liu et al., 2015). Similarly, in
APP/PS1 transgenic mice, melatonin administration could reverse
mitochondrial dysfunction and decrease abnormal Aβ deposition in
the cortex, striatum, and hippocampus brain region via
MT2 receptor signaling, eventually improving cognitive and
behavior deficits (Dragicevic et al., 2011). Additionally, in a
transgenic mouse model of Huntington’s disease (HD),
MT1 receptor levels in mice brain were much lower compared
with wild-type controls. However, melatonin treatment could
inhibit mutant huntingtin-induced caspase-3 activation and
preserve MT1 receptor expression. Furthermore, melatonin
would delay disease onset and mortality of HD mice, which was
dependent on the presence and activation of MT1 receptor (Wang
et al., 2011).

More importantly, emerging studies have confirmed that
melatonin also plays an important effect in preventing I/R injury
in a variety of organs including heart, liver, and brain (Tai et al.,
2010; Kang et al., 2011; Zhang et al., 2019). Zhang et al. observed that
melatonin administration contributed to improve mitochondrial
fusion/mitophagy through inhibiting I/R-mediated Optic atrophy
1 (OPA1) downregulation, thereby maintaining myocardial
function and cardiomyocyte viability in myocardial I/R injury
(Zhang et al., 2019). Additionally, Kang et al. confirmed that
melatonin could protect against hepatic I/R injury via mitigating
Toll-like receptor 3 (TLR3) and Toll-like receptor 4 (TLR4)
overexpression, which further inhibited TLR-mediated
downstream inflammatory signaling cascades, including myeloid
differentiation primary response 88 (MyD88)-dependent and toll-
receptor-associated activator of interferon (TRIF)-dependent
pathways (Kang, Koh, and Lee, 2011). As for cerebral I/R injury,
Tai et al. demonstrated that melatonin reduced endothelial damage
and preserved blood-brain barrier (BBB) integrity via attenuating
matrix metalloproteinase-9 (MMP-9) protein expression and
activity, thereby exerting neuroprotective effects (Tai et al., 2010).
Nowadays, growing studies have demonstrated that melatonin-
induced protective effects exert an important role in the brain.
Thus, melatonin is expected to become a latent therapeutic agent in
brain I/R injury. However, almost no systematic review that
covering all protective effects of melatonin in cerebral I/R injury
has been reported. Based on existing evidence, we conduct this
comprehensive review aiming to study the neuroprotective effect of
melatonin and the underlying molecular mechanisms, and explore
the latent clinical application prospects of melatonin in cerebral I/R
injury together with ischemic stroke.

2 Article search strategy process and
study selection

A total of 920 articles are identified in PubMed database by using
the following terms: melatonin and cerebral ischemia/brain
ischemia/cerebral infarction/brain infarction/stroke/ischemia-
reperfusion. Among them, by screening the titles and abstracts,
503 apparently irrelevant articles are excluded. 293 articles are
further removed after reviewing the full-text articles for
eligibility, among which 142 articles are reviews and meta-
analyses, 8 articles are not related to melatonin, 90 articles are
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TABLE 1 Protective effects of melatonin on in vitro cerebral I/R injury model.

Time Dose Effect Mechanism References

N2a cell line

24 h before HR 10, 20 µM reduced cell death alleviated mitochondrial dysfunction Wei et al. (2019)

2 h before HR 1, 5, 10, 20 µM increased cell viability anti-oxidative stress, anti-apoptosis Xing et al. (2019)

30 min after OGD 100, 200, 400 mM reduced cell death anti-inflammation Liu, Ran, et al. (2019)

immediately before
reoxygenation

1, 10, 100 µM increased cell viability anti-apoptosis Duan et al. (2006)

immediately before
reoxygenation

12.5, 25, 50,
100 nM

reduced cell death anti-apoptosis Ran et al. (2021)

immediately before
reoxygenation

50 µM reduced cell death anti-oxidative stress, anti-apoptosis, alleviated
mitochondrial dysfunction

Chen et al. (2021)

SH-SY5Y cell line

immediately before OGD 0.01, 0.1, 1 mM reduced cell death anti-oxidative stress, alleviated mitochondrial
dysfunction

Pei and Cheung, (2003)

immediately before
reoxygenation

0.01, 0.1, 1, 10 mM reduced cell death, increased
cell viability

anti-oxidative stress, anti-inflammation, anti-
apoptosis, inhibited autophagy

Zhi et al. (2020)

PC12 cell line

30 min before OGD 50 µM reduced cell death anti-oxidative stress, anti-inflammation, anti-
apoptosis, inhibit autophagy

Yang, Zang, et al. (2020)

HT22 cell line

4 h before OGD 25, 50, 100 µM increased cell viability alleviated mitochondrial dysfunction Liu, Cao, Gao, Li, Xia, et al.
(2021)

immediately before OGD 50 µM reduced cell death - Luchetti et al. (2022)

immediately before
reoxygenation

25, 50, 100 µM reduced cell death anti-oxidative stress, anti-apoptosis Liu, Cao, Gao, Li, Zeng, et al.
(2021)

immediately before
reoxygenation

50 µM reduced cell death anti-oxidative stress, alleviated mitochondrial
dysfunction

Nasoni et al. (2021)

BV-2 cell line

24 h before HR 1, 5, 10, 30, 100,
300 µM

increased cell viability anti-inflammation Azedi et al. (2019)

primary cortical neurons

30 min before OGD 10, 20, 50, 100,
500 µM

reduced cell death anti-apoptosis Lin et al. (2018)

immediately before OGD 1, 5, 10 µM reduced cell death anti-oxidative stress, anti-inflammation Tai et al. (2011)

immediately before OGD 1, 10, 30, 100 µM reduced cell death anti-apoptosis Wang et al. (2009)

immediately before
reoxygenation

6.25, 12.5, 25,
50 nM

reduced cell death anti-apoptosis Ran et al. (2021)

primary cerebellar granule neurons

immediately before
reoxygenation

0.001, 0.1, 10 µM reduced cell death anti-apoptosis Han et al. (2006)

primary striatal neurons

immediately before OGD and
reoxygenation

100 µM reduced cell death anti-apoptosis Andrabi et al. (2004)

hippocampal slice cultures

30 min before OGD 1, 3, 10, 30 µM reduced cell death inhibited glutamate excitotoxicity Patino et al. (2016)

(Continued on following page)
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not related to cerebral I/R injury model or ischemic stroke model,
including traumatic brain injury (TBI), neurodegenerative diseases,
neonatal encephalopathy, 51 articles are not published in English,
and 2 articles are with incomplete information. At last, 124 eligible
studies are included in the review. Specifically, 32 studies are
focusing on in vitro cerebral I/R injury model (Table 1),
98 studies on in vivo cerebral I/R injury model or ischemic
stroke model (Table 2), 6 clinical studies are related to cerebral
I/R injury or ischemic stroke. The flow of screening process is shown
in Figure 1.

3 Protective effects of melatonin in
experimental I/R injury models

During ischemic stroke, blood supply for the brain is
interrupted, which can cause irretrievable tissue damage.
Ischemic tissue injury is commonly attributed to tissue hypoxia
and the subsequent cellular ATP depletion, which may in turn cause
death of neurons and glia and then lead to the brain tissue infarction
as well as neurological deficits. After reperfusion, the generation of
reactive oxygen species (ROS) is at an accelerated rate in tissues
(Granger and Kvietys, 2015). The central nervous system (CNS) is
particularly sensitive to ROS because it contains high concentrations
of substances that promote oxidative processes, including iron,
ascorbic acid, and polyunsaturated fatty acids, while low amounts
of endogenous antioxidants (Watson et al., 2016). ROS
accumulation can cause reperfusion injury, including
programmed cell death and necrosis in the brain through
triggering a cascade characterized by ionic imbalance,
mitochondrial disturbances, oxidative stress and endoplasmic
reticulum (ER) stress (Murphy and Steenbergen, 2008; Bagheri
et al., 2016; Lin et al., 2018). Thus, protecting CNS cells from I/R
injury is considered as an important therapeutic strategy for
ischemic stroke treatment. For investigations of cerebral I/R
injury, the preferred in vivo model is middle cerebral artery
occlusion (MCAO), including transient MCAO and permanent
MCAO (Lemmerman et al., 2022). Besides, neurons and glial
cells subjected to oxygen-glucose deprivation/reoxygenation
(OGD/R) are common in vitro models, allowing us to investigate
the specific feature of different cell types.

As a free radical scavenger and antioxidant, melatonin has been
inferred to exert a neuroprotective effect in cerebral I/R injury. Up

till now, large amounts of studies have indicated that treatment with
melatonin before and after OGD can exert neuroprotective effects in
CNS cells. Detailed characteristics of included studies are shown in
Table 1 (Vlkolinsky and Stolc, 1999; Pei and Cheung, 2003; Andrabi
et al., 2004; Uchida et al., 2004; Duan et al., 2006; Gasparova, Stolc,
and Snirc, 2006; Han et al., 2006; Wang et al., 2009; Guo et al., 2010;
Tai et al., 2011; Parada et al., 2014; Buendia et al., 2015; Huang et al.,
2015; Patino et al., 2016; Suofu et al., 2017; Carloni et al., 2018; Lin
et al., 2018; Azedi et al., 2019; Beker et al., 2019; Liu, Ran, et al., 2019;
Wei et al., 2019; Xing et al., 2019; Xiang et al., 2020; Yang, Zang,
et al., 2020; Zhi et al., 2020; Liu, Cao, Gao, Li, Xia, et al., 2021; Liu,
Cao, Gao, Li, Zeng, et al., 2021; Nasoni et al., 2021; Ran et al., 2021;
Luchetti et al., 2022; Sun et al., 2022; Su et al., 2023). Lin et al.
reported that exposure of cultured neurons obtained from the
cerebral cortices of Sprague-Dawley rats to 30 min of OGD and
1, 2, 4, and 24 h of reoxygenation caused the increase of cell
apoptosis, while pretreatment with melatonin (10–500 µM) before
OGD/R for 30 min could promote the survival of neurons (Y.W. Lin
et al., 2018). Subsequently, Yang et al. confirmed that compared with
control groups, pretreatment with melatonin (50 µM) in the
PC12 cell line exposed to OGD for 30 min and reoxygenation for
24 h had a lower neuronal apoptosis rate (Yang, Zang, et al., 2020).
In addition, in cultured neurons from CA1 and CA3 hippocampal
regions, administration of melatonin (1, 3, 10, and 30 µM) after
OGD/R could lead to a decrease in OGD/R-induced neuronal injury
and death compared to control groups (Patino et al., 2016).
Similarly, consistent results were also observed in a study using
melatonin-treated SH-SY5Y cell line models performed by Zhi et al.
(Zhi et al., 2020). Apart from neuronal cells, the neuroprotective
effect of melatonin has also been confirmed in glial cells. In BV-2 cell
line, pretreatment with melatonin (10, 100, and 300 µM) at 24 h
prior to OGD/R was found to increase the viability of cells exposed
to 3 h of OGD and 3, 6, and 24 h of reoxygenation (Azedi
et al., 2019).

More importantly, emerging studies have indicated that
melatonin exert neuroprotective effects in stroke animals
(Table 2) (Li et al., 1997; Kilic et al., 1999; Ling et al., 1999;
Borlongan et al., 2000; Sinha et al., 2001; Gupta et al., 2002;
Kondoh et al., 2002; Pei et al., 2002; Pei et al., 2002; Sun et al.,
2002; Pe and Cheung, 2003; Pei et al., 2003; Andrabi et al., 2004;
Gupta et al., 2004; Lee et al., 2004; Pei and Cheung, 2004; Torii et al.,
2004; Zou et al., 2004; Kilic E. et al., 2005; Kilic U. et al., 2005; Lee
et al., 2005; Chen et al., 2006; Chen et al., 2006; Zou et al., 2006; Lee

TABLE 1 (Continued) Protective effects of melatonin on in vitro cerebral I/R injury model.

Time Dose Effect Mechanism References

30 min before OGD 30, 100 µM reduced cell death anti-oxidative stress Gasparova et al. (2006)

immediately before OGD 1, 3, 10, 25, 50,
100 µM

reduced cell death anti-apoptosis Carloni et al. (2018)

immediately before OGD 50 µM reduced cell death - Luchetti et al. (2022)

immediately before HR 0.1, 1, 10, 100 µM reduced cell death anti-oxidative stress Uchida et al. (2004)

0, 1, 2 h after OGD 0.1, 1, 10 µM reduced cell death anti-oxidative stress Parada et al. (2014)

30 min before and after OGD/R 1, 10, 100,
1,000 nM

reduced cell death anti-oxidative stress, inhibited glutamate
excitotoxicity

Buendia et al. (2015)

HR: hypoxia/reoxygenation; OGD/R: oxygen and glucose deprivation/reoxygenation.
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TABLE 2 Protective effects of melatonin on in vivo cerebral I/R injury model or ischemic stroke model.

Route Time Dose
(mg/kg)

Effect Mechanism References

Sprague-Dawley rats

i.p. 3 h before MCAO 50 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
apoptosis, alleviated mitochondrial
dysfunction

Yip et al. (2021)

i.p. 30 min before MCAO 5 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
inflammation, anti-apoptosis,
inhibited glutamate excitotoxicity

Pei et al. (2002), Pei and Cheung, 2004; Koh
(2008a), Koh, 2008b; Koh (2008c), Koh,
2008d; Koh (2008e), Koh (2011), Koh,
2012a; Koh, 2012b; Li et al., 2014; Shah et al.,
2018; Shah et al., 2019; Ling et al., 2020

i.p. 30 min before MCAO 10 reduced brain infarct volume,
improved neurological function

anti-inflammation, anti-apoptosis Liu and Cheung, 2013; Ma et al., 2013; Xu
and Cheung, 2023

i.p. 30 min before MCAO 15 reduced brain infarct volume anti-oxidative stress Pei et al. (2002), Pei et al. (2002)

i.p. 30 min before MCAO 50 reduced brain infarct volume,
preserved BBB integrity

anti-oxidative stress Pei et al. (2002), Pei et al. (2003)

i.p. 30 min after MCAO 10, 20, 40 improved neurological function anti-apoptosis Chen et al. (2022)

i.p. 1 h after MCAO 5 reduced brain infarct volume - Pei et al., (2003)

i.p. 5 min before
reperfusion

10 reduced brain infarct volume
and brain edema, improved
neurological function

anti-oxidative stress, anti-apoptosis Gupta et al. (2004)

i.p. immediately before
reperfusion

10 reduced brain infarct volume anti-apoptosis Sung et al. (2009)

i.p. 30 min after
reperfusion

50 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
apoptosis, alleviated mitochondrial
dysfunction

Chen et al. (2021)

i.p. 1.5, 24, 48 h after
reperfusion

20,50 educed brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
inflammation

Lin et al. (2019)

i.p. 6, 24, 48 h after
reperfusion

30 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
apoptosis, alleviated mitochondrial
dysfunction

Chen et al. (2021)

i.p. once daily before
MCAO

10 reduced brain infarct volume
and brain edema, improved
neurological function

inhibited autophagy Feng et al. (2017)

i.p. once daily after MCAO 5, 10 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
inflammation, anti-apoptosis,
inhibited autophagy

Nair et al., 2011; Zheng et al., 2014; Hao
et al., 2021

i.p. twice daily after PT 50 preserved BBB integrity anti-inflammation Jang et al. (2012)

i.p. 30 min before MCAO
and 30 min after
reperfusion

5 reduced brain infarct volume
and brain edema, improved
neurological function

anti-oxidative stress, anti-
inflammation

Zhao et al., 2018; Zhao et al., 2019a

i.p. 15 min before MCAO
and 6, 12 h after
reperfusion

10 reduced brain infarct volume anti-oxidative stress, anti-apoptosis Sun et al. (2002)

i.v. immediately before
reperfusion

5 reduced brain infarct volume
and brain edema, improved
neurological function

anti-inflammation, anti-apoptosis,
inhibited glutamate excitotoxicity

Lee et al., 2004; Lee et al., 2007; Hung et al.,
2008; Chen et al., 2009; Juan et al., 2014; Lin
et al., 2018

i.v. immediately before
reperfusion

15, 50 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
inflammation

Tai et al. (2011)

s.c. 30 min before MCAO 4 - anti-oxidative stress Li et al. (1997)

s.c. 15 min before and 6,
12 h after MCAO

2.5, 5, 10 reduced brain infarct volume anti-apoptosis Ling et al. (1999)

(Continued on following page)
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TABLE 2 (Continued) Protective effects of melatonin on in vivo cerebral I/R injury model or ischemic stroke model.

Route Time Dose
(mg/kg)

Effect Mechanism References

Wistar rats

i.p. 24 h before MCAO 10 reduced brain infarct volume anti-inflammation, anti-apoptosis Rancan et al. (2018)

i.p. 1 h before PT 100 reduced brain infarct volume anti-oxidative stress Matejovska et al. (2008)

i.p. 30 min before and
immediately before
MCAO

10 improved neurological function anti-oxidative stress, anti-apoptosis Ahmad et al. (2011)

i.p. immediately before
reperfusion

10 reduced brain infarct volume,
improved neurological function

anti-inflammation, anti-apoptosis Yawoot et al. (2023)

i.p. 10 min after PT 100 improved neurological function anti-oxidative stress Deykun et al. (2011)

i.p. 1h after reperfusion
and once daily after
MCAO

10 reduced brain infarct volume anti-apoptosis Yilmaz et al. (2023)

i.p. 0, 1.5 h after MCAO
and 0, 1 h after
reperfusion

20 reduced brain infarct volume,
improved neurological function

anti-oxidative stress Gupta et al. (2002)

i.p. 0, 1 h after MCAO and
reperfusion

10, 20, 40 reduced brain infarct volume,
improved neurological function

anti-oxidative stress Sinha et al. (2001)

i.p. once daily after MCAO 10 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
inflammation, anti-apoptosis

Rancan et al. (2018)

i.p. immediately before
MCAO and
reperfusion

10 reduced brain infarct volume anti-apoptosis Ma et al. (2013)

i.p. immediately before
and once daily after
reperfusion

3, 10 reduced brain infarct volume,
improved neurological function

anti-inflammation Yawoot et al. (2022)

i.a. at the end of
reperfusion

4 reduced brain infarct volume,
improved neurological function

anti-inflammation Azedi et al. (2019)

p.o. once daily after
reperfusion

10 reduced brain infarct volume anti-oxidative stress, anti-
inflammation

Saleh et al. (2020)

p.o. 24 h before and 24 h
after MCAO

10 reduced brain infarct volume anti-inflammation, anti-apoptosis Paredes et al. (2015)

p.o. 1 h before and 24 h
after MCAO

6 reduced brain edema anti-oxidative stress Kondoh et al., 2002; Torii et al., 2004

p.o. 1 h before and once
daily after MCAO

0.87–0.1 reduced brain infarct volume - Borlongan et al. (2000)

Charles Foster rats

i.p. 30 min before and 1,
2 h after MCAO

1, 3, 5, 7, 9 reduced brain infarct volume
and brain edema, improved
neurological function

- Bhattacharya et al. (2014)

C57BL/6j mice

i.p. before MCAO 10 reduced brain infarct volume,
brain edema

anti-oxidative stress, anti-apoptosis Zang et al. (2020)

i.p. 5 min after PT 1 reduced brain infarct volume anti-oxidative stress, anti-
apoptosis, inhibited glutamate
excitotoxicity

Buendia et al. (2015)

i.p. 0, 24, 48 h after
MCAO

5, 10, 20 reduced brain infarct volume,
improved neurological function

anti-apoptosis Ran et al. (2021)

i.p. immediately before
reperfusion

4 reduced brain infarct volume
and brain edema, preserved
BBB integrity

anti-apoptosis Kilic et al., 2004; Kilic et al. 2005a; Kilic et al.
2005b; Kilic et al. 2013; Kilic et al. 2017

(Continued on following page)
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TABLE 2 (Continued) Protective effects of melatonin on in vivo cerebral I/R injury model or ischemic stroke model.

Route Time Dose
(mg/kg)

Effect Mechanism References

i.p. immediately before
reperfusion

5 reduced brain infarct volume,
improved neurological
function, preserved BBB
integrity

anti-oxidative stress Lee et al., 2005; Chen, Chen, et al., 2006;
Chen et al., 2006

i.p. immediately before
reperfusion

15 reduced brain infarct volume,
improved neurological
function, preserved BBB
integrity

anti-oxidative stress, anti-
inflammation

Parada et al., 2014; Chen, Sun, et al., 2022

i.p. once daily after MCAO 4 improved neurological function anti-inflammation Kilic et al. (2021)

i.p. 1 h before and 30 min
after MCAO

10 reduced brain infarct volume anti-apoptosis Wang et al. (2009)

i.p. 30 min before and 24,
48 h after PT

15 reduced brain infarct volume anti-inflammation Zou et al. (2004)

i.p. immediately before
MCAO and
reperfusion

4 reduced brain infarct volume anti-apoptosis Kilic et al. (2004)

i.p. immediately before
MCAO and
reperfusion

5, 10 reduced brain infarct volume
and brain edema, improved
neurological function

anti-oxidative stress, anti-
apoptosis, alleviated mitochondrial
dysfunction

Yang et al., 2015; Liu et al., 2021

i.p. immediately before
MCAO and
reperfusion

10 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-apoptosis Liu et al. (2021)

i.p. immediately before
MCAO and
reperfusion

20 reduced brain infarct volume,
improved neurological function

anti-apoptosis Liu et al. (2019)

i.p. immediately before
and once daily after
MCAO

20 reduced brain infarct volume,
improved neurological function

anti-inflammation Li et al. (2023)

i.p. 3 days before and once
daily after MCAO

20, 50 reduced brain infarct volume anti-oxidative stress, anti-
inflammation

Chen et al. (2020)

i.v. 1 h after MCAO 5 reduced brain infarct volume anti-oxidative stress Tai et al. (2010)

i.v. 0, 24 h after
reperfusion

20 reduced brain infarct volume,
improved neurological function

anti-inflammation Liu et al. (2019)

p.o. once daily after MCAO 4 improved neurological function - Kilic et al. (2008)

Balb/c mice

i.p. 1 min after reperfusion 4 reduced brain infarct volume
and brain edema, improved
neurological function

anti-apoptosis Beker et al. (2015)

ICR mice

i.p. once daily after MCAO 5, 10 reduced brain infarct volume,
improved neurological function

anti-oxidative stress, anti-
inflammation

Chern et al. (2012)

129/C57BL mice

i.p. 30 min before and 24,
48 h after PT

15 reduced brain infarct volume anti-inflammation Zou et al. (2006)

B6CBA mice

i.p. 1 h after and once
daily after MCAO

15 reduced brain infarct volume anti-inflammation Suofu et al. (2023)

i.p.: intraperitoneal; i.v.: intravenous; p.o.: peros; s.c.: subcutaneous; i.a.: intra-arterial; MCAO/R: middle cerebral artery occlusion/reperfusion; PT: photothrombotic stroke; BBB: blood-brain

barrier.
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et al., 2007; Koh, 2008a; Koh, 2008b; Koh, 2008c; Koh, 2008d; Koh,
2008e; Hung et al., 2008; Kilic et al., 2008; Matejovska et al., 2008;
Chen et al., 2009; Sung et al., 2009; Wang et al., 2009; Tai et al., 2010;
Ahmad et al., 2011; Deykun et al., 2011; Koh, 2011; Nair et al., 2011;
Tai et al., 2011; Koh, 2012a; Koh, 2012b; Chern et al., 2012; Jang
et al., 2012; Kilic et al., 2012; Kilic et al., 2013; Liu and Cheung, 2013;
Ma et al., 2013; Bhattacharya et al., 2014; Juan et al., 2014; Li et al.,
2014; Zheng et al., 2014; Beker et al., 2015; Buendia et al., 2015;
Paredes et al., 2015; Yang et al., 2015; Chumboatong et al., 2017;
Feng et al., 2017; Kilic et al., 2017; Lin et al., 2018; Rancan et al., 2018;
Shah et al., 2018; Zhao et al., 2018; Azedi et al., 2019; Zhao et al.,
2019a; Lin et al., 2019; Liu, Chen, et al., 2019; Shah et al., 2019; Wei
et al., 2019; Chen et al., 2020; Chumboatong et al., 2020; Ling et al.,
2020; Saleh et al., 2020; Yang et al., 2020; Zang et al., 2020; Chen
et al., 2021; Hao et al., 2021; Kilic et al., 2021; Liu et al., 2021; Liu
et al., 2021; Ran et al., 2021; Shao et al., 2021; Yip et al., 2021;
Cambiaghi, Cherchi, and Comai, 2022; Chen et al., 2022; Chen et al.,
2022; Kilic et al., 2022; Yawoot et al., 2022; Li et al., 2023; Su et al.,
2023; Suofu et al., 2023; Xu and Cheung, 2023; Yawoot et al., 2023;
Yilmaz et al., 2023). For example, mice that exposed to focal cerebral
ischemia for 30 min and reperfusion for 72 h exhibited brain
damage and neurological dysfunction, while intraperitoneal
administration of melatonin (4 mg/kg) prior to MCAO could
decrease the neurological deficits by maintaining the integrity of
BBB and reducing brain edema formation as well as infarct volume
(Kilic et al., 2017). Besides, in a rat MCAO/R model, treatment with
melatonin (5 mg/kg) intraperitoneally at the 30 min after I/R
significantly reduced cerebral infarct volumes, promoted
myelination as well as alleviated white matter damage (Zhao
et al., 2019a). Furthermore, Liu et al. demonstrated that in

C57BL/6J mice receiving MCAO/R, not only the cerebral infarct
size was reduced, but the sensorimotor function was also improved
after intraperitoneal injection of melatonin (Liu et al., 2019).

4 The mechanism of melatonin’s
neuroprotective effect in cerebral
I/R injury

Melatonin could exert neuroprotective effects through various
mechanisms in cerebral I/R injury (Figure 2).

4.1 Oxidative stress

Oxidative stress is characterized by excessive ROS and reactive
nitrogen species (RNS) production under harmful stimuli. During
cerebral I/R injury, ROS overproduction causes immense damage to
brain (Manzanero et al., 2013). Compelling evidence suggests that,
as a powerful scavenger against ROS/RNS, melatonin can inhibit
oxidative stress in cerebral I/R injury via multiple mechanisms,
among which nuclear factor E2-related factor-2 (Nrf2) occupies a
vital position.

Melatonin can exert neuroprotective effects based on the
upregulation of Nrf2 and Nrf2-related antioxidants during
cerebral oxidative stress injury. Specifically, melatonin could
reduce the ubiquitination of Nrf2 via modifying Kelch-like ECH-
associated protein 1 (Keap1) cysteine residues, thereby reducing
Nrf2 degradation by proteasome and enhancing
Nrf2 phosphorylation and nuclear translocation to the nucleus

FIGURE 1
Flow diagram of study identification and selection.
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(Zhao et al., 2018). In addition, melatonin can promote Ca2+ influx
and induce phosphorylation of protein kinase C (PKC), an upstream
mediator of Nrf2, which further leads to the downstream
Nrf2 nuclear translocation (Romero et al., 2010). Moreover,
melatonin can directly serve as a proteasome inhibitor to
decrease the degradation of Nrf2 (Vriend and Reiter, 2014).

Nrf2, an antioxidative transcription factor, can positively
regulate the expression of a series of antioxidant response
element (ARE)-dependent genes. Melatonin induced
Nrf2 translocation and upregulation could increase antioxidant
enzymes expression levels that comprise glutathione (GSH),
glutathione s-transferase (GST), superoxide dismutase (SOD),
catalase (CAT), heme oxygenase-1(HO-1) and glutathione
peroxidase (GPx), etc (Rodriguez et al., 2004; Ma, 2013; Zhang
et al., 2013). These upregulated enzymes effectively scavenge free
radicals as well as related reactants and ultimately reduce the
cerebral damage during the oxidative stress process (Deng et al.,
2015; Liu et al., 2019).

As shown in a former study by Parada et al., in hippocampal
cultures exposed to OGD/R, administration with melatonin could
induce the Nrf2 nuclear accumulation as well as the combination of
Nrf2 and ARE sequences within HO-1 promoter, thereby elevating
HO-1 expression and decreasing the production of OGD-induced
ROS to basal levels (Parada et al., 2014). During heme metabolic
process, HO-1 can reduce the ROS by degrading free heme.
Meanwhile, the by-products of heme catabolism such as carbon

monoxide (CO) and biliverdin (BV)/bilirubin (BR) can not only
directly scavenge OGD-induced ROS production, but also inhibit
NADPH oxidase activity, further alleviating oxidative stress (Kim
et al., 2011). Additionally, Nrf2α subunit was found to bind with
sirtuin-3 (SIRT3) promoter directly, leading to the upregulation of
SIRT3 expression. And the elevation of SIRT3 further activated SOD
through promoting SOD deacetylation and then reduced
mitochondrial oxidative stress (Satterstrom et al., 2015; He et al.,
2019). Moreover, another possible mechanism by which melatonin
suppresses oxidative stress involves increasing GSH content
(Paterniti et al., 2016). Nrf2 can promote GSH biosynthesis
enzymes and GSH reductase (GSR) expression, and thus exerts a
valid effect in preserving the mitochondrial GSH pool (Ryoo and
Kwak, 2018). High concentrations of GSH are oxidized to
glutathione disulfide (GSSG) by GPx, thereby reducing peroxides
to non-toxic substances and alleviating oxidative stress (Harvey
et al., 2009).

In addition to activating Nrf2, studies have also demonstrated
that administration with melatonin can play protective effects via
inhibiting NADPH oxidase, which can produce ROS upon
activation (Wilkinson and Landreth, 2006; Li et al., 2014).
Specifically, in a rat MCAO/R model, by hindering
phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway,
melatonin can suppress the p47phox subunit phosphorylation,
and thus block the combination of p47phox with gp91phox
subunit. This process disturbs the assembly and activation of

FIGURE 2
Protective mechanisms of melatonin in cerebral ischemia-reperfusion injury.
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NADPH oxidase, ultimately alleviating oxidative stress (Li
et al., 2014).

4.2 Neuroinflammation

Neuroinflammation is the inflammatory response
concentrated in the CNS and might be initiated from ischemia.
It is featured as the accumulation of pro-inflammatory factors,
comprise IL-1β, IL-6, TNF-α and inducible nitric oxide synthase
(iNOS) that are generated from activated microglia and astrocytes
after ischemic stroke (Jin et al., 2010; DiSabato et al., 2016; Yang
and Zhou, 2019). Melatonin can hinder microglia and astrocytes
phenotype switching through multiple mechanisms, further
attenuating neuroinflammation.

During the I/R process, two different forms of microglia are
involved, including pro-inflammatory microglia (M1) and anti-
inflammatory microglia (M2) phenotypes. Under the ischemic
conditions, M2 phenotype transforms into the active
M1 phenotype, which promotes further pro-inflammatory
cytokines release and eventually accelerates stroke-induced
secondary brain injury (Jin, Yang, and Li, 2010). The switch and
balance between the M1/M2 phenotype can be modulated by
melatonin through various mechanisms, including inhibiting
nuclear factor kappa-B (NF-κB), activating signal transducer and
activator of transcription 3 (STAT3) and interaction with
MT2 receptor. Detailly, Zhao et al. demonstrated that in MCAO/
R rats, melatonin could inhibit TLR4 expression, further hindering
downstream NF-κB activation. NF-κB inactivation can initiate the
transformation of microglia from M1 to M2 phenotype, thereby
down-regulating the release of M1 phenotype-related pro-
inflammatory factors (Y. Zhao et al., 2019; J. Sun et al., 2019; Ji
et al., 2017). In addition, treatment with melatonin was also
confirmed to significantly upregulate the expression of
phosphorylated STAT3 in microglial cells (Z.J. Liu, Ran, et al.,
2019). The phosphorylation of STAT3 has been demonstrated to
exert a crucial effect in IL-10-induced anti-inflammatory effects.
Specifically, removing the docking sites of STAT3 from IL-10R1
would render the receptor unable to transduce the signal for
suppressing cytokine synthesis. Thus, the activated STAT3 may
contribute to the anti-inflammatory cytokines expression which
induces microglia transforming from M1 to M2 phenotype and
further inhibits neuroinflammation (Williams et al., 2004). Besides,
in a rat MCAO/R model, melatonin was found to act on MT2 and
increase the ratio of triggering receptor expressed on myeloid cells 2
(TREM2)/iNOS, a marker for the transformation of M1 to M2,
which eventually resulted in the suppression of neuroinflammation
(Azedi et al., 2019).

Melatonin also exerts anti-inflammatory effect through
suppressing the proliferation and activation of astrocytes.
Regarding astrocytes, they are involved in BBB formation and
maintenance, synaptogenesis, neurotransmission, and metabolic
regulation. Under ischemic conditions, cytokines produced by
activated microglia cause astrocyte reactivity hyperplasia and
transform into neurotoxic reactive astrocytes, which further result
in cerebral damage (Liu and Chopp, 2016; Liddelow et al., 2017;
Yang et al., 2020). Chen et al. reported that administration with
melatonin attenuated TRIF expression, an adapter molecule of

TLRs, and ultimately prevented the conversion of astrocytes from
anti-inflammatory (A2) to pro-inflammatory (A1) phenotype (Chen
et al., 2020). In addition, in rats subjected to MCAO/R, melatonin
administration could effectively decrease glial fibrillary acid protein
(GFAP) expression, C3, and S100A10, suggesting that melatonin
inhibited reactive astrogliosis and A1 astrocyte polarization (Yawoot
et al., 2022). Besides, melatonin was also shown to reduce astrocyte-
mediated inflammatory response by inhibiting glycogen synthase
kinase-3 beta (GSK-3β) expression levels and receptor-interacting
serine/threonine-protein 1 kinase (RIP1K) activities, consequently
enhanced axonal regeneration and promoted neurobehavioral
recovery (Yawoot et al., 2022). Mechanistically, suppression of
GSK-3β can reduce NF-κB nuclear translocation and upregulate
cyclic AMP response element-binding protein (CREB)
transcription. These cause a relative increase in CREB compared
to NF-κB in the nucleus, resulting in increased binding of CREB
Binding Protein (CBP) with CREB and decreased interaction
between CBP and NF-κB p65. The increased combination of
CBP and CREB produces high levels of IL-10, a critical anti-
inflammatory factor (Maixner and Weng, 2013). Meanwhile, the
reduced interaction of CBP with NF-κB p65 inhibits the pro-
inflammatory factors, and thus alleviates neuroinflammation
(Martin et al., 2005).

4.3 Apoptosis

Apoptosis is an ATP-dependent death program characterized by
fragmentation of chromosomal DNA, degradation of cytoskeletal,
and generation of apoptotic bodies (Elmore, 2007; Xu et al., 2019).
Regarding the apoptosis pathways, two major patterns are widely
accepted including the extrinsic pathway and the intrinsic pathway.
The extrinsic pathway refers to receptor-mediated apoptosis, and
the activation of death receptors involves in two main ligands,
including tumor necrosis factor (TNF) and Fas. Ischemia can
induce the combination of the ligands with death receptors
which lead to apoptosis and eventually cerebral injury. While in
the intrinsic pathway, ischemia could directly induce the generation
of intracellular signals and the subsequent formation of
mitochondrial permeability transition pore, induce cytochrome C
release into cytoplasm and activate caspase-3, and eventually lead to
apoptosis (Broughton et al., 2009). In addition, members of Bcl-2
protein family, such as Bim, Bad, Bid, Bcl-x (L), and Bcl-2, are
responsible for regulation of apoptosis via modifying the
permeability of mitochondrial membrane (Cory and Adams,
2002; Elmore, 2007).

Previous studies have reported that melatonin could play anti-
apoptotic functions during cerebral I/R injury through multiple
biological mechanisms, including activation of the PI3K/Akt, Raf/
MEK/extracellular-regulated kinase (ERK) signaling pathway as well
as inactivation of Jun N-terminal kinases (JNK) pathway (Koh,
2008c). In 2008, Koh et al. elucidated that pretreatment with
melatonin in the rat model of MCAO-induced cerebral ischemia
could significantly reduce the infarct volume by activating Akt.
Specifically, melatonin administration can promote the
phosphorylation of specific residues on forkhead
rhabdomyosarcoma transcription factors (FKHR) by activating
PI3K/Akt. Then, 14-3-3 protein, an anti-apoptotic factor, would
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directly interact with the phosphorylated FKHR and anchor the
phosphorylated FKHR within the cytoplasm. These FKHR are
blocked from further translocation into the nucleus, therefore
inhibiting downstream target genes transcription, including Fas
ligand (Koh, 2008d). In 2021, Ran et al. elucidated that both in
MCAO/R mice model and N2a cells exposed to OGD/R, treatment
with melatonin could significantly reduce the brain infarct volume
and neuronal cells apoptosis by activating Akt. Specifically,
melatonin administration can decrease phosphatase and tensin
homolog (PTEN) deleted on chromosome 10 activity through
promoting its phosphorylation. PTEN is a major up-stream
negative regulator of the PI3K/Akt signal transduction which can
promote the dephosphorylation of PIP3. In the presence of
melatonin, phosphorylated PTEN levels were increased, thereby
decreasing PTEN activity and activating PI3K/Akt pathway (Ran
et al., 2021). Similarly, in a MCAO/R mouse model, melatonin was
shown to activate the phosphorylation of Akt at Thr308 via PI3K/
pyruvate dehydrogenase kinase-1 (PDK-1) signaling, which further
inactivate GSK-3α/β, two critical players in the activation of
apoptosis (Kilic et al., 2017).

Besides, in the cerebral MCAO model, melatonin was found to
increase the phosphorylation of pro-apoptotic protein Bad through
activating PI3K/Akt, further preventing Bad from interacting with
Bcl-x(L) and blocking the activation of downstream apoptosis
pathway (Koh, 2008b).

Apart from activating PI3K/Akt pathway, Koh et al. also
demonstrated that in a rat MCAO model, treatment with
melatonin can protect brain tissue from ischemic injury through
Raf/MEK/ERK signaling pathway by modulating the pro-apoptotic
protein phosphorylation. To some extent, melatonin can increase
the phosphorylation of Raf-1 as well as MEK. And the activation of
these two proteins kinases can phosphorylate ERK1/2 which results
in the phosphorylation of its downstream target 90 ribosomal
S6 kinase (90RSK) (Koh, 2008a). The phosphorylated 90RSK
may further phosphorylate the Ser112 residue of Bad and
inactivate the pro-apoptotic effect of Bad (Zha et al., 1996; Koh,
2008a). Moreover, Chen et al. reported that melatonin can
effectively suppress fork-head box O3a (FoxO3a) activity by
inhibiting JNK, thereby hindering the binding of FoxO3a to Bim
promoters and the subsequent expression of Bim proapoptotic
protein (Chen et al., 2022). Besides, JNK has been shown to
regulate cytochrome C release from mitochondria through
inducing Bid cleavage. Melatonin could attenuate JNK activation,
thereby hindering cytochrome C release and suppressing
cytochrome C-induced apoptosis cascades (Madesh et al., 2002;
Song et al., 2014).

4.4 Autophagy

Autophagy is a lysosome-mediated self-digestion and recycling
process that contributes to clearing folded or aggregated proteins
and promoting the degradation of damaged organelles. It plays a key
role in preserving cellular homeostasis under physiological
conditions (Glick et al., 2010; Boga et al., 2019). However, under
pathological circumstances including cerebral I/R injury, ischemia-
mediated excessive autophagy activation may be harmful and
further lead to cell death. Autophagy begins with nucleation of

the phagophore induced by the unc-51-like autophagy activating
kinase 1/2 (ULK1/2) complex. Then, the phagophore elongates with
the aid of autophagy-related (ATG) proteins and finally the
expanding membrane forms an autophagosome which closes
around its cargo. The outer membrane of the autophagosome
subsequently fuses with lysosomal membrane, and further
generate an autolysosome, lead to autophagic cargo degradation
(Itakura and Mizushima, 2010; Wong et al., 2013; Parzych and
Klionsky, 2014).

Accumulating evidences have demonstrated that melatonin
could promote physiological autophagy, while inhibiting excessive
autophagy to exert neuroprotective effects. On the one hand, in
hippocampal HT22 cells exposed to OGD/R, melatonin was shown
to increase the expression of both Ras-related protein 7 (Rab7) and
transcription factor Forkhead box class O1 (FoxO1), subsequently
promoting autophagosome maturation and attenuating ischemic-
like injury (Luchetti et al., 2022). Furthermore, both in a MCAO/R
model and HT22 cell line exposed to OGD/R, treatment with
melatonin upregulated SIRT1, a histone deacetylase that can
cause the deacetylation of brain and muscle ARNT-like protein 1
(BMAL1) and decrease its degradation. The upregulation of
BMAL1 could promote the expression of ATG14 through
directly binding to the E-box elements in the ATG14 promoter,
subsequently increasing the level of Beclin-1 and the ratio of LC3II/
LC3I, enhancing autophagy and improving neurological function
(Liu et al., 2021). On the other hand, melatonin could activate
mammalian target of rapamycin complex1 (mTORC1) through
multiple pathways, thereby hindering excessive autophagy and
exerting neuroprotective effects. Specifically, in a rat MCAO/R
model, melatonin was observed to decrease the phosphorylation
of tuberous sclerosis complex 2 (TSC2) through PI3K/Akt signaling
pathway. Therefore, the downstream protein complex TSC1/
TSC2 was disrupted, leading to stabilization of the downstream
Rheb-GTPase and subsequent activation of mTORC1 (Yang and
Klionsky, 2010; Zheng et al., 2014). The mTORC1 can inactivate the
autophagy initiators ATG13 and ULK1/2 through combination and
phosphorylation, regulate the class III PI3K complex, and thus
exerts an important effect in inhibiting autophagy (Rabanal-Ruiz,
Otten, and Korolchuk, 2017). Likewise, mTORC1 can also
phosphorylate transcription factor EB (TFEB) and TFE3 which
facilitates the interaction between these two transcription factors
and cytosolic chaperone 14-3-3 and retains them in cytoplasm
(Martina et al., 2012). Therefore, the expression of several
autophagy-related genes including PIK3C3 and ATG16L1, etc.,
are inhibited, thereby suppressing excessive autophagy and
reducing cerebral injury (Settembre et al., 2011).

In addition to activating mTORC1 signaling pathway, melatonin
could also attenuate excessive autophagy through hindering JNK
signaling pathway, according to previous studies. Melatonin can
inactivate JNK1, which further inhibits the separation of Bcl-2 from
Beclin-1. Beclin-1 acts as a part of class III PI3K complex, and the
combination of Bcl-2 and Beclin-1 can hinder class III PI3K complex
activation, thereby inhibiting autophagy (H.D. Xu and Qin, 2019;
Zheng et al., 2014). Similarly, in a rat MCAO/R model, Feng et al.
reported that pretreatment with melatonin could inhibit pancreatic
ER kinase (PKR)-like kinase (PERK)/Inositol-requiring enzyme 1
(IRE1) pathway, further suppressing the activation of the JNK,
subsequently preventing the uncoupling of Bcl-2 with Beclin-1
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and excessive autophagy (Feng et al., 2017). Moreover, in a rat
MCAO/R model and PC12 cell OGD/R model, pretreatment with
melatonin was shown to inhibit excessive autophagy through
upregulating miR-26a-5p expression and then downregulating
downstream neuron-restrictive silence factor (NRSF) expression
(Yang et al., 2020).

4.5 Glutamate excitotoxicity

Glutamate acts as the predominant excitatory neurotransmitter
in the CNS (Teichberg et al., 2009). During cerebral I/R injury,
ischemia can lead to the excessive glutamate release, which triggers
the rapid influx of calcium into the cell cytoplasm through the
overstimulation of N-methyl-D-aspartate receptors (NMDARs),
thereby resulting in a succession of harmful signaling cascades
and subsequent CNS cells death (Tehse and Taghibiglou, 2019;
M. Zhou and Baudry, 2006; Sattler and Tymianski, 2000). Moreover,
glutamate can also cause the overproduction of nitric oxide (NO)
and the decrease of downstream mediator protein phosphatase 2A
(PP2A) which result in neurotoxicity and cerebral injury (Koh,
2012a; Jia et al., 2015). Melatonin can reduce glutamate
excitotoxicity during cerebral I/R injury through modulating
glutamate as well as its receptor pathways.

Detailly, Patino et al. confirmed that in rat hippocampal slices
exposed to OGD/R, melatonin could directly reduce the release of
glutamate and prevent a persistent activation of NMDARs, thereby
reducing intracellular Ca2+ levels (Patino et al., 2016). Similarly, in
hippocampal slices exposed to OGD/R, melatonin reduced a surge of
synaptic glutamate release and neuronal cell death after ischemia-
reperfusion, which further strongly suppressed the increase in the
intracellular Ca2+ concentration by downregulating the NMDAR
activity (Furuta et al., 2022). Besides, in hippocampal HT22 cell lines
exposed to glutamate excitotoxicity, melatonin pretreatment could
prevent glutamate-mediated reduction in calcium-buffering
proteins such as parvalbumin and hippocalcin and thus
downregulate Ca2+ levels (Koh, 2012b). Similarly, in Sprague-
Dawley rat model subjected to MCAO, melatonin has also been
documented to reduce intracellular Ca2+ levels through increasing
the expression of parvalbumin and hippocalcin (Koh, 2012b).
Additionally, melatonin can directly bind with calreticulin and
further reduce the level of Ca2+ by hindering the release of Ca2+

from endoplasmic reticulum, in rat C6 astroglial cells exposed to
glutamate excitotoxicity (Das et al., 2008; Venkatesan et al., 2021).
With the decrease of Ca2+ levels, calpain expression and caspase-3
activation are inhibited. Calpain inhibition subsequently reduces the
degradation of cytoskeletal proteins as well as axon-myelin
structural unit, thus maintaining the structural integrity of CNS
cells and preventing glutamate excitotoxicity (Samantaray et al.,
2008; Doshi and Lynch, 2009).

Moreover, in a MCAO rat model, melatonin was found to
interact with calmodulin, further preventing the binding of
calmodulin to NOS, and thus inhibited calmodulin-dependent
NOS activation (Koh, 2008e). Apart from inhibiting NOS
activity, Koh et al. suggested that in a rat focal cerebral ischemia
model, treatment with melatonin could mitigate glutamate-induced
decrease of PP2A subunit B, a critical subunit in facilitating various
functions of PP2A. As an essential protein phosphatase, PP2A can

promote DNA repair, cellular proliferation and differentiation.
From this point of view, melatonin can maintain PP2A levels,
thereby promoting neuronal survival and alleviating glutamate
excitotoxicity (Koh, 2012a).

4.6 Mitochondrial dysfunction

Mitochondria serve as essential organelles that exert a crucial
effect in maintaining energy metabolism and cellular homeostasis
(Anderson and Sims, 1999; Lesnefsky et al., 2017). Under normal
circumstances, mitochondria produce ATP through the electron
transport in the respiratory chain to keep cellular function and
integrity (Newmeyer and Ferguson-Miller, 2003). Meanwhile,
mitochondria could release pro-apoptotic factors, and thus
control cell survival (Ott et al., 2002). However, under
pathological conditions such as cerebral I/R injury, ischemia can
lead to mitochondrial dysfunction, including impaired ability to
generate ATP, accumulation of ROS, transition of the mitochondrial
permeability and increased release of pro-apoptotic factors (Sims
and Anderson, 2002; Ham and Raju, 2017). Melatonin has been
found to play neuroprotective effects by improving ischemia-
induced disturbance in mitochondrial redox state, fusion and
fission, biogenesis, mitophagy and mitochondrial transfer.

Firstly, as a potent free radical scavenger, melatonin has the
capacity to directly counteract mitochondrial oxidative injury. In a
MCAO/R mice model, melatonin pretreatment significantly
increased SIRT1 expression and thus reduced the expression of
acetylated p53 and NF-κB. Subsequently, the deacetylated p53 and
NF-κB maintained mitochondrial membrane potential, elevated the
activity of mitochondrial Complex I and reduced mitochondrial
ROS levels (Yang et al., 2015). Apart from alleviating mitochondrial
oxidative damage, in N2a neuroblastoma cells exposed to OGD/R as
well as a MCAO/R rat model, melatonin was shown to upregulate
OPA1 expression, one of the mitochondrial fusion-related proteins,
by activating Hippo/Yap pathway. Then, the mitochondrial cristae
junctions are tightened and cytochrome c release is restricted,
thereby improving OPA1-related mitochondrial fusion and
inhibiting mitochondrial fission (Wei et al., 2019; Nasoni et al.,
2021). Moreover, Nasoni et al. reported that in hippocampal
HT22 cells with excessive mitochondrial oxidative stress,
melatonin was found to enhance the levels of peroxisome
proliferator-activated receptor gamma coactivator 1 alpha (PGC-
1α) expression. Subsequently, PGC-1α can further enhance the
combination of estrogen-related receptor (ERR) α with ERR
binding element. Thus, SIRT3 expression is initiated which
further induces mitochondrial biogenesis through activating
nuclear respiratory factors-1 (NRF-1) and nuclear respiratory
factors-2 (NRF-2) and subsequently increasing expression of
mitochondrial transcription factor A (mtTFA) (Kong et al., 2010;
Nasoni et al., 2021). Besides, in HT22 cells exposed to OGD/R,
melatonin was shown to promote mitochondrial transfer and
reshape mitochondrial network via increasing the number of
tunneling nanotubes (TNTs). TNTs are dynamic structures that
connect cells, and intercellular mitochondria could transfer through
these structures, which further compensate for damaged organelles
and promote cell recovery (Nasoni et al., 2021). Lastly, in
HT22 neuronal cell line with glutamate injury, melatonin could
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upregulate the levels of Bcl-2 expression and downregulate the levels
of Beclin-1 expression, thereby further reducing glutamate-induced
mitophagy and restoring mitochondrial function (Wang et al.,
2019). In addition, in PC12 cell line treated with ropivacaine,
melatonin was shown to reduce the expression of two
mitophagy-related proteins, PTEN-induced kinase I (PINK1) and
Parkin, which may hinder the occurrence of mitophagy (Yu et al.,
2018; Wang et al., 2019; Zeng et al., 2022).

5 Clinical prospects

In recent years, numerous clinical investigations exploring the
influence of melatonin on ischemic stroke and the sequelae of
ischemic stroke have been reported. Firstly, a series of preclinical
studies have shown melatonin was an extremely safe
neurotherapeutic agent even at high concentrations (Romero
et al., 2016). So far, melatonin has been applied to treat a variety
of diseases, involving sleep disorders, depression, etc., and no clinical
studies on melatonin therapy have shown serious side effects
(Cardinali et al., 2012; Hassell et al., 2015; Riha, 2018). Secondly,
pineal calcifications diagnosed by applying multi-spiral computer
and/or magnetic resonance tomography has been described as
having a significant impact on the risk of ischemic stroke
(Kitkhuandee et al., 2014). Besides, subsequent studies confirmed
a positive relationship between pineal calcifications and decrease of
melatonin synthesis (Schmid et al., 1994). Thus, human clinical
trials of ischemic stroke to evaluate potential clinical applications of
melatonin seemed to be necessary. Current studies have found that
endogenous melatonin, mainly produced by the pineal gland, might
be a good predictor for the prognosis of ischemic stroke. In a
prospective observational study published in 2018, Lorente et al.
found that in patients with severe middle cerebral artery infarction,
serum melatonin concentrations were associated with total
antioxidant capacity as well as malondialdehyde levels (used to
assess lipid peroxidation). Furthermore, results of this research also
illustrated a positive correlation between serummelatonin levels and
the severity or even mortality of stroke patients during the 30-day
follow-up period (Lorente et al., 2018). For this point of view, we
speculated that patients with more severe ischemic stroke would
produce high levels of ROS, which might result in higher
concentrations of serum melatonin to compensate for the
increase in oxidation products. Among them, when the attempts
to maintain a balance between oxidation and antioxidant status were
insufficient, the patients with severe ischemic stroke would
eventually die. Additionally, a case-control study involving
42 patients with ischemic stroke demonstrated that the levels of
melatonin in the urine was remarkably decreased in contrast to the
control value. It was reasonable to suspect that due to the excessive
free radical production, the catabolism of melatonin might be
speeded up during acute ischemic stroke, indicating the vital role
of melatonin in scavenging free radicals and neuroprotection
(Ritzenthaler et al., 2013).

A previous systematic review focusing on clinical trials of
melatonin on various brain injury provided evidence that
melatonin treatment improved sleep disturbance following
traumatic brain injury and increased survival rate in intubated
patients with hemorrhagic stroke and asphyxiated newborns

(Ramos et al., 2020). Regarding the clinical potential of
exogenous melatonin therapy on cerebral I/R injury and ischemic
stroke, a double-blind randomized controlled trial recruited
60 patients, who orally received melatonin at 6 mg/day for 3 days
before and after carotid endarterectomy, to explore the therapeutic
effect of melatonin on cerebral I/R injury (Yang et al., 2018). The
circulating levels of inflammatory cytokines in patients of the
melatonin group were significantly reduced, implying that
melatonin could decrease the inflammatory damage and
ameliorate subsequent brain I/R injury. Furthermore, Mehrpooya
et al. recruited 65 patients with acute ischemic stroke who were not
eligible for reperfusion treatment in a double-blind placebo-
controlled trial. They observed that melatonin supplementation
within 24 h after stroke at a dose of 20 mg once daily for 5 days
had a higher reduction in modified Rankin Scale score (mRS) at
30 and 90 days after treatment, indicating melatonin had beneficial
effects on neurological recovery after ischemic stroke (Mehrpooya
et al., 2022). As one of the holy grails for acute ischemic stroke
treatment, neuroprotection could theoretically improve the
neurological disability of stroke survivors, which makes it attract
widespread attention. According to previous studies, therapeutic
hypothermia can maintain organ vitality and is one of the most
powerful neuroprotective treatments (Perlman et al., 2010; Kurisu
and Yenari, 2018). Although no clinical researches involving in the
neuroprotective effect of melatonin combined with hypothermic
therapy in cerebral I/R injury treatment following ischemic stroke, a
clinical trial recruiting 30 newborns with confirmed hypoxic-
ischemic encephalopathy demonstrated that early use of
melatonin combined with hypothermia could lower plasma free
radicals generation, protect against the subsequent CNS injury and
ultimately improve survival rate of patients (Aly et al., 2015).
Additionally, as a common and severe complication of ischemic
stroke, poststroke delirium (PSD) has attracted wide attention from
researchers due to it was related to increased mortality, longer
hospital stays, and lower functional outcome (Siddiqi et al., 2006;
Shaw et al., 2019). A propensity score-matched analysis involving
573 patients with acute ischemic stroke showed that patients who
received prophylactic treatment with melatonin within 24 h after
stroke onset had a lower risk of PSD compared with patients
receiving standard treatment (Mengel et al., 2021). Although the
underlying mechanism of melatonin for preventing PSD was still
unclear, the evidence of this propensity score-matched analysis
implied that supplementation with melatonin could reduce PSD
susceptibility, and further supported the neuroprotective effect of
melatonin on acute ischemic stroke. Taken together, recent clinical
studies have partially clarified the predictive and therapeutic
potential of melatonin for ischemic stroke. Nevertheless, further
studies, ideally enrolling more clinical subjects, are still needed to
evaluate the clinical safety and effectiveness of melatonin to better
understand its medical effects in cerebral I/R injury and
ischemic stroke.

6 Conclusion

In the past decades, ischemic stroke has been one of the most
threatening diseases for human health. Due to its high morbidity
and mortality, efforts have been made for detecting appropriate
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alternative or complementary drugs on ischemic stroke therapy.
Currently, accumulated lines of evidence suggested that melatonin
could reduce cell death and increase cell viability, and display an
obvious neuroprotective effect on various CNS cells in vitro.
Meanwhile, experimental stroke models in vivo have confirmed
that melatonin would reduce infarct size and brain edema, and
improve neurological function. Subsequently, we also outlined the
extensive studies and performed a comprehensive introduction of
various functions of melatonin in cerebral I/R injury, including
regulating oxidative stress, neuroinflammation, apoptosis,
autophagy, glutamate excitotoxicity and mitochondrial
dysfunction. Meanwhile, some key signaling pathways has been
demonstrated to play important roles in melatonin neuroprotection,
such as Nrf2, NF-κB, PI3K/Akt, Raf/MEK/ERK, JNK, and Hippo/
Yap pathways. In future studies, the biomolecular mechanism of
melatonin in cerebral I/R damage still needs in-depth research,
which is necessary for its clinical application in ischemic stroke.

Given its multiple roles against cerebral I/R damage, it is not
surprisingly that melatonin has been considered as a promising
candidate, both as a diagnostic biomarker for stroke prognosis and
as a drug target for stroke therapy. Recent studies have demonstrated
a potential relationship between circulating melatonin levels and the
severity and mortality of stroke patients. Regarding exogenous
melatonin therapy, oral melatonin in patients undergoing carotid
endarterectomy could reduce serum pro-inflammatory cytokines
levels and alleviate cerebral I/R injury to a certain extent. Moreover,
early treatment with melatonin following stroke may help improve
functional recovery in patients ineligible for reperfusion therapy.
However, there are still some limitations to the clinical application of
melatonin, and some potential issues should be considered in future
clinical trials. First, high-quality randomized controlled trials with
larger sample sizes and more ethnic groups are needed to further
explore the clinical efficacy and side effects of melatonin in patients
with ischemic stroke. Second, inappropriate treatment time
windows, insufficient dosage or treatment duration may be
responsible for the lack of positive results in clinical trials. Thus,
the dosage, timing, and duration of melatonin require further
reconsideration to determine the optimal application strategy in
stroke patients. Third, melatonin might be more effective when
combined with other types of stroke treatments, such as
hypothermia or hyperbaric oxygen therapy, and the effectiveness
of combination therapy should be fully investigated in the future.

In summary, based on the information reviewed above, as a low
toxicity and well-tolerated agent, melatonin supplement was
supposed to be a new and prospective treatment method for
cerebral I/R injury. More randomized and multiple-center clinical

trials were need to be designed to confirm predictive and therapeutic
role of melatonin in ischemic stroke.
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