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Background and aim: Vancomycin, a glycopeptide antimicrobial drug. PPK has
problems such as difficulty in accurately reflecting inter-individual differences,
and the PPK model may not be accurate enough to predict individual
pharmacokinetic parameters. Therefore, the aim of this study is to investigate
whether the application of machine learning combined with the PPKmethod can
improve the prediction of vancomycin CL in adult Chinese patients.

Methods: In the first step, a vancomycin CL prediction model for Chinese adult
patients is given by PPK and Hamilton Monte Carlo sampling is used to obtain the
reference CL of 1,000 patients; the second step is to obtain the final prediction
model by machine learning using an appropriate model for the predictive factor
and the reference CL; and the third step is to randomly select, in the simulated
data, a total of 250 patients for prediction effect evaluation.

Results: XGBoost model is selected as final machine learning model. More than
four-fifths of the subjects’ predictive values regarding vancomycin CL are
improved by machine learning combined with PPK. Machine learning
combined with PPK models is more stable in performance than the PPK
method alone for predicting models.

Conclusion: The first combination of PPK and machine learning for predictive
modeling of vancomycin clearance in adult patients. It provides a reference for
clinical pharmacists or clinicians to optimize the initial dosage given to ensure the
effectiveness and safety of drug therapy for each patient.
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1 Introduction

Vancomycin, a glycopeptide antimicrobial drug, has a good therapeutic effect on Gram-
positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). It is
characterized by a narrow therapeutic window and large individual differences, so it
needs to be administered individually, and blood concentration monitoring (TDM) is
often required in the clinic to improve the therapeutic efficacy and the incidence of adverse
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reactions (Ye et al., 2016). However, the selection of vancomycin
pharmacokinetic parameters remains controversial, including
trough concentration, clearance, etc (Ghasemiyeh et al., 2023).

Population pharmacokinetics (PPK), which combines classical
pharmacokinetic modeling with population statistical modeling.
Vancomycin has been the subject of a number of PPK studies in
adults (Aljutayli et al., 2020; Lindley et al., 2023). It has been shown
that population pharmacokinetic modeling of vancomycin in
Chinese adult patients can be established (He et al., 2014; Gao
et al., 2018). PPK study of vancomycin is important for guiding
clinical dosing. However, PPKmodel may not be accurate enough to
predict individual pharmacokinetic parameters.

Machine learning (ML) is a data-driven approach that uses
training data to learn how to accomplish tasks through various
algorithms and then make decisions and predictions about specific
events. In pharmacokinetics, machine learning allows for analysis
and prediction (Ota and Yamashita, 2022; Wang et al., 2023). The
combination of machine learning and population pharmacokinetics
is a new tool for drug research and development (Zhu et al., 2022;
Damnjanovic et al., 2023). It has been reported that machine
learning combined with PPK method can improve the prediction
of individual clearance of six drugs in neonates (Tang et al., 2021).
However, there are few similar studies in adult patients.

Nowadays, in the field of machine learning, many models are
produced. Decision Tree Regression Model (Kaminski et al., 2018),
is a regression algorithm that uses decision tree as the basic model,
which fits the data by dividing the input variables into multiple
features and constructing a decision tree based on these features.
Gradient Boosting Decision Tree (Si et al., 2017), is an algorithm
based on integration learning, which fits the data by integrating
multiple decision tree models together. Extreme Gradient Boosting
(Chen and Guestrin, 2016), is an efficient gradient boosting
algorithm which minimizes the loss function by using a greedy
algorithm to select the optimal features for splitting. Extra Tree
Regression Model (Geurts et al., 2006), is an integrated learning

algorithm that mitigates the variance of the model by averaging the
predictions of multiple decision trees to improve the robustness of
the model.

The aim of this study is to investigate whether the application of
machine learning combined with the PPK method could improve
the prediction of vancomycin CL in Chinese adult patients and
provide a reference for the individualized dosing of vancomycin in
Chinese adult patients.

2 Methods

2.1 Flow of the study

The flow chart of this study is shown in Figure 1. First, the
reference CL of 1,000 patients is obtained using PPK and Hamilton
Monte Carlo (HMC) sampling. Then, machine learning is
performed on the predictors (basic patient information) and the
reference CL using an appropriate model to obtain the ML
combined with PPK prediction model. Finally, in the simulated
data, 250 patients are randomly selected for prediction effect
assessment.

2.2 Patients data

The simulated data are provided by Guangzhou Jingyuan
Pharmaceutical Company and contained sex, age, weight, serum
creatinine (Scr) and simulated vancomycin CL.

The number of patients is set at 250 in the machine learning test
group and the evaluation. Also, since the ratio of the training group
to the test group in machine learning is 1:3, the number of patients
participating in machine learning is set at 1,000, which are randomly
selected from the simulated data. The patients participating in the
evaluation are also randomly selected from the simulated data.

FIGURE 1
Flow chart of the study.
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2.3 Population pharmacokinetics

This study is conducted to explore whether machine learning
combined with the PPK method could improve the prediction of
vancomycin CL in adult patients. For the PPK model, the
vancomycin PPK model for adult patients from the literature (He
et al., 2014) is used, in which the CL prediction equation is used to
calculate the vancomycin CL for each simulated patient. The values
of each variable in the simulated data satisfy the requirements of the
model. The CL prediction equation is shown in Eq. 1. The
vancomycin CL calculated for each patient by this equation was
defined as the reference CL for each patient.

CL � 1.71 × eη1 + 8.31 × 1 − e−0.0113×e
η2×CLcr( )[ ] × 0.475

Age
72 (1)

η1 ~ N 0, 0.4152( ), η2 ~ N 0, 0.3812( )
(Where CLcr denotes creatinine clearance, η1 and η2 denote

Variability between patients).

2.4 Machine learning

To fit the obtained reference CL, four machine learning models are
selected for exploratory analysis based on rules of thumb and literature
review, namely, Decision Tree Regression (DTR), Gradient Boosted
Decision Tree (GBDT), eXtreme Gradient Boosting (XGBoost), and
Extra Tree Regression (ETR). Each machine learning model is
implemented through computer simulation.

In machine learning, the input predictive factors are age, weight,
serum creatinine, and gender. To get reliable and stable models,
Cross-validation is done for all the four machine learning models.
Based on cross-validation, the dataset of 1,000 simulated patients are
randomly divided into a test set and a training set in a ratio of 1:3.
That is, in the machine learning of this paper, the training set
contains 750 patients and the test set contains 250 patients.

2.5 Selection of machine learning models

Four statistical metrics are chosen to select the most suitable
machine learning model for prediction: the coefficient of
determination (R2 score), the mean square error (MSE), the root
mean square error (RMSE), and the mean absolute error (MAE).

The coefficient of determination (R2 score), which reflects the
proportion of the total variation in the dependent variable that can be
explained by the independent variable through the regression
relationship, is a kind of evaluation index for the assessment of linear
models. The maximum value is one and the minimum value is 0. When
the value of the coefficient of determination is closer to 1, itmeans that the

modelfits better; when the value is closer to 0, itmeans . The equations for
calculating the coefficient of determination are shown in Eqs 2–5.

R2 � 1 − SSE
SST

(2)

SSR � ∑n
i�1

ŷi − �y( )2 (3)

SSE � ∑n
i�1

yi − ŷi( )2 (4)

SST � SSR + SSE � ∑n
i�1

yi − �y( )2 (5)

(Where SSR denotes the sum of squared regressions, SSE denotes
the sum of squared residuals, SST denotes the sum of squared total
deviations. yi denotes the reference clearance for the ith patient, �y
denotes the mean of the reference clearance for 1,000 patients, and ŷi

denotes the predicted clearance for the ith patient).
Themean square error (MSE), which is the average of the deviations

between the theoretical and the actual observed values, is a measure of
the degree of difference between the estimated and the estimated
quantity. It is the most general criterion for evaluating point
estimates. Root Mean Square Error (RMSE), the square root of the
mean square error, is used for the same computational purpose, but with
more emphasis on themagnitude of the error. TheMeanAbsolute Error
(MAE), which is the average of the absolute values of the deviations of all
individual observations from the arithmeticmean, avoids the problem of
canceling out errors and thus accurately reflects the magnitude of the
actual prediction error. The smaller the value of mean square error, root
mean square error and average absolute error, the better the prediction
effect of themodel. The larger the value, the worse the prediction effect of
the model. The equations for the mean square error, root mean square
error, and mean absolute error are shown in Eqs 6–8.

MSE � 1
n
∑n
i�1

ŷi − yi( )2 (6)

RMSE �
											
1
n
∑n
i�1

ŷi − yi( )2√
(7)

MAE � 1
n
∑n
i�1

ŷi − yi
∣∣∣∣ ∣∣∣∣ (8)

2.6 Evaluation

To evaluate the predictive performance of the final model,
250 patients are randomly selected from the simulated data. The
combination prediction model and the original PPK model are used
to predict the clearance of vancomycin in these patients,
respectively. Two types of prediction results are obtained and
compared with the simulated actual clearance rate for evaluation.
The absolute and relative errors between the actual and predicted
clearance rates are calculated for these patients.

Absolute errors, refers to the absolute value of the difference
between the true value and the measured value, can indicate the
reliability of a measurement result. Relative error, is the value
obtained by the ratio of absolute error to true value, and it can
compare the reliability of different measurement results. The
equations for absolute and relative errors are shown in Eqs 9, 10.

TABLE 1 Information on simulated patients.

Information Median (range)

Age (years) 54.8 (20.0–90.0)

Weight (kg) 62.5 (40.0–85.0)

serum creatinine (μmol/L) 274.5 (50.0–500.0)
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Absolute errors � CLprediction − CLtrue

∣∣∣∣ ∣∣∣∣ (9)

Relative errors � CLprediction − CLtrue

∣∣∣∣ ∣∣∣∣
CLtrue

(10)

(Where CLprediction denotes the vancomycin CL of the individual
obtained from the prediction, CLtrue denotes the actual vancomycin
CL of the individua).

Residual plots for each patient regarding actual CL and
predicted CL, scatter plots of CL predicted by the PPK method
and machine learning combined with the PPK method, and scatter
plots with predicted CL as the x-axis and actual CL as the y-axis.

3 Results

3.1 Simulated patients’ information

Information on the variables for the 1,000 simulated patients in
machine learning is shown in Table 1. The values of the numerical
variables (age, weight, serum creatinine) of the simulated patients
are within the selected PPK model variable intervals. In the
simulated data, the ratio of male to female patients is 1:1.

3.2 Performance metrics for machine
learning models

The results of the performance metrics derived from the four
selected machine learning models are shown in Table 2. It should be
noted that theMSE, RMSE, andMAEhere cannot be used for the final
evaluation because the vancomycin clearance rates of the
1,000 patients included in the machine learning are only the
reference CL and do not have a direct relationship with the actual CL.

As can be seen from Table 2, among the four machine learning
models, the model fitted by XGBoost has the highest R-squared of
0.9123 and the lowest MSE and RMSE of 0.5151 and 0.7177,
respectively, which indicate that the model fitted by XGBoost is
the most effective. Considering that XGBoost do not perform badly
in the test set and that the test set here is not used for final evaluation,
the XGBoost model is selected as the final machine learning model.

3.3 Performance metrics for machine
learning models

We compare the machine learning combined with PPK method
CL prediction model in this paper with the original PPK model. The

residual plots of the two prediction methods regarding the actual CL
and the predicted CL are shown in Figure 2.

Statistically, among the 250 subjects, a total of 204 subjects
predicted the CL value through the combination model, which is
closer to the actual CL value than the CL value predicted by the PPK
model, accounting for 81.6%. That is, more than four-fifths of the
subjects are improved by the combined model.

The scatter plots of the predicted CL values for the two methods
are shown in Figure 3. It can be found that most of the scatter points
are approximately distributed around the y = x auxiliary line, which
indicates that the CL values predicted by the PPK method and
machine learning combined with the PPK method are relatively
close to each other. It reflects that the fitting effect of the prediction
model of machine learning combined with the PPK method is better
from the side.

The scatter plot of actual-predicted CL values for vancomycin in
subjects is shown in Figure 4. Comparing Figures 4A, B, the scatters
of both plots hover around the neighborhood of the y = x auxiliary
line. But the scatters in (B) are more uniformly distributed near the
y = x auxiliary line, and the deviation is not as large as in (A). This
shows that the machine learning combined with PPK method
prediction model is more stable in performance than the PPK
prediction model.

The mean and range of intervals of absolute and relative errors
of the two prediction models are shown in Table 3. It can be found

TABLE 2 Performance metrics for machine learning.

Model MAE of test set R2 of trian test MSE of train test RMSE of train test

GBDT 2.3204 0.8653 0.7913 0.8896

XGBoost 2.4149 0.9123 0.5151 0.7177

DTR 2.4811 0.8582 0.8325 0.9124

ETR 2.0784 0.8254 1.0253 1.0126

GBDT, Gradient Boosting Decision Tree, XGBoost, eXtreme Gradient Boosting; DTR, Decision Tree Regression; ETR, Extra Tree Regression; MSE, Mean Square Error; MAE, Mean Absolute

Error; RMSE, Root Mean Square Error.

FIGURE 2
Residual plots of CL predictions from PPK and combinedmodels.
The horizontal coordinate indicates ID of the 250 patients; The vertical
coordinates indicate the residuals of the two models.
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that the upper quartile of the absolute or relative error of the
prediction model of the machine learning combined with PPK
method is even smaller than the mean of the absolute or relative
error of the prediction model of the PPK method among
250 subjects. This shows that the combined model is superior to
the PPK model. Both in absolute and relative errors, the combined
model is much smaller than the PPK model.

4 Discussion

In this study, the original PPK method CL prediction
equation is used to obtain the reference CL of adult patients,
and then the XGBoost model is selected for machine learning to

finally obtain the machine learning combined PPK method CL
prediction model in this paper. Compared with the original PPK
model, the combined model performs better in
prediction effect.

In the simulated data, the values of each variable are within the
variable range of the PPK model, and it can be seen in Figure 4A
that the CL predicted by the PPK model is relatively close to the
real CL. In Table 3, the PPK model has a mean absolute error of
0.4567 and a relative error of 0.2183, which is already a good result.
In terms of the selection of machine learning models, we choose
XGBoost as the final model. By introducing XGBoost based on
PPK, the combined model formed is not much different from the
CL calculated by the PPK model (Figure 3). However, it is
pleasantly surprised that the combined model produced better
results. As can be seen in Figure 2, out of 250 patients, the
combined model has most lower errors than the PPK model. A
total of 204 patients were statistically improved in CL prediction.
Comparing Figures 4A, B, it can also be seen that the combined
model is closer to the CL in the simulated data. In Table 3, the
combined model is better than the PPK model in terms of both
absolute and relative errors.

Since the introduction of population pharmacokinetics in the
1970s (Sheiner et al., 1977), PPK has been widely used to guide new
drug development. Individual pharmacokinetics can be
characterized, and the pharmacokinetic behavior of many
individuals can be expressed by quantifying covariates with
known sources of variability (Koch et al., 2020). Despite the
continuous developmental advances in PPK, predicting
parameters using PPK models is still challenging in terms of
accuracy. Due to various limitations, only sparse samples can be
collected from individuals, which makes the accuracy of
pharmacokinetic parameter estimation notoriously compromised.

Machine learning can handle many predictors and allows the
use of new types of data (Obermeyer and Emanuel, 2016). It is a
data-driven approach and is not based on the results of
programming. In recent years, machine learning methods have

FIGURE 3
Scatter plot of CL predictions for the two models The red line
indicates the y = x polyline.

FIGURE 4
Scatter plot of actual-predicted CL values. (A) Real CL vs. PPK model CL Prediction. (B) Real CL vs. Combination model CL Prediction.
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become increasingly popular in various fields. In fuel cell
research, machine learning algorithms can be successfully used
for performance prediction, lifetime prediction, and fault
diagnosis of fuel cells, with good accuracy in solving nonlinear
problems (Su et al., 2023); machine learning has become one of
the most promising research methods in novel material screening
and material performance prediction (Huang et al., 2023); and in
healthcare, machine learning has been used to examine health-
related data, and medical professionals can enhance diagnosis
and treatment through machine learning applications (An
et al., 2023).

Currently, machine learning performs well in the prediction
of pharmacokinetic parameters. For example, it can be used to
predict drug the area under the curve (AUC) (Bououda et al.,
2022; Destere et al., 2023). Recently, it is found that machine
learning can individualize vancomycin dose in neonates (Tang
et al., 2023). PPK can take advantage of the basic knowledge of
physiology and pharmacology development, while machine
learning models can improve the accuracy of prediction, and
combining the two can produce very impressive results. The use
of machine learning combined with population pharmacokinetic
methods has been reported to improve the estimation of
individual iohexol clearance (Destere et al., 2022). Recently, a
study developed a prediction model for Tacrolimus CL in
children with Nephrotic Syndrome using machine learning
combined with PPK method, which provides a powerful tool
for individualized treatment of TAC in pediatric Nephrotic
Syndrome patients (Huang et al., 2022).

Machine learning approaches have been widely adopted within
the early stages of the drug discovery process, particularly within the
context of small-molecule drug candidates. Despite this, the use of
ML is still limited in the pharmacokinetic/pharmacodynamic (PK/
PD) application space (Pillai et al., 2022). PK/PD analysis using
Pharmacometrics provides mechanistic insight into biological
processes but is time- and labor-intensive. In contrast, ML
models are much quicker trained, but offer less mechanistic
insights. The opportunity of using ML predictions of drug PK as
input for a PK/PD model can strongly accelerate analysis efforts
(Keutzer et al., 2022). The future application of machine learning in
predicting drug PK/PD is very promising, and it is expected to bring
more efficient solutions to the field of drug development.

Based on the above developments and challenges, this paper
explores whether the prediction of vancomycin CL can be improved
by machine learning combined with the PPK method in adult
patients. This method has not been similarly studied in adult
patients. The results of the study show that the machine learning
combined with PPK method has a smaller error than the PPK
method alone (Figure 2), and the machine learning combined with

PPK method performed better in both absolute and relative errors
(Table 3), reflecting that the machine learning combined with PPK
method can improve the prediction of vancomycin CL in adult
patients in China.

This study does have some limitations as well. First, since the
study data is simulated, this may lead to some deviations from
real patients. Second, we choose four machine learning models
for comparative analysis based on a rule of thumb and literature
review, and ultimately choose the XGBoost model, but it is
possible that better machine learning models exist that can
replace the XGBoost model. In addition, because four
covariates are selected in population pharmacokinetics,
machine learning is only analyzed for these four covariates to
make predictions, and it is possible that there are other covariates
that can be subjected to machine learning but have been
neglected. Future studies should combine population
pharmacokinetics and machine learning analysis methods to
find better machine learning models to assess the impact of
covariates on predicting individual clearance.

5 Conclusion

In summary, this paper combines machine learning with
population pharmacokinetics, and ultimately find that the
application of machine learning combined with population
pharmacokinetics can improve the prediction of vancomycin
clearance in Chinese adult patients. It provides a reference for
clinical pharmacists or clinicians to optimize the initial dosage
given to ensure the effectiveness and safety of drug therapy for
each patient.
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