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Potential drug-drug interactions (DDI) can lead to adverse drug reactions (ADR),
and DDI prediction can help pharmacy researchers detect harmful DDI early.
However, existing DDI prediction methods fall short in fully capturing drug
information. They typically employ a single-view input, focusing solely on
drug features or drug networks. Moreover, they rely exclusively on the final
model layer for predictions, overlooking the nuanced information present across
various network layers. To address these limitations, we propose a multi-scale
dual-view fusion (MSDF) method for DDI prediction. More specifically, MSDF first
constructs two views, topological and feature views of drugs, as model inputs.
Then a graph convolutional neural network is used to extract the feature
representations from each view. On top of that, a multi-scale fusion module
integrates information across different graph convolutional layers to create
comprehensive drug embeddings. The embeddings from the two views are
summed as the final representation for classification. Experiments on two
real-world datasets demonstrate that MSDF achieves higher accuracy than
state-of-the-art methods, as the dual-view, multi-scale approach better
captures drug characteristics.
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1 Introduction

The concurrent use of multiple medications is common, as combining drugs can reduce
individual dosages and toxicity (Chou and Talalay, 1983). However, drug-drug interactions
can alter potency and lead to adverse reactions (Lazarou et al., 1998). Moreover, as
polypharmacy rises, so does the likelihood of adverse drug-drug interactions. For
example, in the United States, approximately 74,000 emergency visits and
195,000 hospitalizations annually stem from antagonistic DDIs (Percha and Altman,
2013). Consequently, accurate identification of DDI is critical. Nevertheless, traditional
in vitro and clinical diagnosis methods for DDI detection are often expensive and time-
consuming (Huang et al., 2020b).
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In recent years, deep learning has shown strong performance on
prediction tasks (Dong et al., 2022; Meng et al., 2022). The deep
learning technique, as one of the most advanced computational
methods, has demonstrated a good performance on prediction tasks
(Deng et al., 2020), bringing new solutions to the DDI prediction.
When applying deep learning for DDI prediction, three main
information types are now used: i) drug features like chemical
substructures, enzymes, and targets (Lin S. et al., 2022b); ii)
knowledge graphs containing DDI information (Wang et al.,
2023); iii) DDI networks (Xiong et al., 2023).

While the above-mentioned methods have yielded good results,
there are still two unresolved deficiencies. First, most graph neural
network-based approaches(Feng et al., 2020) rely solely on the DDI
graphs as inputs, which limits their ability to capture the full
spectrum of drug interactions. This is because some DDIs may
not yet be identified, leading to incomplete topological features.
Second, current methods do not leverage multi-scale information
that emerges during the process of information propagation. In
graph neural networks, feature vectors from different network layers
vary in dimensionality, semantics, and other informational scales.
This variability is known as multi-scale information (Peng et al.,
2021). Shallow network layers yield feature vectors with low-scale,
more basic information, while deeper layers provide high-scale,
more semantically rich information. By integrating information
from these various scales, a more comprehensive understanding
can be achieved. However, existing DDI prediction models
predominantly utilize feature vectors from the final network
layer, which only represent high-scale information. Although this
information is less complex and rich in semantic features, it
overlooks the detailed insights offered by low-scale information.

To solve the above problems, this paper introduces a new DDI
prediction model, named MSDF, which employs multi-scale and
two-view fusion techniques. First, alongside the DDI graph, we
construct a feature similarity graph to supplement topological
information. We base our approach on the assumption that drug
pairs likely to interact exhibit high feature similarity. By connecting
these similar nodes, the feature graph includes potential, yet
undiscovered DDIs, thus addressing the issue of incomplete
topological data in a standalone DDI graph. However, it is
important to note that not all drugs with high feature similarity
will interact. Hence, during the construction of the feature graph,
some non-interacting drug pairs may be erroneously linked. This
issue is mitigated by combining the feature graph with the more
accurate topological data from the DDI graph, allowing for a
correction of any inaccuracies in the feature graph. Overall, the
complementary views improve predictions when fused. Second, we
extract and utilize multi-scale insights across network layers from
both views, which differ in dimensionality and semantics. Attention
mechanisms then fuse these multi-scale representations to create
comprehensive drug embeddings. In this way, the drug node
representations integrate both localized and high-level insights
for comprehensive learning, and are more favorable for the final
DDI prediction task. Our contributions are summarized as follows.

(1) We propose a new DDI prediction model: the MSDF. The
model introduces a multi-scale fusion module, so that the
node representations of the drug can contain structural and
semantic information at different scales.

(2) MSDF fuses multi-scale information from two views (DDI
topology and feature views), and experimental results show
that this approach facilitates model performance.

(3) Themodel in this paper accomplishes the prediction of binary
classification and multi-classification on both DeepDDI and
DDIMDL datasets, and achieves better performance than the
baseline method on both tasks, reflecting the sophistication
and comprehensiveness of the model.

The remainder of the paper is organized as follows. Section 2
reviews related work in DDI prediction. Section 3 details the
methodology behind MSDF. Section 4 presents the conducted
experiments. Section 5 provides a conclusion and outlines the
future directions.

2 Related work

Existing deep learning-based DDI prediction methods can be
basically categorized into three types: methods based on drug feature
information, methods that fuse knowledge graph, and methods
based on topological features.

The drug feature similarity approach assumes that drugs with
potential interactions share similar characteristics. This method
employs deep learning techniques to distill drug features for
classification tasks. Commonly used drug features include drug
category (Zhang et al., 2022), chemical structure (Vilar et al.,
2012), side effects (Tatonetti et al., 2011), and profile fingerprints
(Vilar et al., 2013). Initially, these methods often focused on a single
feature. For example, Ryu et al. (Ryu et al., 2018) developed the
DeepDDI model, which uses the chemical substructures of drug
pairs to calculate structural similarity profiles (SSPs). These SSPs are
then fed into a Deep Neural Network (DNN) for predicting
interactions. More recent research has highlighted the benefits of
integrating multiple feature sources for improved prediction
accuracy (Gottlieb et al., 2012; Cheng and Zhao, 2014; Yan et al.,
2020). For instance, Lee et al. (Lee et al., 2019) combined SSPs, target
genes, and gene ontology, encoding each feature separately using an
AutoEncoder (AE) for classification. Deng et al. (Deng et al., 2020)
utilized a dataset from Drugbank (Wishart et al., 2018) with
37,264 DDI events. They employed the StandfordNLP (Qi et al.,
2018) tool to categorize these events into 65 types, using this
classification as labels for model predictions. The model
incorporated features like chemical substructures, enzymes, and
drug targets, processed through a DNN. Furthermore, Yang et al.
(Yang et al., 2023) built upon Deng et al.’s (Deng et al., 2020) dataset,
employing Convolutional Neural Networks (CNNs) to extract drug
feature vectors, resulting in enhanced prediction outcomes.

Methods based on drug feature similarity often overlook the
crucial topological information represented as the DDI graph, which
indicates the likelihood of interactions between drugs. However,
incorporating this topological data can significantly enhance the
accuracy of DDI predictions. Additionally, the choice and
combination of drug features profoundly affect the model’s
performance. More specifically, Deng et al. (Deng et al., 2020)
observed that models using a diverse range of features tend to
yield better results than those relying on a single feature.
Nevertheless, it’s also important to note that simply adding more
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features does not always lead to improved outcomes; in some cases,
it may even diminish the model’s effectiveness. Thus, careful
selection and integration of multi-source features are essential.
This process requires a deep understanding and extensive
experience in the field, as the model designer must balance the
quantity and quality of features to optimize the model’s
performance.

In the method of fusion knowledge graph, a knowledge graph is
first constructed from the dataset. This knowledge graph includes
not only drug entities but also various heterogeneous nodes, such as
target and transporter nodes. By extracting information from the
knowledge graph, a drug node can assimilate a richer array of
information from these diverse nodes. Once the knowledge graph
is established, it serves as an input for predictive models. The
knowledge graph fusion method typically employs traditional
knowledge graph embedding techniques, such as TransE (Bordes
et al., 2013), ComplEx (Trouillon et al., 2016), RotatE (Sun et al.,
2018) or utilize graph neural network approaches to learn the feature
vectors of drug nodes within the graph. For instance, Yu et al. (Yu
et al., 2022) developed the RANEDDI model, which uses the RotatE
method for initializing drug embeddings in the knowledge graph
and then feeds these embeddings into a relation-aware network for
DDI prediction. Similarly, Hong et al. (Hong et al., 2022) introduced
LaGAT, a graph attention model that employs the knowledge graph
as its input. LaGAT generates various attention paths for drug
entities by aggregating information from neighboring nodes,
tailored to different drug pairs. Yao et al. (Yao J. et al., 2022)
took a different approach by modeling drug pairs and their side
effects within a knowledge graph, using nonlinear functions for
semantic transfer, thereby demonstrating effective scalability in
extensive knowledge graphs. While the knowledge graph fusion
method successfully integrates a broader spectrum of heterogeneous
information, it also introduces certain challenges. These include the
potential for increased noise in the data and the complexity involved
in constructing and managing the knowledge graph.

Drug topology feature-based approaches (Zitnik et al., 2018; Yue
et al., 2020) usually use graph embedding techniques [e.g., Deepwalk
(Perozzi et al., 2014), Node2Vec (Grover and Leskovec, 2016),
SDNE (Wang et al., 2016), GCN (Kipf and Welling, 2023), GAT
(Veličković et al., 2017), etc.] to extract topological features of drug
nodes in DDI network for DDI prediction. Earlier studies, often
preferred traditional graph embedding methods to extract
topological features of drugs. For example, Park et al. (Park et al.,
2015) used a randomwandering algorithm and a restart algorithm to
extract topological features of drugs on protein-protein interaction
networks. However, these topological feature-based methods
typically only depend on the topological feature. In other words,
they tend to overlook the drug’s own attributes, such as enzymes and
targets, leading to incomplete analysis. Consequently, attribute
graph-based methods have gained popularity. The attribute
graph-based methods enhance a topology graph by adding node
attributes, thereby incorporating the drug’s own attributes into the
analysis. This integration of additional information makes attribute
graphs more effective for DDI prediction than traditional
topological graphs. Graph neural network approaches, as
opposed to traditional graph embedding methods like Deepwalk
or Node2Vec, are better suited to handle attribute graphs. They can
process both the topology and node attributes simultaneously,

extracting comprehensive drug node information through multi-
layer aggregation and update operations. Recently, the trend has
shifted towards combining graph neural networks with attribute
graphs. A notable example is the work of Wang et al. (Wang et al.,
2022) who created DDI increasing and decreasing graphs based on
DDI types and employed GCN to learn drug representations using
drug targets as node features. However, challenges persist in this
evolving field. Wang et al. (Wang et al., 2020) noted that GCN’s
fusion mechanism sometimes fails to effectively integrate node
features and topological information. Furthermore Yao et al.
(Yao K. et al., 2022) pointed out that topological graphs might
suffer from incomplete information, leading to suboptimal
embeddings of learned nodes and negatively impacting
downstream applications.

Therefore, in order to address the problems mentioned
above, our model incorporates both a topological graph and a
feature graph as inputs. By introducing a feature graph, the
feature matrices of the nodes are propagated in both graphs
simultaneously and the information from both graphs is
complemented in order to improve the performance of the
model. Moreover, in contrast to existing graph neural network-
based models, which typically use only the output of the last
network layer for classification tasks, we develop a multi-scale
information fusion module. This module is designed to merge
information from different scales, thereby enabling more accurate
predictions.

3 Materials and methods

3.1 Overview

The modeling framework of MSDF is shown in Figure 1. It
consists of three modules: dual view construction module, multi-
scale fusion module, and model optimization module. The process
begins with the dual view construction module, where two views of
the drug information are generated: the topological graph (Gadj) and
the feature graph (Gknn). These graphs, along with the drug feature
matrix, are then fed into the multi-scale fusion module. In the multi-
scale fusion module, the graphs and drug feature matrices undergo a
series of operations including feature aggregation, updating, and
cycling. These operations are performed using a GCN to derive
multi-scale information from the drug nodes. To enhance the
integration of information across different scales, the model
incorporates an attention mechanism. This mechanism assigns
weights, or “attention factors,” to different scales based on their
contribution to the final outcome. Each feature vector at a specific
scale is then multiplied by its corresponding attention factor,
creating a scaled vector representation. Subsequently, these scaled
vector representations from different scales are concatenated using a
splice operation. This results in a comprehensive final node
representation for each drug node in that particular view. Once
the multi-scale representations for both views are obtained, they are
combined through a summation operation to form the final vector
representations of the drug nodes. Finally, for the DDI classification
task, the feature vectors of drug pairs are merged and inputted into a
DNN. This is done based on the labeling information provided in
the dataset, completing the classification process.
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3.2 Problem formulation

In this section, we define the problem using the notations
provided in Table 1. We consider to a DDI network represented
as G � V,E,X{ }. Here, V denotes the drug nodes in the DDI
network, E denotes the edges between the drug nodes, and X is
the feature matrix associated with the drugs. The objective of the

MDSF accurately predict DDIs through both binary and multi-
classification approaches. In more detail, the aim of binary
classification is to determine whether a connection exists between
any two given drug nodes, i.e., whether a DDI will occur. For multi
classification, the goal is to identify multi-classification is to the
specific type of DDI that will occur between a pair of
interacting drugs.

3.3 Data pre-processing

The features of a drug can be represented by a set of
descriptors. In this representation, when a certain feature is
present in a drug, the description of the drug in this feature is
set to 1, and vice versa to 0. For instance, consider the drug
Etodolac in the DDIMDL dataset, which lists 1162 potential
targets. Etodolac is associated with three specific targets:
P35354, P23219, and P19793. In its feature vector, the
positions corresponding to these three targets are set to “1,”
while the rest of the positions, representing the other
1159 targets, are set to “0.” While this descriptor-based
approach accurately captures the features of a drug, it has a
notable drawback: the resulting feature vectors are high-
dimensional and predominantly filled with zeros. This leads to
the “curse of dimensionality,” a phenomenon where the high

FIGURE 1
Model diagram of MSDF.

TABLE 1 Key symbols and definitions.

Notation Definition and description

G The input network

V The node set

E The edge set

X Attribute feature of nodes

sij The feature similarity of drug i, j vectors

Z(l)
y

The embedding learned by GCN in view y at layer l

Atty Attention factor for different scales of information in view y

Ey Embedding of nodes under y-view

Edrug The unified embedding
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number of dimensions (features) negatively impacts the model’s
performance due to the sparsity of data. To mitigate this issue, it
is essential to preprocess the drug features, aiming to reduce the
dimensionality of the feature vectors.

The method of pre-processing in this paper is to compute the
Jaccard similarity of drug features and then use the resulting Jaccard
similarity matrix as the node features for each drug. This approach is
applied to two datasets: the DDIMDL dataset extracted by Deng
et al. (Deng et al., 2020) and the DeepDDI dataset extracted by Ryu
et al. (Ryu et al., 2018) Detailed information about the datasets will
be presented in the experimental section. For the DDIMDL dataset
(Deng et al., 2020), this paper calculates the Jaccard similarity
matrices of drug chemical substructures, enzymes, and targets,
respectively, and splices the Jaccard similarity matrices of the
three features as the feature vectors of the drugs in this dataset.
For DeepDDI dataset (Ryu et al., 2018), since this dataset has only
one feature of chemical substructures, this paper calculates the
Jaccard similarity matrix of this feature as the feature vector of
the drug in this dataset. The formula for calculating the Jaccard
similarity is shown in Eq. 1. In Eq. 1, di and dj are the initial feature
vectors of drug i and drug j, ∩ is the intersection operation, and ∪ is
the concatenation operation.

J di, dj( ) � di ∩ dj

∣∣∣∣ ∣∣∣∣
di ∪ dj

∣∣∣∣ ∣∣∣∣ �
di ∩ dj

∣∣∣∣ ∣∣∣∣
di| | + dj

∣∣∣∣ ∣∣∣∣ − di ∩ dj

∣∣∣∣ ∣∣∣∣ (1)

3.4 Dual view building module

In order to represent the topological relationships between DDIs
and the similarity of features between drugs, this paper constructs a
topological graph of DDIs as well as a feature graph between drugs.
These graphs are then utilized as inputs to the model for subsequent
prediction tasks. The construction of the two views is
described below.

3.4.1 Topology graph construction
The topology graph represents a kind of localized structural

information between DDIs, denoted as Gadj. It is constructed by
creating an adjacency matrix whose rows and columns are
represented as drug nodes. In this matrix, an entry is set to “1” if
there is a DDI between the corresponding drugs in a row and a
column, indicating a connection. Conversely, an entry is marked as
“0” if there is no interaction. Thus, the adjacency matrix can be
represented as the topology graph of the DDI.

3.4.2 Feature graph construction
The feature graph represents the similarity of drug nodes in the

feature space, denoted as Gknn. It is constructed by traversing all the
drug nodes. During this process, we compute the feature similarity
between each traversed drug node and all other nodes in the dataset.
Upon completing this traversal, we obtain a similarity score for each
pair of drug nodes. To construct the feature graph, also known as a
K-Nearest Neighbors (KNN) graph, we connect each drug node to
its top-K most similar nodes, forming edges based on these high
similarity scores. Note that, the method used for calculating the
similarity between drug nodes is the cosine similarity, as shown in
Eq. 2.

sij � Xi · Xj

Xi‖ ‖ Xj

���� ���� (2)

Where sij is the feature similarity score of drug i and drug j, Xi is
the feature vector of drug i, Xj is the feature vector of drug j, and the
symbol ‖ ‖ denotes the Euclidean paradigm operation.

3.5 Multi-scale fusion module

After obtaining the feature matrix of the drug and the two
graphical views - the topological graph and the feature graph -, our
model proceeds to extract and fuse these features for the final DDI
prediction task. To facilitate this, we have designed a multi-scale
fusion module.

First, we use GCN to extract the drug node information in the
network. For the topological graph, the output of GCN at each layer
of the network is denoted as Z(l)

adj, where l represents the layer
number. Taking the topological graph as an example, the
formulation of GCN can be represented by Eqs 3, 4.

~A � D−1
2 A + I( )D−1

2 (3)
Z l( )
adj � σ ~AZ l−1( )

adj W l( )( ) (4)

In Eq. 3, A denotes the adjacency matrix, I is the diagonal matrix
of A, and D is the degree matrix of A. In Eq. 4, Z(l)

adj denotes the
output of the l th layer in the GCN, Z(l−1)

adj denotes the output of the
(l − 1) th layer in the GCN, Z(0)

adj is the node feature matrix X, W(l)

denotes the learnable parameter matrix in the GCN, and σ is the
activation function.

To illustrate the information aggregation process in GCNs, this
paper selects five drugs from Drugbank to construct a DDI
subgraph. In this subgraph, Cefazolin is treated as the target
node, with its neighboring nodes of different orders represented
by varying colors. This approach allows us to visually examine how
target nodes in GCNs aggregate information from neighboring
nodes at different layers. As can be seen from Figure 2, with a single
GCN layer, the target node Cefazolin only aggregates information
from its first-order neighbor Dicoumarol. However, as we increase
the number of GCN layers, Cefazolin begins to incorporate
information from higher-order neighbors. For instance, at two
GCN layers, Cefazolin continues to aggregate information from its
first-order neighbor Dicoumarol. But since Dicoumarol has
already aggregated information from its own first-order
neighbors (Dienogest and Diflunisal) in the first GCN layer,
Cefazolin indirectly aggregates second-order neighbor
information via the graph convolution in the second layer.
Additionally, GCN serves a role in reducing the dimensionality
of feature vectors. As the number of GCN layers increases, the
feature vector dimensionality of the target node Cefazolin is
progressively reduced from high to low. Therefore, we observe
two key changes in node characteristics within the DDI network as
the number of GCN layers increases:

• The target node obtains information about its higher-order
neighbors as the number of GCN layers increases;

• The feature dimension of the target node decreases as the
number of GCN layers increases.
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With the two changes summarized above, it is known that as the
number of GCN layers increases, the network generates information
with different characteristics at different scales. In more detail,
higher scales will contain information about higher-order
neighbors. This results in feature vectors with lower
dimensionality but richer in semantic content, although they may
lose some detailed information. In contrast, at lower scales, the
information is limited to lower-order neighbors, retaining more
detailed data in the feature vectors due to their higher
dimensionality, albeit with a slight increase in noise. Intuitively,
feature vectors at higher scales are of superior quality as they
encompass a broader scope of neighboring node information.
However, unlike in other deep learning networks like CNNs,
where the network depth can extend to dozens or even hundreds
of layers, a GCN typically does not exceed 5 layers. The reason is the
occurrence of “over-smoothing” as the number of layers increases.
In higher GCN layers, the node representations tend to become
overly similar, diminishing their ability to effectively perform
subsequent downstream tasks. This phenomenon and its impact
on node feature vectors are further corroborated by the experiments
conducted in this paper.

As mentioned above, different scales of information in the GCN
network have their own advantages and shortcomings for the final
prediction results. By integrating information from various scales,
we can maximize the benefits of each scale while compensating for
their respective shortcomings. By doing so, our approach marks a
departure from traditional practices in graph neural networks,
where only the output from the network’s last layer is typically
used as the final node vector. In contrast, our paper emphasizes the
utility of outputs from each layer of the GCN, processing them
collectively to enhance the accuracy of subsequent DDI predictions.

While multi-scale information contributes to the final prediction
in our model, it is important to note that information from different
scales has varying degrees of impact on the results. Drawing
inspiration from Peng et al. (Peng et al., 2021), our paper
incorporates an attention mechanism to more effectively integrate
information across multiple scales. First of all, due to the varied
dimensions of information at different scales, a direct approach to
unifying this multi-scale information is not feasible. Instead, we

concatenate the feature vectors from different scales to create a
unified input for the attention mechanism module. To be more
specific, taking the topological graph as an example, we splice the
feature vectors from different scales as demonstrated in Eq. 5.

Ẑadj � Z1
adj

�����Z2
adj

����� · · · Zl
adj

�����[ ] (5)

In Eq. 5, Zl
adj denotes the output of the l th layer of the GCN in

the topological graph, ‖ denotes the splicing operation, and Ẑadj is
the final vector after splicing of the multiscale feature vectors. After
obtaining Ẑadj, we input Ẑadj into the fully-connected layer, the
dimension of the fully-connected output layer is the number of
layers l of the GCN. The output is the attention factor of the output
of each layer of the GCN. After obtaining the attention factors, this
paper uses the softmax function to perform the normalization
operation and then obtains the final attention factors by l2
regularization, which is calculated via Eq. 6.

Attadj � l2 sof tmax LeakyRelu linear Ẑadj( )( )( )( ) (6)

In Eq. 6, Attadj represents the matrix of attention factors in the
topological graph, which can be expressed as [a1adj‖a2adj‖ · · · ‖aladj],
and the data in each column of Attadj represent the attention factors
of the eigenvectors of the corresponding scales. By the same method,
we can get the attention factor matrix in the feature graph as Attknn.
In this paper, the attention factors are multiplied with the
corresponding scale information and spliced into the final
embedding form, the embedding vector Eadj in the topology
graph and the embedding vector Eknn in the feature graph can be
expressed by Eqs 7, 8.

Eadj � a1adj · Z1
adj a

2
adj · Z2

adj · · ·‖
����� aladj · Zl

adj

����� (7)
Eknn � a1knn · Z1

knn a2knn · Z2
knn · · ·‖���� alknn · Zl

knn

���� (8)

After obtaining the embedding vector Eadj of the drug for the
topological graph and the embedding vector Eknn for the feature
graph, we use summation to realize the fusion of the embedding
vectors learned by the model in the two views, as shown in Eq. 9.

Edrug � Eadj + Eknn (9)

FIGURE 2
Aggregation process and scale information of target node Cefazolin.
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3.6 Model optimization module

Once obtaining the final embedding vector Edrug for each drug,
our next step is to predict the DDI based on the labeling information
in the dataset. To do this, we first combine the embeddings of two
drugs that are likely to interact. This combination is achieved using a
specific function, as outlined in Table 2. We express the combined
drug pairs as shown in Eq. 10, where aggregation() represents the
combination function, Edrug i is the embedding vector of drug i, Edrug j

is the embedding vector of drug j, and the resultant drug pairs are
denoted as DPs. For the binary classification task, the activation
function of the last layer of the DNN is the sigmoid function, and its
prediction can be expressed as Eq. 11. For the multi-classification
task, the activation function of the last layer of the DNN is a softmax
function, and its prediction result can be expressed as Eq. 12.

DPs � aggregation Edrug i,Edrug j( ) (10)
ŷbij � sigmoid DNN DPs( )( ) (11)
ŷmij � sof tmax DNN DPs( )( ) (12)

In this paper, we address both binary and multi-classification
problems, necessitating the use of different loss functions to train the
model effectively for each task. For binary classification, we employ
the binary cross-entropy loss function. The formula for this function
is detailed in Eq. 13. In contrast, for multi-classification tasks, the
model uses the cross-entropy loss function, with its formula
provided in Eq. 14.

Lossb � − ∑
di ,dj( )∈ε

yij log ŷij( ) + 1 − yij( )log 1 − ŷij( )( ) (13)

Lossm � − ∑
di ,dj ,r( )∈ε

∑
R

c�1
ycm log ŷ c( )

m( ) (14)

In Eq. 13 yij denotes the true label and ŷij denotes the predicted
outcome. In Eq. 14, c is the response type of the drug pair, ycm
denotes the true labeling of the drug pair, and ŷ(c)m denotes the
labeling of the predicted outcome of the model.

4 Results and discussion

4.1 Datasets

In this paper, experiments were conducted using two datasets of
different sizes, and the details of the datasets are shown in Table 3.
The larger dataset is the one provided by DeepDDI, in which there
are 1710 drugs and 192284 DDI events. These events are categorized
into 86 different reaction types, which are used as labels for the

models. The drugs in this dataset are characterized by their
medicinal chemical substructures. Within the DeepDDI dataset,
we conduct experiments for both multi-classification and binary
classification tasks. The smaller dataset, obtained from DDIMDL,
consists of 572 drugs and 37,264 DDI events, which are classified
into 65 reaction types. In the DDIMDL dataset, a total of molecular
structures, enzymes, targets, and channels were collected as features,
and it was verified that the model achieved the best results when
using molecular structures, enzymes, and targets as the drug features
according to the experiments of Deng et al. (Deng et al., 2020).
Therefore, in this paper, these three features were chosen as the
features of the model.

4.2 Baseline methods

In order to verify the effectiveness of the MSDF method
proposed in this paper, we have chosen the most advanced DDI
prediction algorithms for comparison. The methods chosen are
those based on the drug’s own feature: DNN, DeepDDI, and
DDIMDL, and attribute graph based methods: SkipGNN, DM-
DDI, MDFA, and AM-GCN. Among the methods based on
attribute graphs, SkipGNN, MDFA, and AM-GCN are all multi-
view methods. Note that, the purpose of introducing multi-view
methods is to verify whether the method proposed in this paper is
superior under the samemulti-view condition. The type information
of the baseline method is shown in Table 4, and the details of the
baseline methods are shown below:

• DNN: This paper inputs the drug’s own features directly into a
DNN to perform both binary and multi-classification tasks for
DDI prediction.

• DeepDDI (Ryu et al., 2018): DeepDDI takes the chemical
substructures of drugs as features. Moreover, it employs
Principal Component Analysis (PCA) to reduce the
dimensionality of the feature matrix, which is then input
into a DNN for prediction.

• DDIMDL (Deng et al., 2020): As part of a multimodal DDI
prediction framework, DDIMDL uses chemical substructures,
enzymes, and targets as drug features. It reduces feature
sparsity by calculating Jaccard similarity for each feature,

TABLE 2 The way the three drug pairs were combined.

Combination method Dimensionality Description

Concatenation 2d Φ(di , dj) � Φ(di)‖Φ(dj)

Average d Φ(di , dj) � 0.5 × [Φ(di) +Φ(dj)]

Hadamard d Φ(di , dj) � Φ(di) · Φ(dj)

TABLE 3 Information on the dataset.

Dataset Size Drugs Interaction DDI type

DB1 Small 572 37624 65

DB2 Large 1710 192284 86
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followed by inputting these features into a DNN for
prediction.

• SkipGNN (Huang et al., 2020a): SkipGNN is a multi-view
graph neural network model, which takes into account the
existence of jump similarity of nodes in a DDI network. It
includes a two-hop neighbor graph in addition to the original
topology graph and employs an iterative fusion method for
information integration between the two views.

• AM-GCN (Wang et al., 2020): AM-GCN constructs a KNN
graph based on node features and designs three channels for
extracting information from topological and KNN graphs. The
first two channels use GCNs with different parameters for
extracting information in topological and KNN graphs. The
third channel uses GCNs with shared parameters to extract
common information in both graphs and learns the attention
factors of the embedding vectors from the three channels using
a self-attention mechanism for subsequent downstream tasks.

• DM-DDI (Kang et al., 2022): DM-DDI learns drug node
features through AutoEncoder (AE) and topological
features through GCN. It inputs outputs from each AE
layer into corresponding GCN layers using a deep fusion
strategy, which helps mitigate the over-smoothing problem
in deep GCNs. The model then uses a self-attention
mechanism to fuse topological and node features.

• MFDA (Lin K. et al., 2022a): MFDA constructs three views
and uses a cross-fertilization strategy to fuse topological
information from the graph and feature information of the
drug itself. It introduces dual attention mechanisms at both
the node-level and view-level, fusing the topological and
feature information of nodes at the node-level, and
combining embedding vectors from three views at the
view-level for comprehensive drug embeddings.

4.3 Assessment of indicators

In order to evaluate the prediction ability of our model, different
evaluation metrics are employed for binary and multi-classification
tasks in our experiments. For binary classification, the model’s
performance is measured using three key indicators: accuracy
rate, Area Under the Curve (AUC) of the Receiver Operating

Characteristic (ROC) curve, and the Area Under the Precision-
Recall Curve (AUCPR).

In multi-classification experiments, a broader set of metrics is
utilized, including accuracy, F1 score, precision, recall, AUC
curve, and AUCPR curve. Among these metrics, we use
macro-averaged measures for F1 score (F1_macro), precision
(Pre_macro), and recall (Recall_macro). Conversely, for AUC
and AUCPR, we employ micro-averaged metrics, denoted as
AUC_micro and AUCPR_micro, respectively. It is noteworthy
that in the context of multi-classification tasks, the micro-
averaged precision (Pre_micro), recall (Recall_micro), and
F1 score (F1_micro) are equivalent to the overall accuracy.
Therefore, in our experiments, we opt for macro-averaged
metrics for precision, recall, and F1 score to provide a more
comprehensive evaluation.

4.4 Experimental settings

In this paper, we conducted 5-fold cross-validation, dividing the
dataset into 5 equal parts, training on 4 parts and testing on the
remaining part. This process was repeated 5 times, with each part
used as the test set once. The final model performance was the
average across the 5 folds. For the experiments of binary
classification, in this paper, unconnected drug pairs are randomly
selected as negative samples, and the ratio of positive and negative
samples for the experiments is 1:1.

Regarding the model’s parameter settings, we align the DNN
parameters with those used in DDIMDL. This includes the
incorporation of a batch normalization layer to accelerate
convergence and a dropout layer with a rate of 0.3 to prevent
overfitting. The activation function used here is the ReLU function.
For the final layer, the softmax function is used in multi-
classification tasks, while the sigmoid function is applied in
binary classification tasks. Specifically for the DDIMDL dataset,
the batch size is set to 1000, the epoch is set to 100, and the learning
rate is set to 0.001. For the multi-classification task on the DeepDDI
dataset, the batch size is set to 512, the epoch is set to 50, and the
learning rate is set to 0.001. For the binary classification task on the
DeepDDI dataset and the DDIMDL dataset, the batch size is set to
1000, the epoch is set to 50, and the learning rate is set to 0.0001.

TABLE 4 Information on the type of baseline methods.

Method Feature type Task

Self-feature Network Multi-view Binary prediction Multi-class prediction

DNN √ √ √

DeepDDI √ √ √

DDIMDL √ √

SkipGNN √ √ √ √

AM-GCN √ √ √ √ √

DM-DDI √ √ √

MFDA √ √ √ √

MSDF √ √ √ √ √
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4.5 Predicted results of DDI binary
classification

The experimental results of our model and other baseline
models for the task of binary classification are shown in Table 5.
It is important to note that the original SkipGNN article, there is did
not use the drug’s own features as the node features, and the drug’s
node features are set as one-hot encoding in the original article.
However, in our experiments, we have employed the drug’s own
features as node features in SkipGNN.

Table 5 demonstrates that in the DeepDDI dataset, methods
relying solely on a drug’s own features (DNN and DeepDDI)
underperform compared to those utilizing attribute graphs across
all metrics. Conversely, in the DDIMDL dataset, DNN’s
performance aligns with the attribute graph-based AMGCN,
while DeepDDI lags. This discrepancy arises because the
DeepDDI dataset benefits from topological information for a
holistic drug representation, whereas the DDIMDL dataset is
more reliant on intrinsic drug features. Notably, DeepDDI only
processes chemical substructures, while DNN, incorporating three
drug features, surpasses DeepDDI in the DDIMDL dataset. Across
both datasets, our proposed method consistently yields optimal
results, substantiating MSDF’s efficacy in binary classification tasks.

4.6 Predicted results of DDI multi-
classification

Since multi-classification DDI prediction provides a more
valuable reference for medical practitioners, it is the focus of this
paper. The performance comparison of our model with other state-
of-the-art models is shown in Tables 6, 7.

Table 6 reveals the performance of various methods on the
DDIMDL dataset. DNN, DDIMDL, and DeepDDI, which solely rely
on the drug’s own features without incorporating topological
features of the drug network, exhibit lower performance across
all metrics compared to methods that utilize graph embedding
techniques. Among the methods based on graph embedding

techniques, AM-GCN performs poorly in general. This is because
AM-GCN only uses the output of GCN as the embedding vector of
the drug. However, GCN, in this context, can not effectively fuse
topological and node features. In contrast, both DM-DDI and
MFDA implement a cross-fertilization strategy, allowing for a
more comprehensive integration of the drug’s topological and
node features. Therefore, they lead to superior performance in
most metrics. Although both DM-DDI and MFDA achieve good
results, the method MSDF proposed in this paper performs even
better. The superior performance ofMSDF is due to the introduction
of the multi-scale fusion module, which effectively combines
information from different scales to enhance model results. This
hypothesis is further supported by subsequent ablation experiments.

While MSDF generally outperforms the baseline method, the
evaluation of multi-classification models requires not only
observing the overall classification effectiveness, but also
assessing the classification performance of individual
categories. Thus, in our analysis of the DDIMDL dataset, we
comprehensively evaluate the predictive performance across all
categories using two metrics: AUCPR and F1 score. These results
are visually depicted in the radar chart of Figure 3. In the radar
plot of Figure 3, we compare the category-wise prediction
performance of MSDF against three methods that demonstrate
overall superior performance: AM-GCN, DM-DDI, and MFDA.
Each spoke of the radar chart represents a different label
category, arranged in descending order of label frequency
occurrence. For example, the first spoke (number 1) represents

TABLE 5 Prediction results for binary classification.

Dataset Method ACC AUCPR AUC

DeepDDI DNN 0.869 0.932 0.943

DeepDDI 0.878 0.942 0.946

SkipGNN 0.947 0.989 0.989

AM-GCN 0.928 0.982 0.982

MSDF 0.959 0.993 0.993

DDIMDL DNN 0.925 0.973 0.974

DeepDDI 0.864 0.931 0.936

SkipGNN 0.897 0.971 0.969

AM-GCN 0.930 0.984 0.982

MSDF 0.963 0.993 0.993

The best results are shown in bold.

TABLE 6Comparison results ofMSDFwith othermodels in DDIMDL dataset.

Method ACC AUCPR AUC F1 Precision Recall

DNN 0.880 0.913 0.996 0.722 0.805 0.703

DDIMDL 0.885 0.921 0.998 0.759 0.847 0.718

DeepDDI 0.837 0.890 0.996 0.685 0.728 0.661

AM-GCN 0.912 0.968 0.999 0.810 0.854 0.795

DM-DDI 0.908 0.964 0.999 0.852 0.879 0.839

MFDA 0.902 0.963 0.998 0.851 0.857 0.853

MSDF 0.943 0.981 0.999 0.863 0.889 0.854

The best results are shown in bold.

TABLE 7 Comparison results of MSDF with other models in DeepDDI
dataset.

Method ACC AUCPR AUC F1 Precision Recall

DNN 0.840 0.913 0.992 0.455 0.510 0.441

DDIMDL 0.939 0.968 0.999 0.903 0.918 0.900

DeepDDI 0.905 0.943 0.998 0.797 0.824 0.795

AM-GCN 0.924 0.979 0.999 0.880 0.904 0.875

DM-DDI 0.923 0.977 0.999 0.887 0.928 0.867

MFDA 0.940 0.986 0.999 0.908 0.928 0.900

MSDF 0.972 0.995 0.999 0.946 0.957 0.941

The best results are shown in bold.
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the label with the highest frequency of occurrence, while the last
spoke (number 65) corresponds to the label with the 65th
frequency of occurrence.

In the radar chart, it can be seen that MSDF achieves better or
comparable results to other methods in predicting labels up to
number 51. This is particularly notable for labels up to number 18,
where MSDF outperforms comparison methods. For instance, in
predicting label number 39, other methods show significantly lower
results, falling below 50% in both AUPR and F1 scores. In contrast,

MSDF’s predictions for this label are considerably higher, with
AUPR at 60.9% and F1 at 58.5%. These observations suggest that
it can be seen that MSDF excels in predicting labels that occur more
frequently However, for labels numbered 51 and beyondMSDF does
not fetch better performance. An analysis of label distribution
reveals that labels after number 51 appear fewer than 10 times in
the dataset, indicating extremely limited data. Labels after number
60 appear only 5 times. According to Kang et al. (Kang et al., 2022),
GCN cannot achieve better performance in category-imbalanced

FIGURE 3
Comparison of AUPR and F1 predicted for each event in the DDIMDL dataset.

FIGURE 4
AUPR and F1 box plots for each tag in the DDIMDL dataset.
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data, which might explain MSDF’s lower performance in these rarer
label predictions. To further analyze the predictive performance of
the models, box plots of different models on AUCPR and F1 under
65 classifications are plotted in this paper, as shown in Figure 4.
From the box plots, it can be clearly seen that MSDF achieves better
performance from the statistical level.

In the DeepDDI dataset, we obtain similar conclusions as in the
DDIMDL dataset, i.e., our proposed method outperforms the other
models in all metrics. However, by comparing the results of the two

datasets, we can see that on the DeepDDI dataset, the metrics of each
model except DNN are significantly improved compared to those on
the DDIMDL dataset, and this paper speculates that this is because
as the dataset grows larger, the information input to the model is
richer and therefore more effective. Interestingly, the performance of
AM-GCN on DeepDDI does not lag behind DM-DDI, unlike in the
DDIMDL dataset. This paper suggests that this difference may be
attributed to the sparser network structure in DDIMDL dataset,
where the drug’s inherent features have a more significant impact on

FIGURE 5
Comparison of AUPR and F1 predicted for each event in the DeepDDI dataset.

FIGURE 6
AUPR and F1 box plots for each tag in the DeepDDI dataset.
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prediction outcomes. In this paper, we also evaluate the classification
performance of individual categories on the DeepDDI dataset and
the results are shown in Figures 5, 6. Unlike the DDIMDL dataset,
the labels in the DeepDDI dataset are not ordered by the frequency
of label occurrence. In Figure 5, it can be seen that MDSF achieves
optimal results in most categories. From the box plots in Figure 6, it
can be seen that MSDF achieves the best performance in the
DeepDDI dataset at the statistical level as well.

4.7 Ablation experiments

To verify the effectiveness of the dual-view and multi-scale
fusion modules in MSDF, this paper conducts ablation
experiments. The results of the ablation experiments are shown
in Table 8. Among them, “without multi-scale fusion” refers to
experiments where only the dual-view approach is implemented,
omitting the multi-scale fusion module, “without topological graph”
indicates that only the feature graph and multi-scale fusion module
are introduced in the experiments, Conversely, “without feature
graph” means that the experiments were conducted with just the
topological graph and the multi-scale fusion module. Based on the
results in Table 8, the following conclusions can be drawn: (1) The
removal of the multi-scale fusion module resulted in the largest
decrease in model effectiveness, so the fusion of information from
different scales is crucial. (2) The performance of the model
decreases with the removal of either topological or feature view,
which indicates that the introduction of two views for prediction is
effective. (3) The model can be optimized by introducing two views
with the multi-scale fusion module.

In this paper, we not only conduct experiments to validate the
overall functionality of our model but also specifically investigate
how information from different scales affects DDI prediction results.
For this purpose we individually select and utilize information from
each scale for DDI prediction. In our representation, “Scale-n”
denotes the scale used, where “n” indicates the scale number. For
instance, “Scale-1” refers to information from the first GCN layer,
while “MSDF” represents the complete model that fuses information
from all three layers for prediction. The outcomes of these focused
experiments are detailed in Table 9. From Table 9, the following
conclusions can be drawn: (1) Relatively effective predictions can be

obtained from information at different scales; (2) The prediction
effect is better for information at lower scales, indicating that as the
number of GCN layers increases, the phenomenon of over-
smoothing occurs, which reduces the prediction performance; (3)
The best results can be obtained by fusing the three kinds of
information, because the information is more comprehensive.

4.8 Parameter sensitivity analysis

In this section, we investigate the impact of three key parameters
on our model’s performance: the number of GCN layers, the method
of splicing drug pairs, and the number of neighbors in the feature
graph. We employ AUPR and F1 scores as our primary evaluation
metrics, as they are particularly relevant in multi-classification
experiments. Figures 7, 8 illustrate the results of the study for
these specific parameters in the DDIMDL and DeepDDI datasets,
respectively.

In this paper, we first validate the effect of the number of GCN
layers on the model. The experiment increases the number of GCN
layers from 1 to 5, with the dimensions of each layer set as (256, 128,
64, 32, 16). After each increase in the layer count, we record the
model’s performance. The results of the DDIMDL dataset are shown
in Figure 7A, and results of the DeepDDI dataset are shown in
Figure 8A. It can be seen that the model achieves the best
performance when the number of GCN layers is 3. Beyond this,
adding more layers does not further enhance the results, suggesting
that three layers suffice for adequate information gathering.

Next, we assess how different methods of splicing drug pairs
affect the model. This experiment reveals varying impacts on
performance, as detailed in Figures 7B, 8B. In the DDIMDL
dataset, the combined “averaging” method proved to be the most
effective, while in the DeepDDI dataset, the combined “concat”
method proved to be the most effective.

Lastly, we explore the influence of the number of neighbors in
feature graph construction. For this, this paper conduct
experiments with varying number of neighbors set (1, 5, 10,
50, 100). As can be seen in Figures 7C, 8C, when the number of
neighbors is less than 10, the parameter has a negligible impact
on the results. However, when the number of neighbors reaches
100, the model’s performance significantly declines. This

TABLE 8 Results of ablation experiments.

Dataset Method ACC AUCPR AUC F1 Precision Recall

DDIMDL Without multi-scale fusion 0.889 0.954 0.998 0.748 0.804 0.724

Without topological view 0.931 0.975 0.998 0.838 0.869 0.824

Without feature view 0.928 0.977 0.999 0.853 0.887 0.837

MSDF full model 0.943 0.981 0.999 0.863 0.889 0.854

DeepDDI Without multi-scale fusion 0.954 0.990 0.999 0.913 0.940 0.901

Without topological view 0.962 0.992 0.999 0.919 0.935 0.912

Without feature view 0.966 0.994 0.999 0.926 0.939 0.921

MSDF full model 0.972 0.995 0.999 0.946 0.957 0.941

The best results are shown in bold.
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decrease indicates that accumulating too many neighbors with
low similarity introduces noise. Consequently, in our feature
graph construction, we select the 10 nodes with the highest
similarity to the target node as its neighbors.

4.9 Case study

To demonstrate the practical utility of the model, we trained it
using known DDIs from the DeepDDI dataset and the DDIMDL
dataset, respectively. After training, the model was used to predict the
likelihood of DDIs for drug pairs not present in the dataset. We then
selected the top 10 drug pairs with the highest probability of predicting
DDI in each of the two datasets and searched for evidence of these
interactions in theDrugbank database. The results of this case study are
presented in Table 10 the method proposed in this paper achieves a
good accuracy rate with 14 out of 20 predictions are validated in the
Drugbank dataset. For example, an interaction between the drug

Digoxin and the drug Roflumilast is described as “Roflumilast may
decrease the excretion rate of Digoxin which could result in a higher
serum level.”Therefore, themodel proposed in this paper is of practical
utility. However, among the twenty DDIs with the highest predictive
scores, six pairs: “Estrone-Drospirenone,” “Olopatadine-Quinine,”
“Benzphetamine-Cholecalciferol,” “Acetylsalicylicacid-Bortezomib,”
“Halothane-Azithromycin,” and “Fingolimod-Amrubicin” failed to
find the corresponding evidence in drugbank. In this paper, we
argue that this could be the result of an error in the model
predictions, but it could also be a DDI that is currently
unrecognized by people. Hence, extra attention is needed for these
six pairs of DDIs.

5 Conclusion

In this paper, we propose a novel DDI prediction model, MSDF,
which takes topology and feature graphs as inputs and fully integrates the

TABLE 9 Effect of different scale information on the results.

Dataset Method ACC AUCPR AUC F1 Precision Recall

DDIMDL Scale-1 0.939 0.979 0.999 0.845 0.872 0.833

Scale-2 0.923 0.972 0.999 0.812 0.855 0.797

Scale-3 0.889 0.954 0.998 0.748 0.804 0.724

MSDF full model 0.943 0.981 0.999 0.863 0.889 0.854

DeepDDI Scale-1 0.971 0.995 0.999 0.936 0.952 0.927

Scale-2 0.964 0.993 0.999 0.925 0.944 0.917

Scale-3 0.954 0.990 0.999 0.913 0.940 0.901

MSDF full model 0.972 0.995 0.999 0.946 0.957 0.941

The best results are shown in bold.

FIGURE 7
Parameter sensitivity analysis results in the DDIMDL dataset. (A) Effect of GCN layers. (B) Effect of drug combination method. (C) Effect of the
number of neighbours.
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information from the outputs of the GCN layers through an attention
mechanism to obtain multi-scale drug embedding vectors. The
advantages of this method are that the limitation of utilising only

one view is alleviated by introducing a dual view, and the
information of drug feature vectors containing multi-scale
information is more comprehensive. However, the method proposed

FIGURE 8
Parameter sensitivity analysis results in the DeepDDI dataset. (A) Effect of GCN layers. (B) Effect of drug combination method. (C) Effect of the
number of neighbours.

TABLE 10 The 20 DDIs with the highest predicted probabilities.

Dataset Rank DrugA DrugB Source Description

DeepDDI 1 Pramipexole Desvenlafaxine Drugbank Desvenlafaxine may increase the sedative activities of Pramipexole

2 Warfarin Probenecid Drugbank The metabolism of Warfarin can be increased when combined with Probenecid

3 Digoxin Roflumilast Drugbank Roflumilast may decrease the excretion rate of Digoxin which could result in a higher serum level

4 Phenytoin Nicergoline Drugbank The metabolism of Nicergoline can be decreased when combined with Phenytoin

5 Estrone Drospirenone N.A. N.A.

6 Olopatadine Quinine N.A. N.A.

7 Triptorelin Ivabradine Drugbank The risk or severity of QTc prolongation can be increased when Triptorelin is combined with Ivabradine

8 Benzphetamine Cholecalciferol N.A. N.A.

9 Bosentan Thioridazine Drugbank Thioridazine may decrease the antihypertensive activities of Bosentan

10 Methysergide Carbamazepine Drugbank The metabolism of Methysergide can be increased when combined with Carbamazepine

DDIMDL 1 Dronabinol Desvenlafaxine Drugbank Dronabinol may increase the central nervous system depressant (CNS depressant) activities of
Desvenlafaxine

2 Dronabinol Escitalopram Drugbank Dronabinol may increase the central nervous system depressant (CNS depressant) activities of
Escitalopram

3 Mifepristone Ceritinib Drugbank The serum concentration of Ceritinib can be decreased when it is combined with Mifepristone

4 Acetylsalicylicacid Bortezomib N.A. N.A.

5 Bortezomib Etodolac Drugbank The metabolism of Etodolac can be decreased when combined with Bortezomib

6 Citalopram Losartan Drugbank Losartan may increase the QTc-prolonging activities of Citalopram

7 Chlorpromazine Doxorubicin Drugbank The metabolism of Doxorubicin can be increased when combined with Chlorpromazine

8 Halothane Azithromycin N.A. N.A.

9 Fingolimod Amrubicin N.A. N.A.

10 Fluvoxamine Amantadine Drugbank The risk or severity of serotonin syndrome can be increased when Fluvoxamine is combined with
Amantadine
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in this paper still has a shortcoming: there is no obvious advantage in the
prediction performance in the extremely rare category. However, on the
whole, themethod proposed in this paper achieves better results than the
baseline method on datasets of different scales, reflecting the superiority
of the MSDF model for DDI prediction. Meanwhile, there is still room
for improvement in the model of this paper, firstly, the binary
classification and multi-classification tasks are completed in the
experiments of this paper, but the multi-label problem is not
investigated. Secondly, this paper uses GCN to aggregate the
information of drug nodes, but GCN suffers from the problem of
poor performance in category unbalanced data and excessive
smoothing, so the introduction of a novel graph neural network
technique to aggregate the information of drug neighboring nodes is
also an idea to improve the effectiveness of the model.
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