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Brazilin is the main compound in Caesalpinia sappan and Haematoxylum
braziletto, which is identified as a homoisoflavonoid based on its molecular
structure. These plants are traditionally used as an anti-inflammatory to treat
fever, hemorrhage, rheumatism, skin problems, diabetes, and cardiovascular
diseases. Recently, brazilin has increased its interest in cancer studies. Several
findings have shown that brazilin has cytotoxic effects on colorectal cancer,
breast cancer, lung cancer, multiple myeloma, osteosarcoma, cervical cancer,
bladder carcinoma, also other cancers, along with numerous facts about its
possible mechanisms that will be discussed. Besides its flavonoid content, brazilin
is able to chelate metal ions. A study has proved that brazilin could be used as an
antituberculosis agent based on its ability to chelate iron. This possible iron-
chelating of brazilin and all the studies discussed in this review will lead us to the
statement that, in the future, brazilin has the potency to be a chemo-preventive
and anticancer agent. The article review aimed to determine the brazilin
mechanism and pathogenesis of cancer.
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1 Introduction

Cancer is the second-leading cause of death among noncommunicable diseases
(NCDs), after cardiovascular disease (Cadoná et al., 2022). As of 2022, there were
19.9 million incidents of cancer overall, with 9.7 million of those cases resulting in
death (IARC, 2024). According to the Global Burden of Cancer Study (GLOBOCAN),
the global incidence of cancer will rapidly reach 30.2 million cases by 2040, with a mortality
rate of 16.3 million cases (Sung et al., 2021). Cancer is the largest cause of death in Asia,
which accounts for 49.3% of all deaths (Arnold et al., 2022).

Cancer research has always been complex due to its complexity. Despite the fact that
numerous treatment options are available, their effectiveness is dependent on the stage and
form of the disease. Considering the different therapeutic methods, meticulous surgical
excision of aggressive tissues or tumors, chemotherapy, radiation therapy, and
immunotherapy are commonly used. Surgery and radiotherapy have local effects,
whereas chemotherapy and targeted therapy have systemic effects. Whether these
medicines are employed individually or in combination with other treatments depends
on the type and stage of cancer (Muhammad et al., 2022). They could trigger processes that
promote medication resistance (Naeem et al., 2022). Combinations with additional
treatments (for example, radiation therapy and conventional chemotherapy) will
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probably kill both normal and malignant cells, resulting in
substantial hematological toxicities and tissue damage (Sharifi-
Rad et al., 2021).

Historically, natural products (NPs) have played an essential role
in drug discovery. Compared to conventional synthetic compounds,
NPs have unique properties that provide advantages and difficulties in
drug discovery. NPs are the most abundant source of high chemical
diversity and structural complexity. Attempts to identify interesting
therapeutic chemicals from natural sources may be one explanation
for this (Feher and Schmidt, 2003; Mangal et al., 2013; Atanasov et al.,
2015). Approximately 80% of NPs have previously been developed for
cancer treatment (Newman and Cragg, 2016). Phenolic compounds,
one of the NPS, which are molecular functional compounds that
target multiple signaling pathways involved in activation or
transformation of cells (Bakrim et al., 2022). Flavonoids exhibit a
variety of anticancer properties, including the modification of ROS-
scavenging enzyme activities, cell cycle arrest, the induction of
apoptosis and autophagy, and the inhibition of cancer cell growth
and invasion (Kopustinskiene et al., 2020).

Caesalpinia sappan is a medicinal plant with many flavonoids
(Nguyen et al., 2020). Caesalpinia sappanwood’s high flavonoid
concentration supports anti-cancer research. The primary
flavonoid ingredient isolated from C. sappanwood is brazilin
(Mottaghipisheh and Stuppner, 2021). Brazilin can also be found
in heartwood trees, including brazilwood (Caesalpinia echinata) and
bralette (Caesalpinia Violaceae) (Dapson and Bain, 2015). In several
studies, we found that brazilin has the ability to treat several types of
cancer, such as breast cancer (Jenie et al., 2018; Hermawan and Putri,
2020; Jang et al., 2020; Chatterjee et al., 2022; Haryanti et al., 2022;
Yang et al., 2023), colorectal cancer (Handayani et al., 2017), multiple
myeloma (Kim et al., 2012), osteosarcoma (Kang et al., 2018), lung
cancer (Suyatmi et al., 2022), cervical cancer (Kitdamrongtham et al.,
2013; Jeon et al., 2014), bladder carcinoma (Zhang et al., 2015; Zhang
et al., 2018), and others (Lee et al., 2013; Mitani et al., 2013; Zhang
et al., 2014; Bello-Martínez et al., 2017; He et al., 2017; Correia Soeiro
et al., 2022; Yan et al., 2022).

A study stated that Brazilin substances can be used to chelate
iron because of their structure, which reacts with metal ions such as
iron (Fe) to form a stable complex (Safitri et al., 2022). Iron chelators
have long been considered potential anticancer agents (Kulp et al.,
1996; Kovář et al., 2001). Iron is a major substance essential in cell
growth, metabolism, and replication. Metabolism of iron is
regulated in cells with cancer to cope with greater replicative
demands (Theil and Goss, 2009). Iron chelating substance were
initially created to treat iron overload disorders, but their potential
for anticancer use is becoming increasingly apparent (Ibrahim and
OSullivan, 2020).

Based on the mentioned evidence, this article review aims to
determine the future potential of brazilin as an anticancer agent and
its mechanism to conclude whether there is a relationship between
the activity of iron chelation from the brazilin compound and cancer
pathogenesis.

2 Methods

Relevant articles were obtained from the PubMed database with
the terms “brazilin” and “cancer.” In total, 32 articles were identified.

We exclude 11 articles that are not in English, not review articles, not
Brazilin, and not cancer studies. Therefore, the rest 21 articles were
included. The relevant research articles published without any time
limit were included according to the criteria.

3 Brazilin: Source and structure

Brazilin, one of the main compounds originating from
fractionation of the heartwood extract of C. sappan and
Haematoxylum brasiletto, is most widely distributed in Southeast
Asia and America (Toegel et al., 2012). Traditionally, brazilin has
been taken as a red dye for cosmetics, beverages, fabrics, and food in
Malaysia, China, Thailand, Mexico and Vietnam because it produces
a red color (Nava-Tapia et al., 2022).

Brazilin is an organic compound of the homoisoflavonoid type,
named by IUPAC as (6aS,11bR)-7,11b-dihydro-6H-indeno [2,1-c]
chromene-3,6a,9,10-tetrol, with molecular formula C16H14O5 and
the molecular weight 286.28 g/mol (National Center for
Biotechnology Information, 2023). It may also be named as
natural red, braziletto, or brasilin (Edwards et al., 2003).
Brazilin is a colorless phenolic compound consisting of one
pyrone, one five-membered ring, and two aromatic rings
(Rondão et al., 2013). However, the hydroxyl group of the
brazilin structure is readily oxidized. It can be converted into
carbonyl groups, leading to transformation of the structure and
forming a colored substance called Brazilein (Harborne
et al., 2013).

Brazilin is the main component of the crude dye, and brazilein is
a polyphenolic compound that may be separated in large amounts
by exposing the organic extract to air and light, which oxidizes the
hydroxyl of brazilin to a carbonyl group. Brazilin and brazilein are
tetracyclic. The aromatic ring attached to the pyrone ring should
originate in the acetate pathway, while the aromatic ring bonded to
the five-membered ring in the shikimic acid pathway (de Oliveira
et al., 2002).

4 Brazilin pharmacological activities

Traditionally, extracts of C. sappan and H. brasiletto have been
applied to fever, hemorrhage, diabetes, skin problems,
cardiovascular diseases, and diabetes as an anti-inflammatory
because of their potential for medicinal use (Pawar et al., 2008;
Nirmal and Panichayupakaranant, 2015; Mueller et al., 2016; Hwang
and Shim, 2018). Specifically, as a major compound of both plants,
brazilin possesses various pharmacological activities. Brazilin is a
significant inhibitor of nitrite oxide (NO) production. It is a valuable
therapy for antioxidants, anti-inflammation, and vascular relaxation
(Hu et al., 2003; Sasaki et al., 2007). Brazilin significantly inhibited
J444.1 cell line nitrite oxide (NO) generation produced by
lipopolysaccharide (LPS). It has been discovered that brazilin
significantly lowers iNOS gene expression at 100 μM, while its
derivative, brazilein, does so even at 10 µM54. As an essential
relaxing factor in the circulatory system, brazilin increases NO
production, NOS activity, and extracellular Ca2+ influx in human
umbilical vein endothelial cells (Hu et al., 2003). Compared to its
derivate, Brazilein, which has activity to reducing liver damage that
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caused by excess iron, increasing cytotoxicity and apoptosis in T47D
cells, and inhibiting NFκB1/p50 in human osteoarthritic (Safitri
et al., 2016; Utomo et al., 2018; Weinmann et al., 2018). Brazilein
also can be invented as potential antibacterial agent against

Escherichia coli MDR, a sensitive antibiotic using in silico method
(Krihariyani et al., 2020).

Brazilin has antimicrobial effects through decreasing DNA and
protein production. Brazilin inhibited the growth of bacteria that

TABLE 1 Summary of Brazilin activity in several types of cancer.

No. Methods Mechanism References

In Silico In Vitro In Vivo

1 — Breast cancer MDA-MB-231 and
4T1 cells

Subcutaneous
xenotransplantation in BALB/C
mice

- Yang et al. (2023)

2 MMP14, PTGS2, ADAM17,
PTEN, CCL2, PIK3CB,
MAP3K8, and CXCL3

- - TNFα signaling Hermawan and Putri
(2020)

3 - Breast cancer MCF-7/HER-
2 cells

- Cytotoxicity and cell
migration

Jenie et al. (2018)

4 MMP-9, MMP-2, and
PTGS2 enzymes

Triple Negative Breast Cancer
(TNBC) 4T1 cell line

- Cell migration Haryanti et al. (2022)

5 - Human breast cancer MCF-7 cell
line

Hemin-induced HO-1
protein expression

Jang et al. (2020)

6 S-adenosyl-L-homocysteine
(SAH) and DNMT1 protein

Human breast cancer cell line
MCF7 and the gene expression of
DNMT1, p38 MAPK, p53,
and p21

Cell proliferation and
DNMT1 expression

Chatterjee et al. (2022)

7 - Colorectal cancer WiDr cell line Apoptosis and Cell cycle Handayani et al.
(2017)

8 - Multiple Myeloma U266 cell line - Histone deacetylases
(HDACs)

Kim et al. (2012)

9 - Osteosarcoma MG-63 cell line - Apoptosis Kang et al. (2018)

10 - Non-Small Lung Carcinoma
A549 cell line

- Intrinsic apoptosis Suyatmi et al. (2022)

11 - Human cervical cancer HeLa cell
line

- NF-κB luciferase Jeon et al. (2014)

12 - SRB assay in human cervical
cancer HeLa cell line

HeLa xenograft and sub chronic
toxicity in nude mice and rats

Antitumor and
antiproliferative

Kitdamrongtham et al.
(2013)

13 - Bladder carcinoma T24 cell line - Cell proliferation T. Zhang et al. (2015)

14 - Bladder carcinoma T24 cell line - Apoptosis T. Zhang et al. (2018)

15 BAF1 (barrier-to-
autointegration factor 1)
protein

- - - Correia Soeiro et al.
(2022)

16 - Glioblastoma multiforme
U87 cell line

- Cell growth and apoptosis Lee et al. (2013)

17 - Head and neck squamous cell
carcinoma

- Apoptosis He et al. (2017)

18 - SiHa, MDA-MB-231, A549, and
NCI-H1299 cell lines

- Cell proliferation Bello-Martínez et al.
(2017)

19 - HEK293T cell line and cancer cell
lines, including HTC75, HeLa,
DLD1, MDA-MB-231, Hs578t
and A549

6–8-week-old nude mice in situ Telomerase in vitro and in
vivo

Yan et al. (2022)

20 - Human melanoma HMV-II cell
line

- Tyrosinase and TYRP2
mRNAs

Mitani et al. (2013)

21 - RAW 264.7 macrophage cells S180 mouse sarcoma cells DNA binding activity of NF-
κB and AP-1

Zhang et al. (2014)
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cause methicillin-resistant Staphylococcus aureus (MRSA), dental
caries (Streptococcus mutans), periodontal disease (Prevotella
intermedia), acne (Propionibacterium acnes), and strep throat
(Group A strep) (Xu and Lee, 2004). Brazilin has an increased
pyruvate kinase activity mechanism. In addition, it may play a role in
the anti-gluconeogenic action of brazilin. Brazilin enhanced the
levels of 6-phosphofructo-2-kinase (PFK-2), fructose-6-phosphate
(F-6-P), and hexose-6-phosphate (H-6-P) extensively (You
et al., 2005).

5 Brazilin mechanisms in cancer

Brazilin has been studied in several types of cancer, such as
cervical cancer, cervical squamous cell carcinoma, breast cancer,
colorectal adenocarcinoma, colorectal cancer, colon cancer,
hepatocellular carcinoma, lung adenocarcinoma, and sarcoma. A
compound’s ability to impede biological or biochemical function
may be measured through its half-maximal inhibitory concentration
(IC50) (Hendriks, 2010). Drug potency, or the quantity of a drug
required to have a therapeutic effect, is correlated with the IC50

value. Like a drug, the IC50 value of a natural compound must be
determined to know the cytotoxicity. The lower the IC50 value, the
more cytotoxic the substance is (Meyer et al., 2019). Based on its IC50

value from different types of cancer cell lines (Bello-Martínez et al.,
2017; Handayani et al., 2017; Haryanti et al., 2022; Jenie et al., 2018;
Suyatmi et al., 2022; Yang et al., 2023; Zhang et al., 2014), brazilin
has a strong ability to treat breast cancer on 4T1 cell lines with the
measured IC50 value of 3.7 µM. The methods used in several studies
to know themechanism of brazilin to treat several types of cancer are
shown in Table 1.

In treating cancer, brazilin has different types of mechanisms,
but the general mechanism is to induce apoptosis and inhibit cell
proliferation. Most of the studies were carried out using breast
cancer cell lines. Brazilin inhibits cell proliferation, migration, and
invasion as the primary therapy and co-therapy with doxorubicin
(Jenie et al., 2018; Haryanti et al., 2022). Hemin-induced heme
oxygenase-1 (HO-1) in breast cancer cells is slightly inhibited by
brazilin (Jang et al., 2020). Besides, HO-1 has cytoprotective
properties to promote cancer progression in cancer cells, yet HO-
1 overactivation also promotes unconventional ferroptosis due to an
accumulation of prooxidant-free iron (Nitti et al., 2021). Other
findings were obtained to help arrange possible molecular
mechanisms of brazilin as a novel anticancer agent. Brazilin
suppressed the activity of transcription factors called histone
deacetylases (HDACs), which are involved in controlling cell
cycle arrest and apoptosis in multiple myeloma (Kim et al., 2012).

An in silico study predicted several targets that brazilin inhibited.
In triple breast cancer, brazilin was found to attach more firmly and
effectively to MMP-2, MMP-9, and PTGS2 compared to its native
ligand (Haryanti et al., 2022). These enzymes are involved in cell
migration and metastasis (Webb et al., 2017; Ercolano et al., 2019).
According to these findings, brazilin could potentially disrupt the
activities of the enzymes by binding to their active sites (Haryanti
et al., 2022).

Brazilin has also shown its activity in several other types of
cancer, but its mechanism has not yet been studied further. Brazilin
mechanisms are limited to in silico, in vitro, and in vivo. No clinical

research has ever been done. Apoptotic-related pathways are still the
most interesting to explore for a new potential anticancer agent.
Every discovery is valuable to guide us for new pathways regarding
anticancer therapy mechanisms by brazilin. Of all the findings about
brazilin mechanisms towards cancer, the iron chelation mechanism
has not beenmentioned yet. In themeantime, using iron chelators as
an adjuvant cancer treatment is becoming more popular, even
though they have been developed initially to treat iron overload
disorders (Wang et al., 2019; Safitri et al., 2022).

6 Brazilin as iron chelators

Brazilin belongs to the class of flavonoids that are likely to
interact withmetals, mainly Fe (Kejík et al., 2021). A study has found
that brazilin could be used as an antituberculosis because of its
mechanism of inhibiting Mycobacterium tuberculosis (Mtb)
extracellularly by iron chelation (Safitri et al., 2022). Iron
overload removal and prevention are the main goals of chelation
therapy. By chelating extra iron, iron levels can be maintained at
normal levels. Iron chelation therapy was first developed for
transfusion-dependent anemias, including myelodysplasia, sickle
cell disease, and thalassemia. However, this is only a small
portion of the potential spectrum of activity for iron chelators
(Porter, 2001). Transferrin (Tf), a protein with a strong affinity
for iron, carries iron in plasma. After the iron transferrin complex
attaches to the cell surface’s transferrin receptor 1 (TfR1), the
complex is internalized through receptor-mediated endocytosis,
and endosomal acidification releases the iron from Tf (Hentze
et al., 2004). On the other hand, cancer cells have a few different
mechanisms to keep the balance of iron within their cells. In
neoplastic cells, iron metabolism is altered in order to fulfill
higher replicative needs. Numerous processes contribute to the
increased iron uptake in neoplastic cells, but the most prominent
one is the increased protein expression of the TfR1 receptor, which
has been found in several cases, including renal, colorectal, liver,
breast, and lung cancer (Kindrat et al., 2016; Greene et al., 2017;
Horniblow et al., 2017; Rychtarcikova et al., 2017). In these
neoplasms, its level has been connected to the growth of the
tumor (Brookes et al., 2006). Numerous neoplasms have also
been reported to have elevated levels of the homologous TfR2
(Calzolari et al., 2007). It has been shown in melanoma and
hepatoma cell lines that intake occurs via non-receptor-mediated
pinocytosis once TfR1 is saturated (Richardson and Baker, 1994;
Trinder et al., 1996).

Iron chelators that are clinically approved are as follows:
Deferoxamine (DFO) (Kontoghiorghes et al., 1987; Hernlem
et al., 1996), Deferiprone (L1) (Rombos et al., 2000; Cohen et al.,
2003; Hoffbrand et al., 2003), and Deferasirox (DFX) (Gaboriau
et al., 2010). Iron chelators were initially developed to treat iron
overload disorders like thalassemia, but there is increasing interest in
their potential as adjunctive therapy for cancer. The combination of
iron-chelating agents like DFO or DFX with cisplatin, doxorubicin,
and carboplatin has been shown to increase the cytotoxic effects of
these chemotherapeutics in some studies (Wang et al., 2019; Safitri
et al., 2022). Another natural compound that has iron chelator
activity is curcumin. Curcumin shows great potential as a
therapeutic substance and is being studied in humans for a
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number of diseases, such as psoriasis, pancreatic cancer, multiple
myeloma, colon cancer, and myelodysplastic syndromes. Curcumin
inhibits the development and progression of cancer by targeting
different stages in the malignant process (Hatcher et al., 2009).

Due to the bidentate ligand, a strong metal cation scavenger that
can tightly bind iron (III) at pH 7, brazilin also happens to have a
catechol group that may chelate iron, according to various research
(Hruby et al., 2021). Brazilin’s structure shares a few similarities to
that of DFO, a hexadentate compound that can bind iron in a 1:
1 ratio to form a stable complex that prevents the free radicals that
iron produces (Zhou et al., 2012). An iron chelator’s potency is
determined by how well it can bind transferrin-bound iron that is
not circulating in the plasma. Among other iron chelators, L1 is
considered very effective in iron chelating (Maskoen et al., 2016).
The substance has the benefit of quickly penetrating membranes to
remove potentially harmful iron from tissues since the Fe(III)
chelate of L1 has no net charge (Kattamis et al., 2006). To
chelate one iron atom, L1 molecules are required

(Kontoghiorghes et al., 1987; Merson and Olivier, 2002).
Structurally, brazilin has properties similar to L1 due to its
bidentate structure, indicating that brazilin can bind iron with
the same ratio as L1. Mechanism prediction of brazilin as iron
chelators is shown in Figure 1.

7 Iron chelating activity in cancer
pathogenesis

The development of iron chelators as therapeutic agents can also
be useful anticancer agents (Buss et al., 2005) either by depleting iron
in the tumor or by causing selective oxidative stress in the tumor due
to redox perturbations in its environment (Hatcher et al., 2009; Fibach
and Rachmilewitz, 2017). One of the metabolic characteristics of
malignant cancer cells is dysregulated iron homeostasis, where iron is
crucial for the growth, survival, proliferation, andmetastasis of tumors
at every stage of the process (Ludwig et al., 2015). Tumor cells are

FIGURE 1
Brazilin (National Center for Biotechnology Information, 2024b) and Brazilein ((National Center for Biotechnology Information, 2024a) structure (A),
Brazilin predicted mechanism as iron chelators in cancer cells (B). Illustration refers to the common mechanism of clinically approved iron chelators
(i.e., Deferoxamine (DFO)). DFO and other compounds with similar structures have poor pharmacokinetics profiles. Conjugation with drug carriers, such
as polymers, could help increase therapeutical efficacy (Komoto et al., 2021). Brazilin with carriers (polymer, plasmid, etc.) entering cell cytoplasm via
endocytosis. Iron uptake involves Transferrin that binds two irons and enters cells by interaction with the Transferrin Receptor (TfR1). Iron is typically
transported by DMT1 toward the labile iron pool (LIP) and then scavenged and stored by Ferritin (Pfeifhofer-Obermair et al., 2018). In cancer cells, the
requirements of iron are relatively high, and there is also an accumulation of free iron inside cells caused by Hepcidin (HAMP) binding to Ferroportin (FPN),
which is beneficial for iron export to maintain iron homeostasis (Bystrom et al., 2014). Iron chelation occurs inside cells toward free labile iron (Fe2+).
Thereby, storage and utilization of iron are inhibited by this chelation mechanism. Further research is recommended to clarify whether brazilin promotes
pro-oxidant and iron depletion effects. Abbreviations:DMT1, divalent metal transporter 1; Fe-S, iron sulfide; HAMP, hepcidin antimicrobial peptide; ROS,
reactive oxygen species; STEAP3, six-transmembrane epithelial antigen of prostate 3; Tf, transferrin.
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more susceptible to iron deficiency than normal cells because they rely
heavily on iron for development and proliferation (Bystrom and
Rivella, 2015). Iron reductase, primarily found in some members
of the metal reductases six-transmembrane epithelial antigen of the
prostate (STEAP1-4) family, reduces Fe3+ to Fe2+ in the endosome.
Many human cancer types, including breast, colon, prostate, cervix,
bladder, pancreatic, testis, ovary and Ewing sarcoma, have high
expression levels of STEAP1 and STEAP2. In malignant gliomas,
STEAP3 is overexpressed, and STEAP3 knockdown suppresses
glioma cell metastasis, proliferation, and clonality, in vitro and
tumor growth in vivo. Under hypoxic conditions, STEAP4 is
activated, which increases the incidence of colitis-associated colon
cancer in mice models, enhances the formation of reactive oxygen
species (ROS), and causes an iron imbalance in the mitochondria
(Wang et al., 2019).

Deferoxamine (DFO) and Deferasirox (DFX) are widely used for
iron overload disease in cancer therapy (Ibrahim and OSullivan,
2020). Among all iron chelators available on market, DFX is the
first-choice iron chelator used globally to treat non-transfusion-
dependent thalassemia syndromes in patients from age of 10 and
above, along with chronic iron overload on by blood transfusions in
patients from age of 2 (Piga et al., 2006). DFO chelates non-
transferrin bound iron (free iron), hemosiderin, and iron in
transit between transferrin and ferritin (labile chelating iron
pool). DFO is able to directly attach to iron and remove it away
from heart cells, but it is unable to bind iron that has already been
integrated into other molecules, such as hemoglobin, transferrin, or
cytochromes (Hershko et al., 2001; Komoto et al., 2021). However,
DFX preferentially binds to iron in its oxidized ferric (Fe3+) state
than to the reduced or ferrous (Fe2+) state. Every DFX molecule
binds two ferric irons (Valentovic and Enna, 2008). Additionally, it
was discovered that DFX caused apoptosis by reducing ER stress
responses (Kim et al., 2016). Based on previous discussion, we
conclude that brazilin has the potential ability to chelate iron.
Concerning its activity, it has previously been developed as a
targeted anticancer therapy. As a result, brazilin can potentially
be an anticancer agent through the iron chelation mechanism.

8 Discussion

Brazilin has different mechanisms in treating cancer, but mainly
induces apoptosis and inhibits cell proliferation. Most of the studies
were carried out using breast cancer cell lines. Brazilin inhibits cell
proliferation, migration, and invasion as the primary therapy and
co-therapy with doxorubicin (Jenie et al., 2018; Haryanti et al.,
2022). Brazilian mechanism studies are limited to in silico and in
vivo. Every discovery is valuable to guide us for new pathways
regarding anticancer therapy mechanisms by brazilin. The iron
chelation mechanism in brazilin to treat cancer is not mentioned
yet. Iron chelators were originally created to treat iron overload
problems, however there has been rising interest in using them as
adjuvant therapy for cancer (Wang et al., 2019; Safitri et al., 2022).

Other pathways are present in cancer cells for keeping the
equilibrium of iron within the cell. In neoplastic cells, iron
metabolism is altered to satisfy higher replicative needs.
Numerous processes contribute to the increased iron uptake in
neoplastic cells, but the most prominent one is the increased protein

expression of the TfR1 receptor, which has been found in several
cases, including renal, colorectal, liver, breast, and lung cancer
(Kindrat et al., 2016; Greene et al., 2017; Horniblow et al., 2017;
Rychtarcikova et al., 2017). Brazilin’s bidentate ligand, a strong
metal cation scavenger that can tightly bind iron (III) at pH 7, is
responsible for the catechol group’s ability to chelate iron (Hruby
et al., 2021). Brazilin’s structure shares a few similarities to that of
deferoxamine (DFO), a hexadentate compound that can bind iron in
a 1:1 ratio to form a stable complex that prevents the free radicals
that iron produces (Zhou et al., 2012).

In conclusion, we have found that brazilin has activities toward
cancer pathogenesis via apoptosis mechanism and cell cycle arrest.
There is a study stating that brazilin has the ability to chelate iron as
an antituberculosis agent. The development of iron chelators also
can be useful as anticancer agents. Throughout the whole process of
tumor growth, survival, proliferation, and metastasis, iron is
essential. Therefore, brazilin has the potential as an anticancer
agent through the iron chelation mechanism. However, further
research and investigations must be conducted on brazilin to
confirm this finding.
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