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Lung injury leads to respiratory dysfunction, low quality of life, and even life-
threatening conditions. Circular RNAs (circRNAs) are endogenous RNAs
produced by selective RNA splicing. Studies have reported their involvement
in the progression of lung injury. Understanding the roles of circRNAs in lung
injury may aid in elucidating the underlying mechanisms and provide new
therapeutic targets. Thus, in this review, we aimed to summarize and discuss
the characteristics and biological functions of circRNAs, and their roles in lung
injury from existing research, to provide a theoretical basis for the use of circRNAs
as a diagnostic and therapeutic target for lung injury.
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1 Introduction

Lung injury, which can be caused by sepsis, pneumonia, trauma, aspiration pneumonia,
and even some treatments, leads to respiratory dysfunction, and seriously affects the quality
of life (Matthay et al., 2019). Acute lung injury (ALI) has a high morbidity and mortality of
approximately 30%. When the lung tissue fails to fully repair, the lung inflammatory
responses may ultimately lead to chronic obstructive pulmonary disease, which is the fourth
leading reason of death globally (Tsushima et al., 2009; Pelgrim et al., 2019). Even there are
some studies focused on human embryonic stem cells (Wu et al., 2020), utilizing lung
spheroid cell-secretome (LSC-Sec) and exosomes (LSC-Exo) for lung injury and fibrosis
treatments (Dinh et al., 2020), the challenges of consistency, safety, and clinical applicability
of those therapies are not be ignored. Therefore, fully elucidating the underlying
development mechanism of lung injury is expected to fundamentally improve
the treatment.

Circular RNAs (circRNAs) exist widely. Several specialized computational tools and
databases based on different identification strategies have been combined with next-
generation sequencing and bioinformatic analysis to identify and analyze
circRNAs(Chen et al., 2021). circRNAs are reported to be not only involved in
cardiovascular biology (Aufiero et al., 2019), brain injury (Zhu et al., 2020), kidney-
related diseases (Chen et al., 2021), but also tumor progression (Shang et al., 2019).
However, the knowledge regarding why circRNAs exist in various diseases remains limited,
and potential roles in lung injury progression are unclear.
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To this end, we aimed to review the characteristics of circRNAs
and discuss their potential roles in lung injury caused due tomultiple
factors. The finding of this review may aid in underscoring the
potential of circRNAs to be used as a target for the diagnosis and
treatment of lung injuries (Figure 1).

2 Formation and characteristics
of circRNAs

CircRNAs range from <100 nucleotides to multiple kilobases
(Lasda and Parker, 2014; Aufiero et al., 2019). CircRNAs including
exonic circRNAs (ecircRNAs), circular intron circRNAs (ciRNAs),
and exon- and intron-derived or retained intron circRNAs
(EIciRNA) (Han et al., 2017), are formed by intron pairing,
RNA-binding protein, and lariat-driven circularization
mechanisms (Aufiero et al., 2019).

These different splicing mechanisms confer consistent
characteristics on circRNAs. They are highly conserved in
different tissues and conditions; the covalently closed loop
structures endow them with RNase resistance, thereby providing
them with the properties of a biomarker (Li et al., 2015). Moreover,
the specific location and expression of circRNAs lead to different
biological functions. The majority of circRNAs are ecircRNAs,
which are located in the cytoplasm and can interact with target
miRNAs, thereby acting as miRNA sponges or reservoirs. The
miRNA sponges cause an increase in the expression of target
mRNAs, whereas the miRNA reservoir decreases the target
mRNA expression (Memczak et al., 2013; Qu et al., 2015).

3 circRNAs in lung development

circRNAs have been reported to be involved in the development
of the human brain, kidney, and liver (Xu et al., 2017). By analyzing
the database analysis available on the circBase database,
9,698 circRNA candidates have been detected in fetal lung
tissues, which is eight times more than those found in adult lung

tissues. RNA sequencing analysis in humans has further verified that
the expression of 1,701 circRNAs in fetal lung samples is higher than
that in the corresponding adult lung. 452 unique circRNAs are
enriched in the lung than in the other organs, suggesting that
circRNAs may play crucial roles in human lung development
(Xu et al., 2017; Tong et al., 2023).

Bronchopulmonary dysplasia (BPD) is the most common
complication associated with extremely preterm infants and its
prevalence has been increasing worldwide (Thébaud et al., 2019).
circABCC4 promotes BPD progression by facilitating
PLA2G6 expression by sequestering miR-663a (Chen et al.,
2020). PLA2G6, which belongs to the phospholipase A2 family
that is involved in signal transduction and phospholipid
homeostasis (Deng et al., 2023), further aggravates lung
inflammation by promoting the production of arachidonic acid
metabolites (Bellido-Reyes et al., 2006). circABPD1 was also
found highly expressed in preterm colostrum milk exosomes, it
can alleviate lung injury by targeting the miR-330–3p/HIF1α axis (Li
et al., 2023). Three upregulated circRNAs (hsa_circ_0005389, hsa_
circ_0000367, and hsa_circ_0059571) and two downregulated
circRNAs (hsa_circ_0058495, hsa_circ_0006608) were found in
neonatal acute respiratory distress syndrome (NARDS) through
high-throughput sequencing in ten clinical blood samples of
newborns (Zhou et al., 2021). These findings provide a new
therapeutic direction to use circRNAs as molecular markers for
early diagnosis of lung injury; nevertheless, existing studies focus
only on the changes in circRNA expression levels, based on human
or animal models, dynamic observation of circRNA with neonates at
different stages as research objects may be solid evidence in
clarifying the production and function of circRNAs in lung
development.

4 circRNAs in infection-associated
lung injury

Sepsis is a systemic inflammatory response syndrome that is
triggered by infection with pathogenic bacteria, viruses, or fungi; it is

FIGURE 1
circRNAs participate in the lung injury. Lung injury can be caused by various etiologies, including infection, toxic substances inhalation, even some
treatments maybe the contributing injury factors. circRNAs are involved in the pathological process of lung injury through different mechanisms.
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also the major cause of ALI (Wang et al., 2018). Lipopolysaccharide
(LPS) is a vital medium for sepsis. The role of circRNAs in infection-
associated lung injury has been validated primarily by using clinical
sample combined with multiple models of LPS-induced lung injury
in vivo and in vitro (As shown in Figure 2).

Some circRNAs are found in samples of patients with ALI.
Compared to those in healthy controls, 35 circRNAs were
upregulated and 9 were downregulated in patients with sepsis,
hsa_circ_0003091 (mmu_circ_0015268) were found to be
significantly elevated both in ALI patient and mice. Mechanically,
hsa_circ_0003091 sponged miR-149 to upregulate the expression of
Smad2, thereby contributing to pulmonary injury, cell apoptosis,
and inflammatory responses (Shen et al., 2022). Rho-associated
coiled-coil-containing protein kinase I (ROCK1), a member of
the serine/threonine protein kinase family, primarily exists in the
lung tissues and exhibits facilitating effect on inflammation in ALI
(Ishizaki, 2003; Meng et al., 2019). circANKRD36 expression was
significantly elevated in the serum of patients with sepsis-induced
ALI. circANKRD36 serves as a sponge for miR-330, leading to the
increase of ROCK1 expression and, aggravating inflammation of
LPS-stimulated RAW264.7 cells (Lin et al., 2021). Programmed cell
death 4 (PDCD4), a well-known tumor suppressive protein has been
demonstrated as a novel modulator in inflammation response by
activating several inflammatory signaling, including the NF-κB
pathway (Su et al., 2015). circ-UQCRC2 is upregulated in the
serum of patients with pneumonia and LPS-treated MRC-5 cells.
circ-UQCRC2 directly target miR-326 to upregulate
PDCD4 expression for the activation of NF-κB pathway (Zhou
et al., 2021).

Mitogen-activated protein kinase 14 (MAPK14) is ubiquitously
expressed in various cell types and, exhibits a vital role in response to
inflammation (Zhang et al., 2021). hsa_circ_0026579 (circESPL1)
expression is significantly upregulated in patients with pneumonia
and acts as a sponge of miR-326 for MAPK14 activation during LPS-
induced lung cell injury (Liang et al., 2022).

The roles of circRNA in lung injury have been validated both in
vivo and in vitro. 20 circRNAs were found to be upregulated and
18 were downregulated in ALI mice induced by cecal ligation and

puncture. These circRNAs were found to be closely associated with
the inflammatory response (e.g., the TGF-β, MAPK, Fc gamma
R-mediated phagocytic, TNF, and chemokine signaling pathways)
using bioinformatics analyses (Yuan et al., 2020; Teng et al., 2021).
circPTK2 was upregulated in cecal ligation and puncture-based
mouse and LPS-based alveolar type II cell (RLE-6TN), and
reasonable for the ATP efflux, pyroptosis, and inflammation
through upregulating eIF5A expression by competitively
adsorbing miR-766 (Ding et al., 2023). Similarly, upregulated
circTDRD9 acted as miR-223-3p sponge to increase
RAB10 expression, also promoting LPS-induced lung injuries
(Zhang et al., 2023).

CircRNAs could play a protective role against lung injury.
Reportedly, 21 upregulated and 55 downregulated circRNAs are
involved in the progression of LPS-induced autophagy in human
bronchial epithelial cell 16HBE(Liu et al., 2021). Furthermore
adipose-derived stem cell exosomes have high levels of the
circular RNA (circ)-Fryl, which plays a protective role against
sepsis-induced mouse lung injury by decreasing apoptosis and
inflammatory factor expression. Mechanistically, miR-490-3p and
SIRT3 are downstream targets of circ-Fryl. circ-Fryl overexpression
promotes autophagy by inducing SIRT3/AMPK signaling and
sponging miR-490-3p (Shen et al., 2022).

Moreover, circC3P1 is downregulated in ALI mice induced by
sepsis; it attenuates pro-inflammatory cytokine production and cell
apoptosis through the modulation of miR-21 (Jiang et al., 2020).
Elevated circVMA21 levels suppress oxidative stress, apoptosis, and
inflammation via mediating the miR-497-5p/CD2AP axis to
mitigate ALI in sepsis rats (Ke et al., 2022). circ_
0038467 knockdown alleviates LPS-induced inflammatory injury
in 16HBE cells by sponging miR-338-3p and inhibiting the
activation of JAK/STAT3 pathway (Liu et al., 2020). Similarly,
circHECTD1 is downregulated in LPS-induced human and
mouse AECs [HBE and murine lung epithelial-12 (MLE-12)]; it
inhibits the apoptosis of AECs through the miR-320a/PIK3CA and
miR-136/Sirt1 pathways (Li et al., 2022).

Phospholamban (Pln), cadherin-2 (Cdh2) and Nprl3 are found
to participate in the pathogenesis of sepsis and promote

FIGURE 2
circRNAs participate in infection-associated lung injury. The schematic diagram depicts the known role of circRNAs in infection-associated lung
injury progression.
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inflammation (Black et al., 2018; Weng et al., 2019; Zhuang et al.,
2020). mmu_circ_0001679 is reported to regulate the expression of
Nprl3, and mmu_circ_0001212 similarly regulates Pln, Cdh2 and
Nprl3 expression, which were all increased in the sepsis mice (Zou
et al., 2020). ROCK2 aggravates sepsis-caused ALI through
association with miR-424 and transendothelial migration of
polymorphonuclear leukocytes (Li et al., 2010; Chen et al., 2020).
CircPALM2 is increased, and involved in LPS-caused MLE-12 cell
damage by targeting miR-330-5p, thereby leading to
ROCK2 activation (Ren et al., 2022).

circRNAs can aggravate lung injury by maintaining the
activation of the NF-κB, MAPK, and WNT pathways. Alveolar
epithelial cell-produced thymic stromal lymphopoietin (TSLP) has
been shown to worsen ALI by triggering airway inflammation. miR-
291a-3p can directly bind to the 3′-UTR of TSLP and suppress TSLP
expression. circNCLN has been identified to act as a sponge to
antagonize miR-291a-3p and thereby maintain the expression of
TSLP (Cao et al., 2022). circ_0054633 is over-expressed in LPS-
induced rats and murine pulmonary microvascular endothelial cells,
through activating the NF-κB pathways (Yang et al., 2021).
Similarly, circANKRD36 is upregulated in LPS-induced MRC-5
cells, and associated with cell injury through regulating miR-31/
MyD88-mediated activation of the NF-κB pathway (Guo
et al., 2020).

Activation of the MAPK and Wnt pathways are responsible for
neutrophil infiltration and pro-inflammatory cytokine production
(Cheng et al., 2018). Circ_0001679 is upregulated in LPS-induced
MLE-12 cells, and maintains a high expression of MAPK1 by
suppressing miR-338-3p, leading to the increased apoptosis (Lu
et al., 2022). It is found that mmu_circRNA_42341, mmu_
circRNA_44122, and mmu_circRNA_44123 were substantially
upregulated, whereas mmu_circRNA_010498, mmu_circRNA_
25030, and mmu_circRNA_010498 were significantly
downregulated through microchip analysis. These differentially
expressed circRNAs were chiefly involved in the MAPK and Wnt
signaling pathways (Li et al., 2019).

C–X–C motif chemokine receptor 1 (CXCR1) is necessary for
the activation of inflammatory mediators, CXCR1 antagonism has
been proposed as a protective strategy against bacterial pneumonia
(Wei et al., 2013; Ha et al., 2017). LPS upregulates
circTMOD3 expression in normal lung fibroblast (WI-38) cells,
and circTMOD3 functions as a competing endogenous RNA for
miR-146b-3p to induce CXCR1 expression (Ma et al., 2021).
Similarly, Kruppel-like transcription factor 4 (KLF4) is an
inflammatory palliative in sepsis (Li et al., 2018). circ_
VMA21 was downregulated in pneumonia samples and LPS-
treated WI-38 cells, and circ_VMA21 could sponge miR-409-3p
to induce the expression of KLF4 (Wang et al., 2021).

In addition to bacterial inflammation, lung injury can be caused
by other pathogens. circRNAs Slco3a1 and Wdr33 were aberrantly
expressed in the plasma of influenza A virus-induced ALI patients.
Biological process analysis revealed that both circRNAs might be
involved in the mitochondrial function and superoxide metabolic
process (Wang et al., 2021). Moreover, house dust mite is the major
allergen contributor to asthma, circRNAs vacuolar protein sorting
33A (circVPS33A, circ_0000455) was highly expressed in a murine
asthma model and Dermatophagoides pteronyssinus peptidase 1-
treated BEAS-2B cells. circVPS33A targeted miR-192-5p to

upregulate the expression of high-mobility group box 1
(HMGB1), a strong pro-inflammatory mediator in the
pathogenesis of asthma, leading to lung injury (Imbalzano et al.,
2017; Su et al., 2021).

5 circRNAs in inhalation lung injury

Inhalation exposure to toxic substances, such as PM2.5,
polystyrene microplastics (PS-MPs), phagocytosis of silicon
dioxide (SiO2), formaldehyde (FA), and cigarette smoke extract
(CSE) could compromise respiratory epithelial barrier integrity
and induce inflammation and lung injury. Multiple studies have
defined circRNAs as potential disease modifier in lung injury caused
by multiple environmental factors (Table.1).

PM2.5 inhalation upregulates the expression of circBbs9, which
binds to miR-30e-5p for the activation of NLRP3, aggravating lung
inflammation (Li et al., 2020). circRNA 014924 and circRNA
006603 were upregulated and circ003982 was downregulated in
the rat lung tissues on PS-MP exposure (Fan et al., 2022). What’s
more, PS-MPs inhalation increased circ_kif26b levels in alveolar
epithelial cells, which upregulated the expression p21 by binding to
miR-346-3p. The increased p21 expression activated SASP and
increased the secretion of inflammatory factors IL-6 and IL-8,
promoting alveolar epithelial cell senescence and participating in
inflammatory lung injury (Luo et al., 2023)

Similarly, SiO2 exposure is the biggest promoter of silicosis. SiO2

exposure downregulates circHECTD1 levels and increased
HECTD1 protein expression. The increased HECTD1 protein
expression is associated with macrophage activation and
contributing to the progression of silicosis (Fang et al., 2018;
Zhou et al., 2018). It is found that circRNA11:120406118|
12040782 was increased in the peripheral serum of silicosis
patients, which facilitated the progress of silicosis by aggravating
NLRP3-mediated macrophages pyroptosis through sponging miR-
30b-5p (Zhang et al., 2023).

Formaldehyde, a prevailing air pollutant, has seriously
threatened public health in recent years (Zhao et al., 2021).
Long-term formaldehyde inhalation upregulates the expression of
circRNA-CDR1 in rat lung tissues in a dose-dependent manner.
Mechanistically, circRNA CDR1 suppresses rno-miR-7b to elevate
ATG7 expression, which is necessary for the formation of
autophagosomes, consequently resulting lung injury (Tanida
et al., 2012; Liu et al., 2021). Similarly, rno_circRNA_008646 and
circRNA_006061 were also significantly high in rat lung tissues
when exposed to formaldehyde (Yang et al., 2022). rno_circRNA_
008646 sponges rno-miR-224 to upregulate the expression of
forkhead box I1 (FOXI1) (Plasschaert et al., 2018), and circRNA_
006061 activated p38/ATF3 pathway expression via sponging the
rnomiR-128-3p (Ge et al., 2023), contributing to airway
cystic fibrosis.

To date, evidence indicates that smoking, including e-cigarettes,
also can induce lung inflammation and injury. The roles of
circRNAs in CSE-induced lung injury cannot be overlooked.
circFOXO3 is significantly upregulated in cigarette smoke-
exposed mice lungs and CSE-treated murine alveolar epithelial
cells. circFOXO3 sponge miR-214-3p to the upregulate IKK-β
mRNA, thereby resulting in NF-κB signaling activation (Zhou
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TABLE 1 circRNAs are involved in inhalation-induced lung injury and lung treatment and repair. Multiple circRNAs are involved in lung injury and repair.

Model circRNAs Expression Target
miRNA

miRNA
Targeted
genes

Function

The lung and BALF of
mice exposed to PM2.5

circBbs9 (Li et al., 2020) Increased miR-30e-5p NLRP3 Inflammation aggravation

The blood, BALF, and
lung tissues of rat

exposed to polystyrene
microplastics

circRNA014924 circRNA006603 Increased Undefined Undefined Respiratory epithelial barrier
integrity compromise, lung injury,

inflammationcirc003982 (Fan et al., 2022) Decreased

The lung tissues and
bronchoalveolar lavage
fluid of rats exposed to
microplastics, mouse
alveolar epithelial cells

circ_kif26b (Luo et al., 2023) Increased miR-346-3p p21 Inflammation activation

The lung tissues of mice
exposed to SiO2, and
primary alveolar
macrophages from

patients with silicosis

circHECTD1 (Fang et al., 2018) Increased Undefined HECTD1 Endothelial–mesenchymal
transition promotion

The lung tissues of
silicosis mice,

macrophages from
patients with silicosis and

RAW264.7 and
L929 exposed to SiO2

circHECTD1 (Zhou et al., 2018) Decreased Undefined HECTD1
ZC3H12A

Fibroblast activation, silicosis
progression

The peripheral serum of
silicosis patients, silicosis
mouse model and silica-
stimulated macrophages

and fibroblasts

circRNA11:120406118|12040782 (Zhang et al.,
2023)

Increased miR-30b-5p NLRP3 Aggravating macrophages
pyroptosis

The lung tissues and
BALF of rat exposed to

formaldehyde

Circular RNA-CDR1 (Liu et al., 2021) Increased rno-miR-7b ATG7 Autophagosomes formation

The lung tissues of rat
and RTE cells exposed to

formaldehyde

rno_circRNA_008646 (Plasschaert et al., 2018) Increased rno-
miR-224

FOXI1 Airway cystic fibrosis

The lung tissues of SD
rats exposed to

formaldehyde, and
primary alveolar cells

from male adult SD rats

circRNA_006061 (Ge et al., 2023) Increased rnomiR-
128-3p

p38/ATF3 Aggravated lung injury

The lung tissues, BALF
from CSE-induced mice,
and CSE-treated murine
alveolar epithelial cells

circFOXO3 (Zhou et al., 2021) Increased miR-214-3p IKK-β NF-κB activation

The lung tissues of
smokers and CSE-
induced HPMECs

circANKRD11 (Wang et al., 2021) circ-OSBPL2
(Zheng et al., 2021)

Increased miR-145-5p
miR-

193a-5p

BRD4 Oxidative stress and
inflammation promotion

The lung tissues of mice
exposed to CSE, and
CSE-induced bronchial
epithelial cells, and
embryonic lung

fibroblast

circRNA_0026344 (Bai et al., 2021) Decreased miR-21 Smad7, TGFβ1/
Smad3 activation

Fibroblast differentiation and
ECM deposition

Lung tissue from COPD
smokers, smokers, and
matched non-smokers
and alveolar epithelial
cells exposed to CSE

circRNA_0026344 (Bai et al., 2021) Decreased miR-21 PTEN pathway
inhibition

ERK pathway activation, and
increased autophagy, apoptosis

Cd-induced mouse lung
tissue and blood,

circCIMT(Li et al., 2023) Decreased Undefined APEX1 DNA damage

(Continued on following page)
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et al., 2021). Bromo-domain-containing 4(BRD4) participates in
promoting inflammation and oxidative stress (Song et al., 2020).
circANKRD11 and circ-OSBPL2 are highly expressed in the lung
tissues of smokers and CSE-induced human pulmonary
microvascular endothelial and bronchial epithelioid cells (Wang
et al., 2021). circANKRD11 can sponge miR-145-5p to upregulate
the expression of BRD4, and circ-OSBPL2 serve as a sponge for miR-
193a-5p, which also upregulates BRD4 in HBECs(Zheng et al.,

2021). Meanwhile, circRNA_0026344 is downregulated in CSE-
induced bronchial epithelial cells, with increasing levels of miR-
21. The elevated miR-21 can be transported to bronchial fibroblasts
through exosomes, leading to the inhibition of Smad7 expression
and activation of the TGFβ1/Smad3 pathway, thereby contributing
to bronchial fibroblast differentiation and ECM deposition (Bai
et al., 2021). In alveolar epithelial cells, CS decreases circRNA_
0026344 levels, which sponges miR-21 to inhibit the PTEN, leading

TABLE 1 (Continued) circRNAs are involved in inhalation-induced lung injury and lung treatment and repair. Multiple circRNAs are involved in lung injury
and repair.

Model circRNAs Expression Target
miRNA

miRNA
Targeted
genes

Function

bronchial epithelial cell
lines

Lung tissue from
NSCLCs patients,

smokers, and matched
non-smokers, alveolar

epithelial cells, and CSE-
induced macrophages

circEML4 (Cheng et al., 2023) Increased Undefined ALKBH5 JAK-STAT pathway activation

Lung tissue from COPD
patients, lung cancer

patients, COPD patients
with lung cancer, alveolar

epithelial cells

CircTMEM30A (Shen et al., 2023) Increased miR-130a TNFα COPD and lung cancer
aggravation

The lung tissues of
smokers and CSE-
stimulated bronchial

epithelial cells

Circ_0006892 (Zhang et al., 2022) Decreased miR-24 PHLPP2 Alleviating bronchial epithelial
cell apoptosis

The lung tissues of high-
tidal volume ventilation-
induced lung injury mice

novel_circ_0000899 novel_circ_0014815 Increased Undefined Undefined Regulation of metabolic processes,
protein phosphorylation, and
chromatin organization; Ras,
rap1, PI3K−Akt signaling

pathways

novel_circ_0015069 (Chen et al., 2022) Decreased Undefined Undefined

The PBMC and
monocytes from patients
with sepsis; blood, BALF
and lung tissues of mice;

MH-S, SV40 and
Raw264.7 cells

circN4bp1 (Zhao et al., 2021) Increased miR-138-5p EZH2 M1 polarization

The lung tissues of septic-
induced mice and MLE-

12 cells

circ_0001679 (Zhu et al., 2022) Increased miR-338-3p DUSP16 Apoptosis and proinflammatory

Peripheral blood
mononuclear cells of
children with asthma,
healthy controls, and
CRE-induced mouse

circS100A11 (Liang et al., 2023) Increased Undefined CAPRIN1 S100A11 translation, promoting
STAT6 expression,

M2 macrophage activation

The lung tissues of mice
exposed to SiO2, and
SiO2-induced bronchial

epithelial cells

circPWWP2A (Hou et al., 2023) Increased miR-223–3p NLRP3 Pulmonary fibrosis aggravation

The lung tissues of mouse
exposed to SiO2

hsa_circ_0006916 (Wu et al., 2023) Increased Undefined TGF-β1 M2 macrophage activation

The blood from patient
with traumatic lung

injury

hsa_circRNA_102,927 hsa_circRNA_100,562 Decreased Undefined Undefined mTOR

hsa_circRNA_101,523 (Jiang et al., 2020) Increased
Ras, Relaxin pathways activation

The lung tissues from
thoracic irradiation- mice

circRNA4146, circRNA4584, circRNA5229,
circRNA544, circRNA1092, circRNA3340 (Li et al.,

2021)

Increased Undefined Undefined Th1 and Th2 differentiation
pathways
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to the activation of ERK pathway and increased autophagy and
apoptosis, contributing to emphysema (Bai et al., 2021).

The persistent lung inflammation induced by the inhalation of
environmental pollutants causes chronic morbidity, as well as leads to
sudden and fatal lung dysfunction. It is also reported that CSE-
induced circRNAs are associated with tumor progression. Exposure of
human lung tissue to Cadmium (Cd) is mainly through the inhalation
of cigarette smoke and airborne particulate. Lower circCIMT
expression was associated with DNA damage in the mouse lung
tissue and blood after Cd exposure, which contributing to the
acquisition of tumor characteristics of lung epithelial cells (Li et al.,
2023). What’s more, smoking-induced M2 macrophages via
circEML4 in extracellular vesicles promote the non small cell lung
cancer progression through ALKBH5-regulated m6A modification of
SOCS2, which leading to the activation of JAK-STATpathway (Cheng
et al., 2023). Similarly, CircTMEM30Awas highly expressed in COPD
patients with lung cancer, and it regulated the expression of TNFα
through miR-130a, thereby promoting the progression of COPD and
lung cancer (Shen et al., 2023). Whereas, circRNAs have also been
reported to play protective roles in CSE-induced lung injury. PH
domain and leucinerich repeat protein phosphatase 2 (PHLPP2)
inhibit inflammation in the progression of lung cancer and injury
(Gu et al., 2018; Yan et al., 2018). circ_0006892 is downregulated in
lung tissues of smokers and CSE-stimulated bronchial epithelial cells.
It can promote PHLPP2 expression via regulating miR-24 and
alleviating CSE-induced apoptosis and inflammatory response
(Zhang et al., 2022).

6 circRNAs in lung treatment and repair

Pulmonary dysfunction caused by lung injury triggers a self-
repair process and may partly require the auxiliary treatment of
mechanical ventilation. Improper use of a ventilator can worsen
lung injury. Numerous significant circRNAs likely participate in the
pathological process (Table.1).

Compared to those in the control group, 171 circRNAs were
significantly upregulated and 114 were significantly downregulated
in the lung tissues of high-tidal volume ventilation-induced mice.
novel_circ_0000899 and novel_circ_0014815 were identified to be
the most upregulated circRNAs, whereas novel_circ_0015069 was
the most downregulated circRNA. These circRNAs were found to be
involved in metabolic processes, and in the pathway of Ras, Rap1,
and PI3K/Akt (Chen et al., 2022).

Macrophages can be activated and polarized in response to lung
injury. The classically activated pro-inflammatory macrophage
(M1) and alternatively activated anti-inflammatory macrophage
(M2) have been extensively investigated in lung injury, repair,
and fibrosis (Sica and Mantovani, 2012; Cheng et al., 2021). The
circRNA expression patterns in macrophage activation in lung
injury were analyzed by many studies.

11 and 126 circRNAs were found to be significantly upregulated
and downregulated, respectively, in pulmonary macrophage
polarization. Further biological analysis revealed that the
upregulated circRNAs were involved in mitochondrion
distribution regulation and Notch binding, whereas the
downregulated ones were primarily mainly involved in histone
H3K27 methylation (Bao et al., 2019).

EZH2, a histone methyltransferase, is involved in sepsis-induced
inflammation and lung injury through modulating macrophage
M1 polarization (Zhang et al., 2019). circN4bp1was
overexpressed in PBMC and monocytes, and was correlated with
a poor prognosis in sepsis induced ALI patients. circN4bp1 can
sponge miR-138-5p for the expression of EZH2 (Zhao et al., 2021).
Similarly, dual-specificity phosphatases 16 (DUSP16) could be
inducible in macrophages, and negatively regulate the JNK
pathway to attenuate metabolic stress-triggered hepatic steatosis
(Zhang et al., 2015; Wu et al., 2020). circ_0001679 was
overexpressed in sepsis-induced ALI mice and MLE-12 cells. It
bound to mmu-miR-338-3p and miR-338-3p targeted DUSP16 3′-
UTR to reduce DUSP16 expression and aggravate injury (Zhu et al.,
2022). circS100A11 was dominantly expressed in monocytes and
significantly upregulated in children with asthma, reasonably for the
M2 macrophage activation. Mechanistically, circS100A11 promoted
S100A11 translation, which liberated SP3 from nucleolin and
increased STAT6 expression (Liang et al., 2023). Similarily,
circPWWP2A could adsorb miR-223–3p to regulate NLRP3 after
silica stimulation in pulmonary fibrosis (Hou et al., 2023), and hsa_
circ_0006916 was upregulated in pulmonary fibrosis, associated
with the high expression level of M2 molecule TGF-β1, playing
an important role in the activation of M1-M2 polarization (Wu
et al., 2023).

7 Conclusion and perspectives

In this review, we summarized the origin and functions of
circRNAs, and discussed their roles in lung development and
injury caused by different etiologies. However, their role in lung
injury remains mostly unelucidated, and the functions of most
circRNAs are still not fully analyzed and require further exploration.

First, various factors can cause lung injury. Hemorrhagic shock
and thoracic trauma can lead to lethal lung injuries. Reportedly,
13 circRNAs were significantly upregulated and 16 were
downregulated in hemorrhagic shock-induced ALI rat lung
tissues; these circRNAs might participate in DNA damage
recognition and repair (Wang et al., 2021). Furthermore,
downregulated hsa_circRNA_102,927 and hsa_circRNA_100,562,
and upregulated hsa_circRNA_101,523 were identified in the
plasma samples of patients with traumatic lung injury (Jiang
et al., 2020). Radiation-induced lung injury (RILI) is a key threat
to patients who undergo thoracic radiotherapy, in the thoracic
irradiation-induced RILI mice, 10 circRNAs were downregulated
and 17 were upregulated (including circRNA4146, circRNA4584,
circRNA5229, circRNA544, circRNA1092, and circRNA3340),
which are reported related to the Th1 and Th2 differentiation
pathways (Li et al., 2021). Those results suggest that circRNAs
are involved in the process of lung injury caused by various
etiologies but are limited to undefined specific pathology. Current
studies are mainly focused on the relationship between circRNA and
a certain signaling pathway in a lung injury-related model, and
changes in signaling pathways further regulate inflammatory. The
crosstalk of various pathways of inflammatory, possible role of
circRNA in the regulation of those pathways, and whether some
specific circRNAs are involved in all the processes of lung injury
caused by multiple etiologies still need to be explored.

Frontiers in Pharmacology frontiersin.org07

Gao et al. 10.3389/fphar.2024.1354806

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1354806


Second, circRNAs are universal and stable, and may serve as novel
biomarkers. The downregulated hsa_circRNA_042882 and upregulated
hsa_circRNA_104034 in bronchoalveolar lavage fluid were regarded as
promising diagnostic biomarkers for patients with ARDS caused by
severe pneumonia (Sun et al., 2023). Blood samples are mainly collected
from patients for the current study of lung injury. Whether circRNAs
exist in patients’ sputum, urine, and other body fluids remains unclear.
Although animal studies have reproduced the expression of some
circRNAs in humans, the screening process for these circRNAs
involves a small size of patients; thus, larger patient cohort studies
are warranted. Moreover, even most circRNAs are reported as
biomarkers for qualitative diagnosis, the correlation between the
circRNA levels and the degree of disease severity is not well
analyzed, and whether circRNA expression is associated with lung
function requires further exploration.

Third, interpreting the role of macrophages in lung injury repair
and fibrosis is complicated. In the lung injury stage, macrophages
display a pro-inflammatory phenotype aggravating injury chief by
M1. However, during the lung repair process, the function of M2 is
dominant; it contributes to lung fibroblast cell proliferation and
differentiation, leading to the risk of pulmonary fibrosis. The critical
division in the circRNA balance of macrophage polarization is still
unknown.Moreover, three different populations of macrophages are
existed, namely, airway, alveolar, and interstitial macrophages (Jiang
and Zhu, 2016; Hesketh et al., 2017; Joshi et al., 2018). The effect of
circRNAs on different populations of macrophages requires further
research. In addition to macrophages, other inflammatory cells, such
as neutrophils, are involved in the inflammatory process. Whether
circRNAs are involved in regulating neutrophils in the process of
lung injury needs to be further explored.

What’s more, antisense oligonucleotides are artificially
synthesized specific nucleic acid sequences that specifically target
ncRNAs, such as lncRNAs and circRNAs. They have been approved
by the FDA for clinical application, making it possible for selectively
targeted circRNAs to be used in diagnostic and therapeutic
approaches (Chan et al., 2006; Das et al., 2021). Whether the
antisense oligonucleotides can be used for lung injury treatment
are still a long way off.

In summary, circRNA has great potential as a diagnostic,
therapeutic and prognostic target in lung injury diseases, fully
elucidating the underlying mechanism of circRNAs in lung injury
may radically improve the treatment. Continuous development of

biotechnology and further exploration of circRNAs would greatly
benefit patients with ALI.
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