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Gastric cancer, the fifth most prevalent cancer worldwide, is often diagnosed in
advanced stages with limited treatment options. Examining the tumor
microenvironment (TME) and its metabolic reprogramming can provide
insights for better diagnosis and treatment. This study investigates the link
between TME factors and metabolic activity in gastric cancer using bulk and
single-cell RNA-sequencing data.We identified twomolecular subtypes in gastric
cancer by analyzing the distinct expression patterns of 81 prognostic genes
related to the TME and metabolism, which exhibited significant protein-level
interactions. The high-risk subtype had increased stromal content, fibroblast and
M2 macrophage infiltration, elevated glycosaminoglycans/glycosphingolipids
biosynthesis, and fat metabolism, along with advanced clinicopathological
features. It also exhibited low mutation rates and microsatellite instability,
associating it with the mesenchymal phenotype. In contrast, the low-risk
group showed higher tumor content and upregulated protein and sugar
metabolism. We identified a 15-gene prognostic signature representing these
characteristics, including CPVL, KYNU, CD36, and GPX3, strongly correlated with
M2 macrophages, validated through single-cell analysis and an internal cohort.
Despite resistance to immunotherapy, the high-risk group showed sensitivity to
molecular targeted agents directed at IGF-1R (BMS-754807) and the PI3K-mTOR
pathways (AZD8186, AZD8055). We experimentally validated these promising
drugs for their inhibitory effects on MKN45 and MKN28 gastric cells. This study
unveils the intricate interplay between TME and metabolic pathways in gastric
cancer, offering potential for enhanced diagnosis, patient stratification, and
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personalized treatment. Understanding molecular features in each subtype
enriches our comprehension of gastric cancer heterogeneity and potential
therapeutic targets.

KEYWORDS

gastric cancer, tumor microenvironment, cancer metabolism, M2 macrophage,
single-cell analysis

Introduction

Based on the 2022 estimates provided by GLOBOCAN, gastric
cancer is ranked as the fifth most common malignant cancer (968,
784 new cases) and the fifth leading cause of cancer-related deaths (660,
175 deaths) worldwide (Ferlay et al., 2024). The highest numbers of
cases were found in Asia, particularly in China, where approximately
820,000 new cases and 580,000 deaths were reported (Sung et al., 2021).
The most common histological type of gastric cancer is stomach
adenocarcinoma (STAD), accounting for 95% of cases (Sung et al.,
2021; Thrift et al., 2023; Ferlay et al., 2024). Unfortunately, STAD is
often diagnosed at an advanced stage in 65% of cases due to the lack of
or impracticality of early detection screening strategies (Thrift et al.,
2023; Ajani et al., 2017). For early-stage STAD, surgical resection and
adjuvant therapy are offered, but there is a 40% chance of relapse within
the first 2 years after surgery (Saito et al., 2006). Managing advanced
STAD requires a multidisciplinary approach, involving surgery,
chemotherapy, radiotherapy, and targeted molecular agents
(Badgwell, 2016; Ajani et al., 2017). The overall 5-year survival rate
for STAD patients is only 31%, increasing to 67% when diagnosed
before metastasis (Howlader et al., 2012). Recent technological
advancements have revealed novel mechanistic strategies that have
revolutionized the therapeutic landscape for gastric cancer (Shen and
Wang, 2022; Takei et al., 2022). However, the benefits of these
approaches, namely, molecular targeted therapy and
immunotherapy, are confined to a small subset of patients.

The advancement and widespread adoption of genomic
sequencing technology have led to a significant shift in the
classification of gastric cancer, moving from histological
categorization to a molecular-based approach (The Cancer
Genome Atlas Research Network, 2014; Cristescu et al., 2015; Oh
et al., 2018). This molecular classification now holds great
importance for diagnosis, prognosis, and predicting therapeutic
response. However, despite this improved understanding of the
molecular subtypes, the characterization of the tumor
microenvironment (TME) in gastric cancer remains poorly
defined. The TME is a complex and heterogeneous entity that
includes both tumor and non-tumor components, such as the
extracellular matrix, the network of blood vessels, secreted
signaling molecules, and various infiltrated immune and stromal
cells (Ren et al., 2021). The composition of the TME has been
recognized as critical for tumor progression and plays a crucial role
in determining the response to therapy (Fridman et al., 2017). In
particular, the infiltration of diverse immune and stromal cells has
shown associations with gastric cancer prognosis and clinical
outcomes (Jiang et al., 2018a; Chen et al., 2013; Grunberg et al.,
2021). Moreover, the characterization of TME in the context of
immune and stromal cells proportions have also led to identification
of TME-based GC subtypes with prognostic and therapeutic

implications (Cho et al., 2018; Chen et al., 2022; Han et al.,
2022). Nevertheless, these subtypes predominantly consist of a
mixture of tumor and non-tumor components in varying
proportions. Therefore, conducting a comprehensive exploration
specifically focused on the features of the gastric cancer TME has the
potential to open up critical and promising research avenues for
more effective diagnosis and treatment of this disease.

Metabolic reprogramming, a cancer hallmark, fuels tumor
development via enhanced proliferation and apoptosis evasion
(Pavlova and Thompson, 2016). The “Warburg effect,”
upregulated aerobic glycolysis in cancer cells, meets high energy
needs for rapid division regardless of oxygen availability (Li and
Zhang, 2016). Elevated levels of fumaric acid and alpha-ketoglutaric
acid, intermediate products of aerobic glycolytic pathway, were
identified in gastric tissues using gas chromatography/mass
spectrometry (GC/MS) indicating the role of Warburg effect in
gastric cancer (Song et al., 2011). Altered amino acid metabolism
satisfies nutritional demands, links to an immunosuppressive tumor
microenvironment, and drives drug resistance (Tabe et al., 2019).
Proline metabolism influences cancer cell plasticity, heterogeneity,
and development (D Aniello et al., 2020). The co-expression of
glutaminase 1 (GLS1) and gamma-glutamylcyclotransferase
(GGCT), constituents of glutamine metabolism, was strongly
associated with histological grade, lymph node metastasis, and
TNM stage Ⅲ/Ⅳ of gastric cancer (Jiang et al., 2019a).
Reprogrammed metabolism of fatty acids, ketone bodies, and
choline has significant implications for cancer diagnosis and
treatment (Glunde et al., 2006; Koundouros and Poulogiannis,
2020). Fatty acid metabolic reprogramming mediated by
phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1)
in adipocytes was shown to promote gastric cancer omental
metastasis (Tan et al., 2018). Numerous studies have identified
metabolic heterogeneity in gastric cancer through transcriptomic
profiling (Zhu et al., 2021; Chen et al., 2023; Tao et al., 2023). This
heterogeneity is manifested in various ways, including genetic
mutations, immune cell infiltration, and prognostic implications.
While the majority of research on metabolic reprogramming has
focused on cancer cells, this study aims to investigate the intricate
interactions between factors in the TME and metabolic activities
within the context of gastric cancer’s TME.

Materials and methods

Transcriptomic data and processing

The transcriptional and clinical information for stomach
adenocarcinoma tissues was sourced from the TCGA Data portal
(https://portal.gdc.cancer.gov/repository/) for the TCGA STAD
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experimental cohort (n = 407), while for internal validation (GEO
ID: GSE84437; n = 433) and external validation (GEO ID:
GSE15459; n = 192), data was retrieved from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The baseline characteristics of
participants for these cohorts are detailed in Supplementary Table
S1. To preprocess the datasets, log normalization was performed
using the ‘limma’ R package. Furthermore, batch effects were
removed using the ‘sva’ R package and the “Combat” function.

Single cell data quality control and
processing

We acquired the GSE112302 single-cell sequencing data from the
GEO database, and then used the “Seurat” R package for quality control
(Slovin et al., 2021). Cells were filtered based on feature RNA counts
(>50) and the percentage of mitochondrial gene expression (<5%). The
“NormalizeData” function was applied with the “LogNormalize”
method and a scale factor of 10,000. We employed the
“FindVariableFeatures” function to identify the top 2000 variable
features using the “vst” method. These features were then used for
principal component analysis through the “ScaleData” and “RunPCA”
functions. Subsequently, we performed cell clustering using the
k-nearest neighbor classification (KNN) algorithm via the
“FindNeighbors” and “FindClusters” functions, with a resolution of
1.0. For dimensionality reduction, we used the “RunUMAP” function
and visualized the results using Uniform manifold approximation
and projection (UMAP) plots. Cell markers were identified by
utilizing the “FindAllMarkers” function. The normalized count
matrix of another GC single cell dataset (GSE167297) was
downloaded from TISCH website (Sun et al., 2021). Count
matrix was preprocessed for quality control according to the
standard pipeline in MAESTRO (Wang et al., 2020). A similar
processing steps as mentioned above were taken for generating
principal components (PCA) and performing dimensionality
reduction with 40 dimensions and resolution of 0.5.

Identification of TME- and metabolism-
related genes

We acquired a comprehensive collection of 4,061 genes
associated with the tumor microenvironment (TME) from a
selection of prior research studies (Newman et al., 2015; Rooney
et al., 2015; Becht et al., 2016; Chifman et al., 2016; Aran et al., 2017;
Tirosh et al., 2016). These TME-related genes encompass a fusion of
TME genes consolidated from three prominent TME algorithm
databases (xCell, CIBERSORT, and MCP-counter) (Newman et al.,
2015; Aran et al., 2017; Becht et al., 2016), immune gene signatures
derived from two substantial studies encompassing multiple cancer
datasets (Rooney et al., 2015; Chifman et al., 2016), and a single-cell
melanoma dataset with a specific focus on TME elements (Tirosh
et al., 2016). Metabolism-related genes (n = 945) were acquired from
the Molecular Signatures Database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) (Supplementary Table S2). These
metabolism-related genes are derived from gene signatures
related to KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways associated with metabolic processes.

Delineation of TME- and metabolism-
related genes crosstalk

Differential expression of TME- and metabolism-related genes
(TME-Met DEGs) between the TCGA STAD normal (n = 32) and
tumor samples (n = 375) were characterized by the following criteria: log
foldchange (logFC) = 1, and false discovery rate (FDR) < 0.05. Next,
univariate cox regression analysis was carried out to estimate the
prognostic significance of the TME-Met DEGs (TME = 1,021; Met =
147 DEGs). Significance level was set at p < 0.05. Search Tool for the
Retrieval of Interacting Genes (STRING) database, version 11.5 (https://
string-db.org/) was used to evaluate protein-protein interactions (PPI)
among the prognostically significant TME-Met DEGs (TME = 121;
Met = 20 DEGs). Interactions score was set at 0.4.

Non-negative Matrix Factorization (NMF)
clustering

The expression data of 81 TME-Met prognostic DEGs with
significant interaction at protein level were subjected to clustering
using the Non-negative Matrix Factorization (NMF) algorithm. The
‘brunet’ criterion was employed, and 100 iterations were performed.
The range of cluster numbers (k) was set from 2 to 10. The average
contour width of the commonmembershipmatrix was calculated using
the ‘NMF’ package in R (Gaujoux and Seoighe, 2010). The cluster
stability resulting from NMF was assessed using the cophenetic
correlation, which ranged from 0 to 1. A higher value indicated
greater cluster stability. Additionally, smaller values of the residual
sum of squares (RSS), used to gauge the clustering performance of the
model, suggested better clustering performance. The optimal number of
clusters was determined based on metrics such as cophenetic
correlation, dispersion, and silhouette. By employing the above
algorithm, the samples were categorized into distinct
molecular subtypes.

Development and validation of TME-Met
prognostic model

To construct the prognostic model for the upregulated TME-Met
DEGs (n = 47) within molecular subtype 2 (C2), we employed the
“glmnet” R package. We conducted a Least Absolute Shrinkage and
Selection Operator (LASSO) penalized Cox regression analysis to
systematically identify the most relevant candidate genes (Ishwaran
et al., 2014). Our regression analysis utilized the normalized expression
matrix of the candidate prognostic DEGs as independent variables.
Simultaneously, the overall survival data and patient survival status
from the TCGA STAD cohort were employed as response variables. To
optimize themodel, we determined the penalty parameter (λ) through a
tenfold cross-validation approach. We selected the λ value that
minimized the partial likelihood deviance. Subsequently, we
calculated a risk score for each patient based on the expression
levels of the DEGs and their corresponding coefficients. This risk
score was computed using the following formula:Risk
Score=(Expression of mRNA1×Coefficient mRNA1)+(Expression
of mRNA2×Coefficient mRNA2)+. . .+(Expression of
mRNAn×Coefficient mRNAn).Risk Score=(Expression of
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mRNA1×Coefficient mRNA1)+(Expression of mRNA2×Coefficient
mRNA2)+. . .+(Expression of mRNAn×Coefficient mRNAn). The
median risk score was used to classify patients into low- and high-
risk cohorts. Kaplan-Meier analysis was performed to compare overall
survival between the risk groups. The optimal cut-off expression value
was determined using the “surv_cutpoint” function from the
“survminer” R package. To assess the predictive power of the gene
signature, time-dependent ROC curve analyses were conducted using
the “survivalROC” R package. These steps were repeated for internal
and external validation in the GEO cohorts.

Independent prognostic analysis

In order to examine the independent prognostic factors of gastric
adenocarcinoma, including variables such as age, gender, tumor grade,
and tumor stage (TNM staging data), univariate Cox regression and
multivariate Cox regression analyses were performed on genes using the
R software forestplot package. The results were displayed using forest
plots to visualize the findings. A factor was considered an independent
prognostic factor when its p-value was less than 0.05 in both the
univariate Cox and multivariate Cox analyses.

Immunological analysis

The MCP-counter algorithm was utilized to assess the primary
cellular constituents of the TME (Becht et al., 2016). This algorithm
robustly calculates the absolute abundance of immune cells (eight
distinct types) and stromal cells (two types) by analyzing the
transcriptomic data from heterogeneous tissues. The CIBERSORT
algorithm was employed for a quantitative analysis of the relative
abundance of 22 immune cell types, encompassing various subtypes
of major cell lineages, within the TCGA cohort (Newman et al., 2015).
CIBERSORT is a computational method designed to estimate cellular
fractions by utilizing gene expression profiles from bulk cancer tissues.
The “ESTIMATE” R package was utilized to infer the tumor purity and
immune and stromal cell admixture from cancer tissue gene expression
data (Yoshihara et al., 2013). Additionally, to determine the immune
subtype of the risk groups, we referred to previous research for immune
subtype information and analyzed the enrichment of each subtype in
the high- and low-risk groups (Thorsson et al., 2018).

Functional enrichment analysis

The “clusterProfiler” package was utilized to examine the
enrichment of KEGG pathways by 81 TME-Met DEGs and DEGs
between risk groups, as well as the enrichment of Gene Ontology (GO)
terms by 15 risk signature genes. The “gsva” package of R was used to
estimate the enrichment of the hallmark cancer and KEGG pathways
operating between the clusters.

Evaluation of genetic alterations

We acquired the Simple Nucleotide Variation data of the TCGA
STAD cohort from the University of California, Santa Cruz (UCSC)

Xena website (https://xenabrowser.net/). For the analysis of gene
mutations and the creation of oncoplots, we employed the R package
“maftools”. To calculate somatic copy number alterations (SCNAs)
at both the arm and focal levels in the tumor, we utilized GISTIC_2.
0. The input for this analysis consisted of “SNP6" files, which were
downloaded from the genomic data commons data portal (https://
portal.gdc.cancer.gov/) (Mermel et al., 2011).

Cell lines and cell culture

The human gastric cancer cell lines (AGS and MKN45) and
normal gastric cell line of GSE-1 were acquired from the Committee
of Type Culture Collection of the Chinese Academy of Sciences
(Shanghai, China). The cells were cultured in DMEM medium
supplemented with 10% fetal bovine serum (FBS), penicillin
(100 U/mL), and streptomycin (100 mg/mL). A humid incubator
set at 37°C and 5% CO2 was used to maintain the cells at 37°C. We
regularly performed authentication checks on all cell lines utilized in
this investigation by assessing their morphology and conducted tests
to ensure the absence of Mycoplasma contamination.

Quantitative real-time PCR

The extraction and purification of total RNAwere carried out using
Trizol Reagent (Takara, Otsu, Japan), followed by reverse transcription
to generate cDNA. Quantitative real-time polymerase chain reaction
(qRT-PCR)was performed using a SYBRGreen PCRKit (Takara, Otsu,
Japan). The expression ofmRNAwas normalized to the internal control
Beta Actin, and the relative mRNA level of the treated group was
compared to the control group. The primer sequences utilized in this
study were generated using the primer-BLAST tool (https://www.ncbi.
nlm.nih.gov/tools/primer-blast/index.cgi?GROUP_TARGET=on) and
obtained from Tsingke Biotechnology Co., Ltd. The primer
sequences can be found in Supplementary Table S3.

Immunohistochemistry analysis

Deparaffinization of formalin-fixed, paraffin-embedded 4-mm
thick tumor tissue sections was carried out using xylene and ethanol.
Subsequently, antigen retrieval was performed by boiling the
sections in a microwave oven using citrate buffer (pH 6.0). This
was followed by blocking of endogenous HRP activity with 0.3%
hydrogen peroxide. Following the washing step with 10%
phosphate-buffered saline (PBS), the sections were blocked using
5% BSA and then exposed to primary antibodies against the
following targets: KYNU (Proteintech, #11796-1-AP, Rabbit, 1:
100), CPVL (Proteintech, #12548-1-AP, Rabbit, 1:200), CD36
(Proteintech, #18836-1-AP, Rabbit, 1:800), GPX3 (Signalway
Antibody, #27854, Rabbit, 1:800), and CD163 (Cell Signaling,
#93498S, Rabbit, 1:250). This incubation process took place at
4°C overnight. Afterward, the sections were subjected to a 20-min
incubation with a biotinylated goat anti-rabbit IgG secondary
antibody at room temperature. The visualization of the targeted
proteins was achieved using the 3,5-diaminobenzidine (DAB)
Substrate Kit, and finally, counterstaining with Hematoxylin was
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performed. The staining intensity was assessed using a semi-
quantitative method with the following scores: 0 for negative,
1 for weak, 2 for moderate, and 3 for strong. Additionally, the
frequency of positive cells was categorized as follows: 0 for less than
5%, 1 for 5%–25%, 2 for 26%–50%, 3 for 51%–75%, and 4 for greater
than 75%. The final Immunohistochemistry (IHC) scores were
obtained by multiplying the staining intensity and the frequency
of positive cells. In cases of heterogeneous tissue staining, each area
was scored independently, and the scores were then combined to
determine the final result. The study adhered to ethical guidelines,
with patient informed consent obtained, and approval from the
internal review and ethics boards of the Affiliated Cancer Hospital
and Institute of Guangzhou Medical University was obtained as well
(Approval Number: GYZL-ZN-2023(029)).

Therapeutic response assessmsent

The Tumor Immune Dysfunction and Exclusion algorithm (TIDE)
(http://tide.dfci.harvard.edu) was utilized to assess the immunotherapy
response (Jiang et al., 2018b). An analysis of drug sensitivity was
conducted on 198 small molecules. To calculate the half-maximal
inhibitory concentration (IC50) of these drugs in GC patients, the
“oncoPredict” R package was employed (Maeser et al., 2021). An
effective drug for the patient is indicated when the IC50 value of the
high-risk group is lower than that of the low-risk group, and there is a
significant difference between the two risk groups. To further identify
sensitive drugs with a low and differentiated IC50 in the high-risk
group, this information was combined with the results obtained from
the risk model.

Experimental assessment of drug inhibitory
effect in gastric cancer

We conducted a CCK-8 assay using the MKN45 and
MKN28 cell lines. The cells were first washed three times with
phosphate-buffered saline (PBS) and then treated with 2 mL of
trypsin for 1–2 min. Subsequently, the trypsin was aspirated, and the
cells were gently detached using a disposable pipette. The dislodged
cells were transferred to a centrifuge tube containing 2 mL of culture
medium to create a single-cell suspension. Cell counting was
performed by placing 10 μL of the single-cell suspension on a
hemocytometer plate, and the concentration of the suspension
was adjusted to 5 × 104 cells/mL. After 24 h, we removed the 96-
well plates and added 100 μL of a fresh drug solution with various
concentrations (0, 10, 50, 100, 200, 500 μmol/L) to each well. Each
group included three replicate wells, and the plates were incubated in
a standard cell culture incubator. The assessment of the drug’s
inhibitory effect on MKN45 and MKN28 cells was determined by
measuring the optical density (OD) values on days 1 and 2 after the
addition of the drug solution.

Statistical analysis

The gene expression level and drug sensitivity between the
groups were assessed using the Wilcoxon test. Categorical

variables were compared using the Chi-square test. To estimate
the difference in overall survival between the groups, the Kaplan-
Meier method with the log-rank test was utilized. Univariate and
multivariate factor analyses were conducted using cox-regression
hazard models. All statistical analyses were executed using R
software (v4.0.2).

Results

Data processing and the analysis pipeline

A depiction of the data processing and the systematic analytical
approach employed in this article is presented in Figure 1.
Transcriptomic data of stomach adenocarcinoma samples from
TCGA and GEO databases served as the input datasets. A
thorough six-step analysis was conducted to investigate the
interplay between components of the Tumor Microenvironment
(TME) and metabolic influences within the TME of gastric
cancer (Figure 1).

Discovering prognostic DEGs associated
with tumor microenvironment and
metabolism, and their protein-level
interactions

Comparison of TCGA STAD normal (n = 32) and tumor
tissues (n = 375) revealed differential expression of 1021 TME-
and 147 metabolism-related genes as illustrated in the volcano
plots (Figures 2A,B; Supplementary Table S4, S5). Out of the
1021 TME DEGs, 121 genes (48 protective and 73 risky genes)
were found to be significantly associated with TCGA STAD
prognosis (Supplementary Table S6). Similarly, 13 risky and
7 protective metabolism-related genes were also identified,
showing significant associations with prognosis (Supplementary
Table S7). A TME-Met (Tumor Microenvironment-Metabolic)
prognostic network was constructed to illustrate the correlations
among these genes and their prognostic significance (Figure 2C).
Prognostic genes were further validated for protein-level
interactions using the STRING database (Figure 2D). A subset
of 81 genes showed significant protein-level interactions. These
genes, drawn from both the TME and metabolism groups, exhibit
confirmed cross-talk at the protein level and are linked to gastric
cancer prognosis. They were selected for further analysis as they
constitute the desired gene set for in-depth exploration into the
interplay between TME and metabolism in gastric cancer. The
heatmap visualizes the differential expression of these genes in the
TCGA STAD cohort, with 18 of them being downregulated in
cancer tissues compared to adjacent normal tissues (Figure 2E).
The enrichment analysis of KEGG pathways revealed that the
identified genes are actively involved in essential pathways that
are fundamental to the tumor microenvironment’s functioning
and the associated metabolic processes (Figure 1F; Supplementary
Table S8). This finding suggests that these genes may play critical
roles in shaping the TME and influencing the metabolic
alterations that occur during cancer development and
progression.
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Clustering analysis reveals distinct
molecular subgroups driven by TME-
Metabolic interactions

In order to delineate the functional and biological implications
of TME-Met crosstalk genes, TCGA STAD tumor samples were
stratified into molecular clusters by performing the unsupervised
clustering analysis using NMF algorithm. Two molecular clusters
were obtained as suggested by cophenetic correlation coefficient and
visual inspection of the consensus matrix (Figures 3A,B). The
C2 cluster showed significantly lower PFS and OS as shown in
Kaplan-Meier curves (Figures 3C,D). Differential expression of these
genes between the clusters and their association with clinical features
is highlighted in Figure 3E, which reveals the association of C2 with
more aggressive clinical features of STAD patients, such as grade,
stage, T and N stage. According to the ESTIMATE algorithm, the
TME (non-tumor components) was strongly represented in the
C2 cluster, whereas the C1 cluster exhibited a higher concentration
of tumor components (Figure 3F). The most noticeable dissimilarity
between the clusters was the enrichment of the stromal component

in C2. Immunologically, C2 was infiltrated by myeloid dendritic
cells, monocytic lineage cells, endothelial cells, and fibroblasts
(Figure 3F). No difference in cytotoxic and adaptive immune
cells was observed between clusters. Correspondingly, there was
no variation between the clusters in their correlation with immune
subtype C1 (wound healing) and C2 (IFN-γ dominant) (Figure 3G).
However, the C3 and C6 immune subtypes were predominantly
associated with the C2 cluster, representing the primary distinction
between the clusters. Functional evaluation via Hallmark pathways
demonstrated that C1 was enriched in cell division, DNA repair, and
oncogenic pathways corresponding to tumor cells (Figure 3H;
Supplementary Table S9). While C2 was predominantly enriched
in inflammatory, metabolic, immunosuppressive, and pathways
associated with cancer progression and invasion. The difference
in metabolic activity, as assessed by the enrichment of KEGG
metabolic pathways, further confirmed these distinctions. The
C2 cluster exhibited heightened metabolism of
glycosaminoglycans (GAGs) and glycosphingolipids (GSLs), while
pathways linked to protein and sugar metabolism were
predominantly enriched in C1 (Figure 2I; Supplementary Table

FIGURE 1
Analytical process adopted in this article. The interplay between tumor microenvironment and metabolism genes was examined using
transcriptomic data from 375 stomach adenocarcinoma (STAD) patients from TCGA (training set) and 407 tumor samples (validation set) from the GEO
database. Differential expression analysis compared tumor (n = 375) to normal samples (n = 32), followed by uni-cox regression analysis and protein-level
interaction analysis. This identified 81 crosstalk genes, labeled as TME-Met genes, whichwere then subjected to NMF clustering to assess clinical and
functional implications. LASSO regression yielded a 15-gene risk signature, termed TME-Met risk signature, to stratify STAD patients into high and low-risk
categories. Clinical, functional, and immunological features were evaluated, and gene expression in gastric cancer cells was validated using RT-qPCR.
Single-cell validation identified four genes predominantly expressed by M2 macrophages, confirmed via IHC analysis. Finally, therapeutic implications
were explored, identifying three potential drugs for inhibiting gastric cell proliferation.
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FIGURE 2
Identification of TME- and metabolism-related DEGs with protein-level interactions and prognostic significance. (A) Volcano plots depicting TME-
and (B)metabolism-related differentially expressed genes (DEGs). DEGs were defined according to the following criteria: log fold change (logFC) = 1, and
the false discover rate (FDR) < 0.05. (C) Bubble Network illustrating the prognostic impact of significant TME- and metabolism-related DEGs and
correlation among them. (D) Protein-protein interaction (PPI) network depicting protein-level interactions of TME-Met DEGs at interaction score =
0.4. (E) Heatmap shows the expression pattern of TME-Met DEGs between TCGA STAD normal (n = 32) and tumor samples (n = 375). Red and blue
represent upregulation and downregulation respectively. (F) Circos plot depicting KEGG pathway enrichment analyses of TME-Met DEGs. (increasing
depth of the red indicate the more obvious differences; q-value: the adjusted p-value).
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FIGURE 3
Molecular subtyping and functional implication of TME-Met DEGs cross-talk. (A, B)Consensus clustering matrix in TCGA STAD patients. (C) Kaplan-
Meier curves for the OS and (D) PFS comparison between clusters. (E)Heatmap illustrating the expression of 81 TME-Met DEGs (Red: upregulation; Blue:
downregulation) between the clusters and correlation between clusters and clinicopathological features. (F) Heatmap shows the enrichment results of
ESTIMATE algorithm and single-sample gene set enrichment analysis (ssGSEA) of immune cell infiltration between the clusters. p values are shown
as: *p < 0.05; **p < 0.01; ***p < 0.001. (H) Sankey diagram presenting the correlation between clusters and immune subtypes. (I) Heatmaps showing
GSVA enrichment scores of hallmark cancer pathways and (G) KEEG metabolic pathways in the clusters.
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FIGURE 4
Construction and validation of TME-Met prognostic index. (A) LASSO regression of the 81 TME-Met genes and (B) Cross-validation for tuning the
parameter selection in the LASSO regression. (C) Bar plot depicting the regression coefficients of the 15 TME-Met prognostic index (PI) genes. (D) Kaplan-
Meier curves for the OS difference between risk subgroups in the TCGA cohort and (E)GEO cohort. (F) Time-dependent receiver operating characteristic
(ROC) curves and area under curve (AUC) analyses depicting the predictive efficiency of riskScore in TCGA cohort and (G) GEO cohort. (H) Kaplan-
Meier curves for the OS difference between risk subgroups in the TCGA cohort and (I) Time-dependent ROC curves and AUC analyses depicting the
predictive efficiency of riskScore in external validation cohort (GSE15459). (J) Univariate and multivariate cox-regression analysis to evaluate the
independent prognostic value of the risk score in TCGA and GEO cohorts.
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S10). In brief, these findings imply that C2 is predominantly
composed of elements linked to the tumor microenvironment
(TME), while C1 shows enrichment in characteristics associated
with tumors. Additionally, the two clusters display substantial
differences in metabolic activity, carrying clinical and prognostic
significance.

Establishing and validating the TME-Met
Interplay prognostic index

We generated a prognostic model by exclusively considering the
upregulated genes (referred to as risky genes) in C2 for conducting
the LASSO Cox regression analysis (Figures 4A,B). A 15-gene
prognostic signature was constructed, consisting of TME- and
metabolism-related genes. A TME-Met prognostic index (PI) was
established based on the regression coefficients of the genes: TME-
Met PI = (0.114036806 * PDE1B) + (0.050894388 * GPX3) +
(0.043866895 * CD36) + (0.06977475 * NOX4) + (0.073874549 *
ANGPT2) + (0.012732279 * KIT) - (0.194182923 * KYNU) +
(0.0251143388 * CPVL) + (0.048018011 * GFRA1) +
(0.050516604 * LOX) + (0.032270562 * VCAN) + (0.10207895 *
MAGEA3) + (0.146899735 * SNCG) + (0.108729913 * PNMA2) +
(0.013247885 * CARD11) (Figure 4C). TCGA STAD patients were
categorized into high- and low-risk subgroups based on the median
TME-Met PI, and the same procedure was replicated for internal
validation using a GEO dataset (GSE84437). Kaplan-Meier overall
survival curves revealed a significantly worse prognosis for high-risk
patients in both datasets (Figures 4D,E). The TME-Met PI
demonstrated an area under the curve (AUC) of 0.649, 0.698,
and 0.754 at 1-, 3-, and 5-year survival, respectively. The GEO
cohort also showed promising AUC scores of 0.610, 0.575, and
0.587 at 1-, 3-, and 5-year. AUC score at 5 years was lower in GEO
cohort as compared to TCGA cohort, possibly due to lack of patients
with distant metastases (Figures 4F,G). Moreover, the ability of
TME-Met PI to stratify GC patients’ survival probabilities was also
demonstrated in an external validation cohort of 192 GC patients
(GSE15459) (Figures 4H,I). Intriguingly, the AUC scores closely
resembled those of TCGA STAD patients, reinforcing the notion
that the TME-Met PI performs more effectively in advanced GC
cases as this cohort also involved GC patients with metastatic disease
(N = 60). Furthermore, we confirmed the independent prognostic
value of the risk model by conducting uni- and multi-variate Cox
regression analysis as shown in Figure 4J.

Clinical and functional annotations of TME-
Met prognostic index

The expression pattern of 15-risk TME-Met prognostic genes in
high and low-risk subgroups and their correlation with clinical
features is highlighted in Figure 5A. The TME-Met PI was able
to describe the aggressive feature of STAD patients such as primary
tumor size (T), tumor clinical stage and pathological grade
(Figure 5A). High-risk subgroup patients had significantly high
primary tumor size (T3/4 vs T1/T2), clinical stage (III/IV vs I/II),
and pathological grade (G3 vs G2). Although the presence of distant
metastasis was more common in high-risk subgroup, the difference

was not statistically significant (17 vs 8, p = 0.078). Among the
four GC molecular subtypes, genomic stability (GS) subtype was
more common in high-risk subgroup while microsatellite instability
(MSI) was abundant in the low-risk subgroup (Shen and Wang,
2022). The enrichment analysis of GO terms revealed that these
genes play a significant role, either independently or in combination,
in intracellular signaling, metabolic processes, and cytokine
production by myeloid leukocytes (Figure 5B). Additionally, the
DEGs between these risk groups also exhibited enrichment for
KEGG pathways related to the tumor microenvironment (TME),
including ECM-receptor interaction and Proteoglycans in cancer
(Figure 5C; Supplementary Table S11). Furthermore, the pathways
associated with cancer progression and immunosuppression, such as
PI3K-Akt and TGF-β signaling, were also found to be enriched in
these DEGs. In the low-risk subgroup, STAD-specific mutations
were more common compared to the high-risk subgroup (88.33% vs
93.92%) (Figure 5D). The three most frequently mutated genes in
this subgroup were TTN (43% vs 57%), TP53 (37% vs 48%), and
MUC16 (27% vs 33%). Additionally, there was a noticeable increase
in focal-level SCNAs in the low-risk subgroup with only few
significant arm-level amplifications and deletions in the high-risk
subgroup (Figure 5E). It is worth noting that the distribution of TME
components (tumor versus non-tumor) between these risk
subgroups might also play a role in the low genomic alterations
seen in the high-risk subgroup, potentially influenced by a lower
tumor content in that group. Moreover, our observations revealed a
positive correlation between riskScore and the presence of immune
and stromal cells, while there was a negative correlation with tumor
mutational burden (TMB), consistent with previous research
findings. (Jiang et al., 2020) (Figure 5F). Overall, the high-risk
subgroup demonstrated larger tumor size, higher pathological
grade, enhanced genomic stability, lower mutation rates, and an
immunosuppressive TME marked by the presence of myeloid cells-
derived cytokines, epithelial-to-mesenchymal transition (EMT), and
an enrichment of PI3K-Akt and TGF-β signaling pathways. This
profile aligns with the mesenchymal phenotype previously described
in GC subtypes, characterizing the high-risk subgroup (The Cancer
Genome Atlas Research Network, 2014; Cristescu et al., 2015; Oh
et al., 2018).

Profiling the dynamics of hub gene
expression in gastric cancer within
TME context

As mentioned in the previous sections and highlighted in
Figure 6A, some of the hub genes were downregulated in the
TCGA STAD cancer samples as compared to normal tissues.
These genes included GFRA1, KIT, PDE1B, CD36, GPX3, and
SNCG. Our in vitro assessment of the expression of these genes
in gastric cancer (GC) cell lines (AGS, MKN45) also indicated lower
expression in cancer cells compared to normal control (GSE-1)
(Figure 6B). The downregulation of these genes in cancer samples
does not necessarily imply that they are tumor suppressor genes, as
their expression is positively correlated with poor prognosis
(Figure 6C). Instead, this points to their unique expression
pattern specific to a particular subset of patients, as indicated in
our study. Consequently, we proceeded to investigate their
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FIGURE 5
Molecular and functional implications of TME-Met prognostic index. (A) Heatmap illustrating the expression of 15 TME-Met PI genes (Red:
upregulation; Blue: downregulation) in the TME-Met PI risk subgroups (Red: high-risk; Blue: low-risk) and association with clinicopathological features
(TNM staging. T: primary tumor; N: lymph node; M: metastasis. Degree of differentiation. G1: highly differentiated; G2: moderately differentiated; G3:
poorly differentiated). (B) KEGG pathway enrichment analyses of TME-Met PI genes and (C) DEGs between the risk subgroups. (D) Oncoplot
depicting the mutation frequency of top 20 mutated genes in the high- and low-risk groups. (E) Comparisons of focal- and arm-level amplification and
deletion frequencies levels between risk subgroups. (F) Correlation among riskScore, TMB and TME infiltrates.
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expression pattern at the single-cell level using a single-sequencing
dataset (GSE112302) sourced from the GEO database. This dataset
encompassed 6 gastric cancer samples, comprising a total of
400 single cells and 24,000 genes. In total, 9 clusters of cell
populations were obtained after the initial quality control and
data standardization steps using the “Seurat” R package
(Figure 7A). The clusters were categorized into 8 distinct types of
cell subsets based on the expression of stomach cell markers
(Figure 6B). These cell types were identified as follows: goblet
cells (MUC2, ITLN1, HES6), gland mucous cells (GMCs;
markers: OLFM4, SPINK4, MSMB), cancer cells (CEACAM6,
CEACAM5, ALDH1A2), pit mucous cells (PMCs; GNK1,
MUC5AC, TFF1), chief cells (PGC, PGA3, PGA5), proliferative
cells (TOP2A, MKI67, BIRC5), macrophages (CSF1R, CD68,
CD163), and fibroblasts (PDGFRB, DCN, COL1A1) (Figure 7C).
Figure 7D illustrates the expression of the most specific cell markers
for each respective cell type. Significant expression of CD163 by
macrophages indicate their phenotype as alternative anti-
inflammatory M2 macrophage. The TME-Met risk genes
predominantly exhibited expression in macrophages and
fibroblasts (Figure 7E). In particular, we observed the expression
of the mentioned downregulated genes, such as GFRA1, GPX3, and
SNCG, in fibroblasts, and PDE1B and CD36 in macrophages.
Additionally, MAGEA3, CPVL, KYNU, and GPX3 showed
expression in other cell types beyond macrophages and
fibroblasts. Moreover, our analysis revealed cell-specific
expressions, such as CARD11 in cancer cells, PNMA2 in
proliferative cells, MAGEA3 in gland mucous cells, and KIT in
chief cells. These findings highlight the diverse and context-specific
expression patterns of the TME-Met risk genes across different cell

types, shedding light on their potential roles and interactions within
the tumor microenvironment.

To strengthen these observations, we further evaluated the
expression pattern of these genes in another single-sequencing
dataset (GSE112302) comprising 5 GC patients and 22, 464 cells.
Following quality control and standardization, 10 clusters of cells
were identified which were then renamed according to the standard
single-cell markers as follows: T cells (CD3D), B cells (MS4A1),
plasma cells (CD27), macrophage (CD68), epithelial cells (EPCAM),
endothelial cells (CD34), fibroblasts (DCN), and mast cells
(TPSAB1) (Figure 7C). Cell annotation in our analysis was
consistent with the original study and the evaluation of the
TISCH database, confirming a significant representation of the
tumor microenvironment (TME) component (Jeong et al., 2021;
Sun et al., 2021). Again, the TME-Met risk genes were
predominantly expressed in macrophages and fibroblasts,
particularly GPX3, CD36, KYNU, VCAN, and CPVL (Figure 7E).

Next, we employed the CIBERSORT algorithm to investigate the
correlation of fractions of 22 immune cell infiltrations in the gastric
cancer microenvironment with TME-Met PI. The high-risk
subgroup was highly infiltrated by M2 macrophage, and resting
Mast cells (Figure 8A). Again, the aforementioned downregulated
genes (CD36, CPVL, GFRA1, GPX3, KIT, PDE1B, and SCNG) were
positively correlated with infiltration of monocytes, resting mast
cells and M2 macrophages (Figure 8A). M2 macrophage observed
significant positive correlation with CD36, CPVL, GPX3, LOX,
NOX4, and VCAN (Figure 8B). Based on the results from
CIBERSORT and single-cell analysis, 4 TME-Met prognostic
genes, including CD36, CPVL, KYNU, and GPX3, showed strong
association with M2 macrophages (Figures 8B–D). We selected

FIGURE 6
Verification of expression of TME-Met PI genes in gastric cancer. (A) The expression levels of TME-Met PI genes between risk subgroups in the TCGA
STAD cohort. (B)mRNA expression level of TME-Met PI genes in gastric normal cell (GSE-1) and cancer cells (AGS andMKN45). p values are shown as: *p <
0.05; **p < 0.01; ***p < 0.001). (C) Bubble plot depicts overall survival significance of TME-Met PI genes in TCGA STAD samples.
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FIGURE 7
Single-cell transcriptomic analysis of TME-Met PI genes in gastric cancer. (A, B) Uniform manifold approximation and projection (UMAP) plots
showing main clusters and cell-types in single-cell gastric cancer dataset (GSE112302), colored by cluster (A) and (B) cell type. (C) Bubble plot shows the
expression levels of top 3 marker genes in each cell-type for GSE112302 dataset. (D) UMAP plots displaying expression patterns of cell-specific marker
genes for each cell-type in GSE112302 dataset. (E) The bubble plot depicting the expression levels of TME-Met PI genes in all cell types in
GSE112302 dataset. (F, G) UMAP plots showing main clusters and cell-types in single-cell gastric cancer dataset (GSE167297), colored by cluster (F) and
(G) cell type. (H) UMAP plots displaying expression patterns of cell-specific marker genes for each cell-type in GSE167297 dataset. (I) The bubble plot
depicting the expression levels of TME-Met PI genes in all cell types in GSE167297 dataset.
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FIGURE 8
Identification and validation of M2macrophage-related risk genes. (A) Violin plot of abundance of 22 subtypes of immune cells in risk subgroups. (B)
Spearman’s correlation between infiltration of 22 subtypes of immune cells and individual TME-Met PI genes (n = 15) in TCGA STAD cohort. p values are
shown as: *p < 0.05; **p < 0.01; ***p < 0.001. (C)UMAP plots and (D) Violin plots showing expression patterns of CPVL, KYNU, CD36, and GPX3 in single-
cell gastric cancer dataset (GSE112302). (E) UMAP plots showing expression patterns of CPVL, KYNU, CD36, and GPX3 in GSE167297 dataset. (F)
Representative images of expression (brown, cell cytoplasmic/nucleus stain) and (G) IHC quantification of expression level of CPVL, KYNU, CD36, and
GPX3 and marker of M2 macrophage (CD163) in the clinical samples of stomach adenocarcinoma (n = 8). (H) Pearson’s correlation of expression level of
CPVL, KYNU, CD36, and GPX3 and marker of M2 macrophage (CD163) in the clinical samples of stomach adenocarcinoma.
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FIGURE 9
Therapeutic implications (A) Pearson’s correlation between riskScore and several immune checkpoint inhibitors. p values are shown as: *p < 0.05;
**p < 0.01; ***p < 0.001. (B) Association between riskScore and TIDE score of TCGA STAD patients. (C) The Kaplan-Meier curves of difference in survival
probability between risk subgroups and (D) boxplots of riskScore variation in responsiveness to immune checkpoint blockade of IMvigor210 urothelial
carcinoma cohort. (E) Box plot of association of microsatellite instability (MSI) and riskScore. (F) Percent of MSI types in each risk subgroup. (G)Drug
sensitivity analysis of risk subgroups.
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these 4 genes for further immunohistochemical analysis to confirm
this association (Figures 8E,F). There was a positive correlation
identified between these 4 genes and the expression of
M2 macrophage marker (CD163) in clinical specimens of gastric
adenocarcinoma patients (n = 8). Although, an inverse relationship
between CPVL and CD36 and KYNU indicating diverse functional
phenotype of M2 macrophage in the TME (Figure 8G). Overall,
these findings provide valuable insights into the complex interplay
between TME-Met genes and immune cell infiltrations, specifically
highlighting the involvement of M2 macrophages in the gastric
cancer microenvironment.

Therapeutic response prediction

In the previous result sections, we have reported that there
was no difference in infiltration of T cells including CD8 T cells
deemed critical for immunotherapy due to expression of immune
exhaustion markers such as PD-1, PD-L1 and CTLA4. As
anticipated, the TME-Met riskScore failed to show any
correlation with these established biomarkers of immune
checkpoint inhibitors (Figure 9A). Simultaneously, lack of
response to immunotherapy was also expected as reported in
Figures 9B–D. The Tide score was high for high-risk subgroup
indicating low likelihood of response to ICB (Figure 9B).
Consequently, integration of urothelial carcinoma patients
from IMvigor210 cohort treated with pembrolizumab showed
significantly lower survival for high-risk subgroup indicating
resistance to immunotherapy (Figure 9C). Although, no
difference in response was observed (Figure 9D). Moreover,
gastric cancer patients with high microsatellite instability
(MSI-H) have reported low response to chemotherapy in
localized resectable cases with no impact on prognosis
(Pietrantonio et al., 2019; Vos et al., 2022). Our results
indicated an inverse relationship between MSI and riskScore
indicating the high-risk subgroup may respond to
conventional chemotherapy; however, high-risk subgroup in
our study comprised GC patients with advanced disease
(Figures 9E,F). Conversely, the mesenchymal phenotype of
gastric cancer has been associated with high resistance to
chemotherapy (Cristescu et al., 2015; Oh et al., 2018).
Therefore, we further explored the sensitivity of patients in
the high-risk subgroup to 198 small molecules. Among these,
six agents, including BMS-754807 (an inhibitor of insulin-like
growth factor type I receptor [IGF-1R]), WZ4003 (NUAK1/
2 inhibitor), AZD8186 (PI3K inhibitor), JQ1 (BET inhibitor),
AZD8055 (an ATP-competitive mammalian target of rapamycin
kinase inhibitor [mTOR]), and Dasatinib (a Src inhibitor),
showed promise as potential treatment options. Out of these
six identified drugs, four exhibited a high level of sensitivity, as
indicated by their statistical significance. Given that Dasatinib
has previously been evaluated in the context of gastric cancer, we
selected three of these drugs for experimental validation. We
employed the CCK-8 assay to assess the inhibitory effects of three
highly sensitive drugs (BMS-754807, AZD8186, AZD8055) on
gastric cancer cells, specifically the MKN45 and MKN28 cell
lines. This was accomplished by subjecting MKN45 and
MKN28 cancer cells to varying concentrations of these drugs

for 1 and 2 days. The degree of drug inhibition was evaluated by
measuring the optical density (OD) value, with a lower OD value
indicating more effective inhibition compared to the control
group treated with 0 μmol/L. As shown in Figure 10, all three
drugs exhibited a dose-dependent effect on inhibiting MKN45
and MKN28 cells, and this effect became more pronounced
after 48 h.

Discussion

Mounting evidence has signified the importance of TME in the
growth and development of cancer cells and resistance to cancer
therapy. Each component of TME, namely, immune cells, stromal
cells, blood vessels, extracellular matrix and signaling molecules, has
been increasingly assessed for their pro-tumorigenic effects and
potential for cancer therapy. In this study we evaluated the TME
landscape of gastric cancer in the context of metabolic activity to
estimate the probable crosstalk between the two dimensions. Based
on the transcriptomic analysis of TME and metabolic-related genes
in STAD, we were able to identify a cross-talk between these
characteristics that was verified for protein-level interactions and
prognosis. STAD samples were categorized into two molecular
subtypes based on the expression patterns of these cross-talk
genes. These two molecular subtypes had major differences in
terms of prognosis, functional features, metabolic activity, and
infiltration of immune cells (Figure 11). We further designed a
prognostic index comprised of 15 genes which was derived from the
upregulated genes between the subtypes using LASSO regression.
The high-risk subgroup showed higher infiltration of fibroblast,
M2 macrophages, and resistance to cancer therapy.

Gastric cancers (GCs) can be categorized histologically using
the Lauren and WHO systems (Lauren, 1965; Hu et al., 2012).
Lauren classifies them as either intestinal or diffuse, while WHO
categorizes them into papillary, tubular, mucinous, and poorly
cohesive subtypes. However, these classifications, though
influential in treatment decisions, do not adequately address the
heterogeneity of GCs for improved personalized patient care
(Dicken et al., 2005). The development of genomic sequencing
technology has led to the emergence of molecular subtyping, with a
seminal study conducted by The Cancer Genome Atlas (TCGA)
research team identifying four molecular subtypes of GC: EBV-
positive, microsatellite-unstable, genomically stable, and
chromosomal instability (CIN) (The Cancer Genome Atlas
Research Network, 2014). Other studies have also reported
molecular subtypes of GC with similar characteristics, including
one closely resembling our high-risk subgroup, the mesenchymal
type (Lei et al., 2013; Cristescu et al., 2015; Oh et al., 2018). In these
studies, the mesenchymal subtype was characterized by a diffuse
histological variant, genomic stability, low mutation rates, a high
recurrence rate, poor prognosis, and resistance to chemotherapy
(Lei et al., 2013; Cristescu et al., 2015; Oh et al., 2018). Our single-
cell analysis supports the attribution of high risk subgroup as a
mesenchymal phenotype due to absence of risk gene expression in
primarily epithelial-origin cancer cells. Additionally, our findings
could also be interpreted as a blend of mesenchymal and metabolic
subtypes as identified by Lei et al. (Lei et al., 2013). These subtypes
exhibited enrichment in KEGG pathways (mesenchymal: focal
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adhesion, ECM-receptor interaction; metabolic: various metabolic
pathways) and GO terms (mesenchymal: cell adhesion; metabolic:
digestion), all of which were collectively expressed in our pathway

enrichment analysis (Lei et al., 2013). Indeed, their study
demonstrated heightened in vitro sensitivity of the mesenchymal
subtype to phosphatidylinositol 3-kinase-AKT-mTOR inhibitors,

FIGURE 10
Experimental validation of drug sensitivity analysis (A) 24-h/48-h inhibitory capacity of BMS-754807, AZD8186, and AZD8055 on MKN45 and (B)
MKN28 gastric cancer cells at various concentrations (0, 10, 50, 100, 200, 500 μmol/L) using CCK-8 assay. 0 μmol/L was considered as control. *p < 0.05;
**p < 0.01; ***p < 0.001, ****p < 0.0001.
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aligning with our findings. Furthermore, mesenchymal phenotype
(MP) subtypes exhibited greater responsiveness to IGF1/IGF1R
pathway inhibition compared to epithelial subtypes, consistent
with our results (Oh et al., 2018). Additionally, GC subtyping
based solely on TME features and metabolic reprogramming has
identified subtypes resembling our high-risk subgroup,
particularly characterized by heightened GAGs metabolism and
M2 macrophage infiltration (Chen et al., 2023; Cho et al., 2018;
Zhu et al., 2021; Chen et al., 2022; Han et al., 2022; Tao et al., 2023).
However, these approaches heavily rely on the tumor component
of gastric cancer for genetic mutations and metabolic activity
related to glycolysis compromising the unraveling of TME
critical role in these GC subtypes. In contrast, our study
introduces a novel approach, excluding tumor content and
focusing solely on the tumor microenvironment components
to explore other cancer hallmarks, such as metabolism,

providing new insights into GC biology and potential
therapeutic strategies.

There were two cluster of patients identified when the TME and
metabolic cross-talk DEGs with prognostic significance were
subjected to consensus clustering. The two clusters had major
differences from the perspective of tumorigenesis, metabolism
and immunology. The cluster with worst prognosis exhibited a
stronger TME features mainly in terms of stromal components.
Metabolically, metabolism of major glycosaminoglycans (GAGs),
namely, chondroitin sulfate (CS), keratan sulfate (KS), and heparan
sulfate (HS), were upregulated which are ubiquitous structural and
functional components of extracellular matrix (ECM) and has been
associated with cancer malignancy (Cui et al., 2013). Biosynthesis of
CS was identified to be active in several cancer types compared with
normal tissues (Shi et al., 2019). CS was shown to inhibit PTEN, a
tumor suppressor gene, leading to the activation of melanoma cell

FIGURE 11
Overview of the risk stratification of gastric cancer patients based on tumormicroenvironment andmetabolism interplay. Extensive analysis revealed
15 risk genes expressed by diverse TME components. M2 macrophages upregulated KYNU, GPX3, CPVL, and CD36. Fibroblasts expressed VCAN,
ANGPT2, LOX, GPX3, SNCG, GFRA1, and NOX4, impacting proliferation, mesenchymal transition, angiogenesis, and ROS production. PDE1B and
CARD11were associatedwith B and T lymphocytes, while PNMA2, KIT, andMAGEA3were expressed by various gastric gland cells, such as chief cells,
gland mucous cells, and proliferative cells. The TME-Met Interplay upregulated ECM biosynthesis and fatty acid metabolism. The high-risk subgroup
showed resistance to immunotherapy and chemotherapy but responded to three molecular targeted drugs. Conversely, low-risk patients exhibited
enriched glycolysis, glucose, and amino acid metabolism, with lower ECM content and sensitivity to immunotherapy and chemotherapy.
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proliferation (Lin et al., 2018). An abnormal increase in KS levels
was strongly correlated with enhanced proliferation in various
tumors, including lymphoma, astrocytic tumors, and glioblastoma
(Kato et al., 2008; Nakayama et al., 2013; Hayatsu et al., 2008).
Sulfated KS was shown to trigger the activation of the MAPK and
PI3K pathways in lymphoma cells, thereby initiating growth signals
(Nakayama et al., 2013). In fact, our results also indicated the
activation of PI3K pathway as determined by the DEGs between
the clusters suggesting that upregulated GAGs metabolism may
exert their downstream effects via PI3K activation. Likewise, HS,
expressed on cell surfaces and within the extracellular matrix, was
found to serve as a receptor for a growth-related ligand, thereby
promoting cancer growth (Bat-Erdene et al., 2018). GAG abundance
was also shown to promote metastasis of renal cell carcinoma (Gatto
et al., 2016). Elevated HS biosynthesis was correlated with cancer cell
migration by interacting with growth factors and regulation of the
epithelial-to-mesenchymal transition (EMT) (Itano et al., 2002).
Biosynthesis of glycosphingolipids (GSLs) of ganglio-series and
globo-series were also upregulated which are mainly involved in
cell-cell interactions and signal transduction pathways (Hakomori,
2003). GSLs are also implicated in oncogenic transformation and
have been served as cancer biomarkers (Guan et al., 2009). In fact,
therapeutic potential of GSLs in gastric adenocarcinoma was shown
by targeting the glycosphingolipid globotriaosylceramide (Gb3/
CD77) with shiga toxin B-subunit (STxB), which was expressed
by 72% of cases (Geyer et al., 2016). Overall identification of these
targets provides an opportunity for therapeutic investigations aimed
at the TME features which rather show superior prognostic potential
as compared to tumor cells.

On the other hand, the patients in the cluster 1 had major tumor
component and were enriched in protein and glucose metabolism. The
lower enrichment of these pathways in Cluster 2 merely indicates the
low tumor content and lower cellular content of TME. Relevant cellular
content of the TME of cluster 2 in the context of our study was
identified asmast cells, macrophages and fibroblasts. The risk genes that
belonged to TME andmetabolism were expressed by macrophages and
fibroblasts as confirmed by CIBERSORT results, single cell analysis and
IHC evaluation. M2 macrophage has previously been identified as the
most prominent immune cell associated with immunosuppressive
TME, progression, and prognosis of gastric cancer (Yamaguchi
et al., 2016; Piao et al., 2022). Of the risk genes, 4 genes were
evidently expressed by M2 macrophages, namely, GPX3, CPVL,
CD36, and KYNU. Extracellular glutathione peroxidase (GPX3) was
downregulated in cancer samples but was upregulated in the cluster
2 patients with higher TME content and metabolic activity, and is
considered a prognostic gene in gastric patients (Chang et al., 2020).
However, it has shown a dual role in various cancers including gastric
cancer (Chang et al., 2020). Knockdown of GPX3 in gastric cancer was
shown to result in tumor cell invasion and migration (Cai et al., 2019).
Our study indicates that its prognostic significance may arise from its
expression in the TME specifically M2 macrophages and fibroblasts.
Kynureninase (KYNU), a hydrolase involved in tryptophan
metabolism, was also expressed by these two cells. KYNU has been
identified as a novel transcriptional target of CD44-downstream
signaling and underpins CD44-promoted breast tumor cell invasion
(Al-Mansoob et al., 2021). CD44 interaction with Hyaluronic acid
(HA), one of the major GAGs that is extensively studied in cancer, has
been associated with tumor cell proliferation and enhancing chemo

resistance via regulating PI3K/Akt and MAPK signal pathways (Toole
and Slomiany, 2008; Chanmee et al., 2015). Although, HA was not
upregulated in cluster 2, other GAGs were significantly upregulated
implicating their possible role in upregulation of KYNU in gastric
cancer. CPVL (Carboxypeptidase Vitellogenic Like), a novel serine
carboxypeptidase, was originally characterized in macrophages and
its functions may include digestion of phagocytosed particle within
lysosomes, contribution to an inflammatory protease cascade, and
participation in peptide trimming for antigen presentation
(Mahoney et al., 2001). In cancer, it has been recognized as an
oncogene contributing to cancer progression and therapeutic
resistance (Zhu et al., 2023; Yang et al., 2021). It inhibited the
glioma cell apoptosis by interacting with BTK and downregulating
STAT1 phosphorylation through the facilitation of p300-mediated
STAT1 acetylation (Yang et al., 2021). While it facilitated resistance
to CDK4/6 inhibitors in breast cancer (Zhu et al., 2023). Our results
indicate the CPVL expressed by macrophages/fibroblasts may also
contribute to cancer progression which needs further investigations.
CD36 is a scavenger receptor that performs various important functions
in cancer such as regulating lipid uptake, immune recognition,
inflammation, adhesion, and cell death in various cells (Wang and
Li, 2019). CD36 has been reported to promote GC progression,
metastasis and prognosis mainly involving its role in lipid uptake
and promotion of fatty acid oxidation (Pan et al., 2019; Jiang et al.,
2019b). In the context of macrophages, it was shown that CD36-
mediated metabolic crosstalk between tumor cells and macrophages
could promote liver metastasis (Yang et al., 2022). These results imply
that CD36 expression by macrophages in gastric cancer may also
involve such metabolic crosstalk in promoting the GC metastasis,
specially involving fatty acids which was also upregulated in high-
risk subgroup. Overall, these 4 genes are intricately linked to metabolic
activity of the ECM involving macrophages and fibroblasts in
promoting the gastric cancer progression and metastasis. Further
evaluation of these genes in the aforementioned context may
unravel their potential for targeted therapy.

In addition to the four genes strongly associated with
M2 macrophages, GPX3, VCAN, ANGPT2, LOX, SNCG,
GFRA1 and NOX4 were notably expressed in fibroblasts. VCAN,
a chondroitin sulfate proteoglycan, plays a pivotal role in
tumorigenesis, with increased expression linked to various
cancers and poor prognosis (Mitsui et al., 2017). Consistent with
our findings, upregulation of VCAN was observed in stromal and
epithelial compartments of high-grade serous ovarian tumors and
TGF-β-treated normal ovarian fibroblasts (Yeung et al., 2013). Co-
culture experiments further demonstrated that VCAN upregulation
in CAFs enhanced the aggressiveness of ovarian cancer cells.
ANGPT2, acting as a context-dependent antagonist, can disrupt
angiopoietin-1-induced Tie2 phosphorylation, promoting
angiogenesis (Fukumura et al., 2018). Its high expression in
various tumor cells underscores its pivotal role in tumor
angiogenesis and inflammation, rendering it an appealing target
for vascular therapy (Scholz et al., 2015). Its upregulation in
fibroblasts indicate the role of fibroblasts in promoting
angiogenesis in gastric cancer. LOX, a secreted copper-dependent
amine oxidase, expressed by various cells including fibroblasts,
primarily functions in crosslinking collagens and elastin (Wang
et al., 2016). Its overexpression in cancer has been associated with
malignant progression, with reports indicating its promotion of

Frontiers in Pharmacology frontiersin.org19

Lin et al. 10.3389/fphar.2024.1355269

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1355269


epithelial-mesenchymal transition (EMT) in gastric cancer under
hypoxic conditions (Kasashima et al., 2016). SNCG, primarily
expressed in neural tissues, is reported to upregulate in cancer
tissues such as breast, ovary, colon, liver, and cervical cancer (Liu
et al., 2005). Like LOX, it has been primarily reported for regulating
EMT to promote cancer metastasis (Hsu et al., 2020; Liu et al., 2022).
GFRA1, interacting with glial cell-derived neurotrophic factor
(GDNF), promotes tumor progression (Cavel et al., 2012; Ni
et al., 2022). Tumor-associated macrophage-derived GDNF
facilitates gastric cancer liver metastasis via GFRA1-mediated
autophagy flux (Ni et al., 2023). Similarly, perineural invasion of
pancreatic cancer involves endoneurial macrophages secreting
GDNF and activating RET tyrosine kinase receptor, a
GFRA1 coreceptor (Cavel et al., 2012). These findings suggest
potential macrophage-fibroblast crosstalk in gastric cancer
through GFRA1-GDNF signaling. The notable metabolic gene in
fibroblasts was the (NOX4) NADPH Oxidase 4, which contributes
to elevated reactive oxygen species (ROS) levels. NOX-derived ROS
production is linked to diverse cancerogenic processes through
induction of redox-sensitive transcription factors such as HIF-1α,
NFκB and NRF2 (Szanto, 2022). In summary, fibroblasts play a
critical role in gastric cancer progression by promoting proliferation,
metastasis, and angiogenesis through the upregulation of these
markers. Consequently, these markers represent important
therapeutic targets warranting further investigation, particularly
with refined patient selection criteria.

Phosphodiesterase 1 (PDE1s: PDE1A; PDE1B; PDE1C) targets
second messengers (cAMP and cGMP) to regulate diverse
physiological processes, with limited exploration in cancer.
PDE1B is overexpressed in lymphoblastoid B-cells and leukemic
cell lines of B- (RPMI-1788, Daudi) and T-(MOLT-4, NA, Jurkat)
cell origin. Upregulation in human peripheral blood lymphocytes
(HPBL) upon mitogenic stimulation suggests a role in proliferation.
Inhibition has demonstrated reduced cell growth and induced
apoptosis in leukemic cells (Jiang et al., 1996). CARD11 is
another gene that is mainly expressed in lymphoid tissues and
associated with B and T cell lymphomas (Kataoka et al., 2015).
Our study also indicated its positive correlation with naïve and
memory B cells and regulatory T cells, and single-cell analysis
confirmed its enrichment in B and T cells. PNMA2, primarily
expressed in the brain, is associated with paraneoplastic
neurological syndromes, often accompanying peripheral solid
tumors. Antibodies to PNMA proteins can serve as diagnostic
markers for specific cancers (Xu et al., 2024). KIT regulates
various cellular processes including growth, survival, migration,
differentiation, and secretion. Amplification and activating
mutations in KIT are frequently observed in gastrointestinal
stromal tumors (GISTs) and melanoma (Miettinen and Lasota,
2005). MAGEA3, which was expressed in all cells including
tumor cells, is a Cancer Testis Antigen (CTA) and reported in
almost all types of cancer and is considered a promising candidate
for immunotherapy (Das et al., 2021). PNMA2, KIT, and
MAGEA3 are predominantly expressed by proliferative cells
(PCs), Chief cells and gland mucus cells (GSCs), respectively.

The TME-Met prognostic gene signature was demonstrated to
resist to immunotherapy and hence must be explored for alternative
therapeutic targets. The various aspects of our outcomes present us
with such opportunities. For example, GAGs and GSLs have been

explored as cancer biomarkers and therapeutic targets (Yip et al.,
2006; Edwards, 2012; Furukawa et al., 2019; Wei et al., 2020; Yu
et al., 2020). Likewise, each risk gene could be exploited for
therapeutic investigations, particularly in the context of
M2 macrophage such as CD36 (Yang et al., 2022). We have
identified six potential molecular targeted agents with therapeutic
potential for this patient subset. Among these agents, inhibitors
targeting IGF-1R (BMS-754807) and the PI3K-mTOR pathways
(AZD8186, AZD8055) emerged as the most promising candidates
for therapeutic intervention in gastric cancer. Notably, BMS-754807,
a selective IGF-1R inhibitor, exhibited potent inhibitory effects on
gastric cancer cells. This aligns with a previous study demonstrating
the activation of the IGF1/IGF1R pathway in mesenchymal gastric
tumors, which displayed sensitivity to Linsitinib (OSI-906), another
selective IGF-1R inhibitor (Oh et al., 2018). AZD8186, a selective
PI3Kβ/δ inhibitor, has shown anti-tumor activity in PTEN-deficient
preclinical models, and has undergone clinical testing among
patients with advanced solid cancers including gastric cancer
(Choudhury et al., 2022; Suh et al., 2023). Despite the good
tolerability of the AZD8186 and paclitaxel combination, there
was limited clinical effectiveness noted in advanced gastric cancer
cases exhibiting PTEN loss. These results stress for the enhanced
patient selection such as the high-risk subgroup in our study may
benefit from AZD8186 due to enrichment in PI3K pathway as
compared to low-risk subgroup. Likewise, mTOR inhibitors such
as 2,6-DMBQ (AZD8055) has also been previously reported for their
inhibitory efficacy in gastric cancer (Zu et al., 2020). Mechanistically,
AZD8055 inhibits mTORC1 substrates p70S6K and 4E-BP1, and
mTORC2 substrate AKT, suppressing downstream proteins. In
vitro, it hampers proliferation and induces autophagy in
H838 and A549 cells. In vivo, AZD8055 hinders tumor growth
by modulating phosphorylated S6 and AKT levels in a dose-
dependent manner. Our results can further provide useful input
in gastric cancer patient selection for this proposed treatment. These
findings indicate that inhibiting IGF-1R and the PI3K-mTOR
pathway can significantly influence gastric cancer prognosis by
modulating metabolic and TME features. Additional agents, such
as the BET inhibitor (JQI) and src inhibitor (Dasatinib), have also
demonstrated promising preclinical efficacy in gastric cancer (Zhou
et al., 2020; Wang et al., 2022). JQI has been effective in suppressing
metastasis, while Dasatinib has shown potential in sensitizing cancer
cells to chemotherapy (Zhou et al., 2020;Wang et al., 2022). Notably,
these two features were found to be predominant in the high-risk
subgroup of patients. Consequently, by carefully selecting patients
from this subgroup, the effectiveness of these agents could
potentially be further enhanced in the treatment of gastric cancer.

Our study has several limitations. The accuracy and generalizability
of the findings depend heavily on the quality and representativeness of
the data. Datasets were used from only three distinct populations which
may have limitations in reflecting the diversity of gastric cancer patients.
While transcriptomic analysis is a powerful tool, it has its limitations. It
provides information on gene expression levels but does not account for
post-translational modifications or protein activity, which can be crucial
in understanding the functional role of genes in cancer progression. To
partially address this limitation, we made efforts to validate the
interactions of these genes at the protein level by consulting external
databases and subsequently confirming these findings in a limited cohort
of gastric cancer clinical samples. However, comprehensive validation
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through prospective clinical studies is imperative to ascertain the clinical
significance of the identified molecular subtypes and prognostic genes.
Our study fails to provide deep insights into the mechanistic details of
how these risk genes drive the progression of gastric cancer. Hence, in-
depth functional studies should be carried out to elucidate the exact
mechanisms by which the identified genes and pathways contribute to
gastric cancer progression and treatment resistance. The study suggests
several potential therapeutic targets, such as GAGs, GSLs, and specific
genes like CD36, CPVL, GPX3 and KYNU. These targets should be
further explored for the development of targeted therapies, including
small molecules, antibodies, or other treatment modalities.

Conclusion

By investigating tumor microenvironment (TME)
characteristics, especially in the context of metabolic
reprogramming, we have uncovered promising opportunities for
enhancing gastric cancer diagnosis and treatment strategies. The
identification of molecular subtypes and development of a 15-gene
prognostic signature, encompassing significant molecular and
functional differences, offers a valuable tool for predicting patient
outcomes and guiding personalized treatment approaches.
However, further research and clinical trials are necessary to
validate and optimize these findings for clinical applications.
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