
Identification of potential novel
N6-methyladenosine
effector-related lncRNA
biomarkers for serous ovarian
carcinoma: a machine
learning-based exploration in the
framework of 3P medicine

Lele Ye1,2†, Xinya Tong1†, Kan Pan3†, Xinyu Shi4†, Binbing Xu3,
Xuyang Yao3, Linpei Zhuo5, Su Fang1, Sangsang Tang2,
Zhuofeng Jiang6, Xiangyang Xue1*, Weiguo Lu2,7,8* and
Gangqiang Guo1*
1Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision
Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of
Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical
Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,
2Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University
School of Medicine, Hangzhou, Zhejiang, China, 3First Clinical College, Wenzhou Medical University,
Wenzhou, Zhejiang, China, 4Institute of Immunology, Zhejiang University School of Medicine, Hangzhou,
Zhejiang, China, 5Haiyuan College, Kunming Medical University, Kunming, Yunnan, China, 6Department
of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen,
Guangdong, China, 7Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University
School of Medicine, Hangzhou, Zhejiang, China, 8Center of Uterine Cancer Diagnosis and Therapy of
Zhejiang Province, Hangzhou, Zhejiang, China

Background: Serous ovarian carcinoma (SOC) is considered the most lethal
gynecological malignancy. The current lack of reliable prognostic biomarkers
for SOC reduces the efficacy of predictive, preventive, and personalizedmedicine
(PPPM/3PM) in patients with SOC, leading to unsatisfactory therapeutic
outcomes. N6-methyladenosine (m6A) modification-associated long
noncoding RNAs (lncRNAs) are effective predictors of SOC. In this study, an
effective risk prediction model for SOC was constructed based on m6A
modification-associated lncRNAs.

Methods: Transcriptomic data and clinical information of patients with SOCwere
downloaded from The Cancer Genome Atlas. Candidate lncRNAs were identified
using univariate and multivariate and least absolute shrinkage and selection
operator-penalized Cox regression analyses. The molecular mechanisms of
m6A effector-related lncRNAs were explored via Gene Ontology, pathway
analysis, gene set enrichment analysis, and gene set variation analysis (GSVA).
The extent of immune cell infiltration was assessed using various algorithms,
including CIBERSORT, Microenvironment Cell Populations counter, xCell,
European Prospective Investigation into Cancer and Nutrition, and GSVA. The
calcPhenotype algorithm was used to predict responses to the drugs commonly
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used in ovarian carcinoma therapy. In vitro experiments, such as migration and
invasion Transwell assays, wound healing assays, and dot blot assays, were
conducted to elucidate the functional roles of candidate lncRNAs.

Results: Six m6A effector-related lncRNAs that were markedly associated with
prognosis were used to establish an m6A effector-related lncRNA risk model
(m6A-LRM) for SOC. Immune microenvironment analysis suggested that the
high-risk group exhibited a proinflammatory state and displayed increased
sensitivity to immunotherapy. A nomogram was constructed with the m6A
effector-related lncRNAs to assess the prognostic value of the model. Sixteen
drugs potentially targeting m6A effector-related lncRNAs were identified.
Furthermore, we developed an online web application for clinicians and
researchers (https://leley.shinyapps.io/OC_m6A_lnc/). Overexpression of the
lncRNA RP11-508M8.1 promoted SOC cell migration and invasion. METTL3 is an
upstream regulator of RP11-508M8.1. The preliminary regulatory axis METTL3/
m6A/RP11-508M8.1/hsa-miR-1270/ARSD underlying SOC was identified via a
combination of in vitro and bioinformatic analyses.

Conclusion: In this study, we propose an innovative prognostic risk model and
provide novel insights into the mechanism underlying the role of m6A-related
lncRNAs in SOC. Incorporating them6A-LRM into PPPMmay help identify high-risk
patients and personalize treatment as early as possible.

KEYWORDS

m6A modification, immunotherapy, biomarker, RP11-508M8.1, predictive, preventive,
personalized medicine (PPPM/3PM)

1 Introduction

Ovarian carcinoma (OC) is the most lethal gynecological cancer,
with serous ovarian carcinoma (SOC) accounting for most of the
reported OC cases (Kotsopoulos et al., 2014; Bowtell et al., 2015).
Most patients with SOC are diagnosed at an advanced stage due to
the concealed anatomical location of the ovaries and the absence of
obvious or specific early clinical symptoms. High recurrence rates
and drug resistance lead to poor prognoses for patients with SOC
(Siegel et al., 2019). Given the complexity, heterogeneity, and
refractory nature of SOC, using predictive, preventive,
personalized medicine (PPPM/3PM) may help predict patient
prognosis, identify tumor characteristics, and optimize treatment
plans. PPPM has become a research hotspot in precision cancer
medicine, especially, multi-omics and network-based search for
prognostic markers that may facilitate accurate diagnosis and
treatment (Cheng and Zhan, 2017). However, the outcomes of
PPPM for SOC remain unsatisfactory.

Recent advances in immunotherapy, as exemplified by the use of
immune checkpoint inhibitors (ICIs), has resulted in its
incorporation into the treatment regimens for a range of
advanced cancers (Murciano-Goroff et al., 2020; Zhang and
Zhang, 2020). The degree of immune cell infiltration into the
tumor microenvironment (TME) is strongly associated with the
efficacy of cancer immunotherapy (Binnewies et al., 2018; Duan
et al., 2020). Currently, the spatial distribution of tumor-infiltrating
immune cells is used to classify tumors as “hot tumors,” which are
sensitive to immunotherapy (such as those presenting an immune-
inflamed phenotype), and “cold tumors,” which are less sensitive to
immunotherapy (such as those presenting immune-excluded and
immune-desert phenotypes) (Duan et al., 2020; Liu and Sun, 2021).

The landscape of SOC is complex and demonstrates potential
immunogenicity (Yang et al., 2020; Morand et al., 2021).
Nevertheless, the rate of response to immunotherapy in SOC
remains suboptimal, necessitating the identification of ideal
biomarkers that would facilitate precise selection of
immunotherapy regimens for patients.

Long noncoding RNAs (lncRNAs) are a class of RNA molecules
that are longer than 200 nucleotides and have limited or no protein-
coding capacity (Liu et al., 2020; Statello et al., 2021). LncRNAs regulate
the proliferation, apoptosis, metastasis, and drug resistance of tumor
cells (Luo et al., 2017; Peng et al., 2017; Muller et al., 2019; Bhat et al.,
2020; Wei et al., 2020), and their abnormal expression is closely
associated with the severity of malignancy in various cancers,
including SOC. Moreover, research has shown that ncRNAs could
have a potential dynamic role in future cancer therapeutics, supporting
personalized treatment decisions and modern precision medicine
(Soureas et al., 2023). N6-methyladenosine (m6A), a dynamic and
reversible post-transcriptional modification commonly found on
mRNAs and lncRNAs (Chen et al., 2020), is a promising clinically
relevant biomarker and therapeutic target (Huang et al., 2016; Zhao and
Cui, 2019). It is regulated by m6A effectors, such as methyltransferases
(i.e., writers), demethyltransferases (i.e., erasers), and m6A-binding
proteins (i.e., readers) (Fu et al., 2014). Numerous studies have
demonstrated that m6A and its effectors play an essential role in
cellular metabolism (Liu et al., 2019), immunomodulation (Shulman
and Stern-Ginossar, 2020),malignant progression of tumors (Hou et al.,
2021), and drug resistance (Mehrdad et al., 2023). In addition, several
studies have been devoted to the development of small-molecule
inhibitors for m6A modification to improve the efficacy of
chemotherapy, radiotherapy, and immunotherapy (Gu et al., 2020;
Deng et al., 2023).
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Several studies have reported interactions between m6A
modifications and lncRNAs (Ma et al., 2019; Yi et al., 2020).
m6A modifications affect the functions of lncRNAs through an
m6A-switch, thereby inhibiting transcription, mediating
competing endogenous RNA (ceRNA) effects, and regulating
lncRNA stability or degradation (Jin and Fan, 2023; Mehrdad
et al., 2023); for example, METTL14-mediated m6A methylation
and TINCR lncRNA regulation in pyroptosis and diabetic
cardiomyopathy (Meng et al., 2022). The combination of the
m6A reader YTHDC1 and lncRNA XIST promotes lncRNA
XIST-mediated gene repression (Patil et al., 2016). Yang et al.
found that the m6A-modified linc1281 functions as a ceRNA to
sequester let-7 miRNAs, thereby exerting regulatory effects on the
differentiation of mouse embryonic stem cells (Yang et al., 2018).
The m6A eraser ALKBH5 promotes the invasion and metastasis of
gastric cancer (GC) by removing the m6A modification on the
lncRNA NEAT1 (Zhang et al., 2019). In addition, lncRNAs may
also regulate the functions of cancer-associated m6A effectors (Yi
et al., 2020). For example, the interplay between the lncRNA
LINC00470 and METTL3 contributes to the advancement of GC
by enhancing their interaction with the PTEN mRNA and
diminishing its stability (Yan et al., 2020). Wang X. et al.
reported that the lncRNA GAS5-AS1 enhances the stability of
the tumor suppressor GAS5 by interacting with ALKBH5, which
removes m6A modification on GAS5, thereby inhibiting the
proliferation, migration, and invasion of cervical cancer cells
(Wang X. et al., 2019). Additionally, the lncRNA LIN28B-AS1
enhances the stability of LIN28B mRNA by interacting with the
m6A reader IGF2BP1, thereby promoting the proliferation and
metastasis of lung adenocarcinoma (Wang C. et al., 2019).

Given the complexity of the mechanisms underlying the
interaction between m6A modifications and lncRNAs, an
increasing number of studies have investigated their potential
applications in the diagnosis, prognosis, and treatment of tumors
and determining the sensitivity of cancer cells to chemotherapeutic
agents (Jin and Fan, 2023). A previous study accurately predicted the
5-year survival of patients with GC by stratifying their overall
survival (OS) using a risk prediction model based on
11 m6A-associated lncRNAs (Wang H et al., 2021). Similarly, a
risk prediction model constructed with m6A-associated lncRNAs
has been used to effectively assess the prognosis of patients with lung
adenocarcinoma and predict their response to immunotherapy (Xu
et al., 2021). Furthermore, m6A effector-related lncRNAs have also
been used to establish prediction models for colon adenocarcinoma
(Zhang et al., 2021), clear cell renal cell carcinoma (Qiu et al., 2021),
breast cancer (Zhang et al., 2020), and pancreatic ductal
adenocarcinoma (Hu and Chen, 2021). Thus, m6A effector-
related lncRNAs may serve as prognostic biomarkers of various
cancers and could potentially guide effective and precise
individualized treatment. However, the association between m6A
effector-related lncRNAs and the diagnosis and prognosis of
patients with SOC remains unclear. Further studies on the
interactions between m6A modification and lncRNAs as well as
their biological roles in SOC may help reveal the potential of m6A
effector-related lncRNAs in PPPM.

In this study, we identified six m6A effector-related lncRNAs via
Pearson’s correlation, univariate and multivariate Cox regression,
and least absolute shrinkage and selection operator (LASSO)-

penalized Cox regression analyses using transcriptomic and
clinical data of patients with SOC obtained from TCGA database.
These six lncRNAs were then used to establish an effective risk
prediction model for SOC and develop a web link for clinicians and
researchers. Subsequently, we used this newly developed risk model
to explore immune-related factors, the TME, and the
immunotherapeutic response in SOC. Several drugs capable of
potentially targeting m6A effector-related lncRNAs were
identified. In addition, one risky lncRNA was selected, and its
role and correlation with the m6A effectors in SOC was explored.
Our findings could potentially enhance PPPM implementation,
enable target prevention, facilitate prognostic assessment, and
provide potential biomarkers that may supplement clinical
diagnosis as well as treatment in patients with SOC.

2 Materials and methods

2.1 Gene expression profiles and clinical
information of patients with SOC

Transcriptomic and mutational data of patients with SOC were
downloaded from TCGA using the “TCGAbiolinks” package in R, in
September 2021. Information regarding the neoantigen load and
mutation burden of patients with SOC was downloaded from The
Cancer Immunome Atlas database (TCIA, https://tcia.at/). Genes
were annotated using the GENCODE database (https://www.
gencodegenes.org). Corresponding clinical information was
downloaded from the cBioPortal database (https://www.
cbioportal.org). Samples with missing OS values were excluded.
As previously reported (Xu et al., 2021), data were randomly divided
into training and testing sets in a ratio of 6:4 (Supplementary Table
S1). The total data were used as the validation set. The expression of
genes was normalized using fragments per kilobase of exon model
per million mapped fragments.

The m6A effectors included 12 m6A writers (CBLL1, METTL14,
METTL16, METTL3, METTL5, VIRMA, RBM15, RBM15B,
TRMT112, WTAP, ZC3H13, and ZCCHC4), 19 m6A readers
(ELAVL1, EIF3A, FMR1, G3BP1, G3BP2, HNRNPA2B1, HNRNPC,
IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, RBMX, PRRC2A, SND1,
YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3), and
2 m6A erasers (ALKBH5 and FTO), as described in previous studies
(Zhang Z. et al., 2021; Wang X et al., 2021; Xu et al., 2021). The gene
expression profiles (GEPs) of coding genes (includingm6A effectors) and
lncRNAs needed for subsequent analyses were obtained from TCGA.
Pearson’s correlation analysis was performed to determine the
association between m6A effectors and lncRNAs via “Hmisc” (R
package) and visualized using “ggsankey” (R package).

2.2 Establishment and validation of a risk
score model

The training set was used to construct the m6A effector-related
lncRNA risk model (m6A-LRM). LncRNAs were screened via
univariate Cox regression, LASSO Cox regression (using the
penalty parameter estimated by 10-fold cross-validation), and
multivariate Cox regression analyses using the “survival” and
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“glmnet” packages in R. Receiver operating characteristic (ROC)
curves were analyzed and visualized using the “ROCR” package in R.
The prognostic risk score was calculated as follows:

m6A − LRMrisk score � coefficient lncRNA1( ) × expression lncRNA1( )
+ coefficient lncRNA2( ) × expression lncRNA2( )
+ . . . + coefficient lncRNAn( )
× expression lncRNAn( )

Patients in the training, testing, and validation sets were divided
into low- and high-risk groups based on the cut-off risk score using
the “surv_cutpoint” function of the “survminer” package in R. Both
the testing and validation sets were used to validate m6A-LRM, and
the results were visualized using the “survminer” package in R.
Univariate and multivariate Cox regression analyses were conducted
to evaluate the independent effect of m6A-LRM using the “survival”
and “survminer” packages in R. Principal components analysis was
performed for effective dimensionality reduction, model
identification, and grouping using the “prcomp” function and
visualized using the “scatterplot3d” package in R. Mutation
information was summed, compared, and visualized using the
“maftools” package in R. Nomograms were constructed using the
“rms” package in R. The results of decision curve analysis and
calibration plots were visualized using the “rms” package in R. The
time-dependent area under the ROC curve (AUC) was analyzed and
visualized using the “timeROC” and “pROC” packages in R.

2.3 Functional and pathway
enrichment analyses

Differentially expressed genes (DEGs) between groups were
analyzed using “limma” (R package). Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were
conducted using the KEGG Orthology Based Annotation System
(KOBAS, http://bioinfo.org/kobas) database and visualized via
“Goplot” and “ggplot2” (R packages). Gene Set Enrichment
Analysis (GSEA) was performed to determine potential pathways
using “clusterProfiler” (R package) and visualized using “ggplot” and
“enrichplot” (R packages). In addition, a single GSEA of miRNA
target genes was analyzed using the “GSVA” package in R via “c2.cp.
reactome.v2023.1.Hs.symbols.gmt” (https://www.gsea-msigdb.org/
gsea/index.jsp).

2.4 Tumor immune microenvironment
characteristics and drug response prediction

Differences between the TMEs of high- and low-risk patients
were explored by comparing GEPs in “immune_response.gmt”
using the “GSVA” (Hanzelmann et al., 2013) package in R
(https://www.gsea-msigdb.org/gsea/index.jsp); these were
visualized using “ComplexHeatmap” (R package). Immune cell
infiltration was estimated using multiple algorithms based on the
GEPs, including cell-type identification by estimating the relative
subsets of RNA transcripts (CIBERSORT) (Newman et al., 2015),
Microenvironment Cell Populations counter (MCPcounter) (Becht
et al., 2016), European Prospective Investigation into Cancer and

Nutrition (EPIC) (Racle and Gfeller, 2020), and ssGSEA
(Charoentong et al., 2017), and “GSVA” (R package). Pro- and
anti-inflammatory cytokine ratios of the subgroups were also
compared based on the average expression levels of marker genes
(Li et al., 2019).

Responses to various therapeutic drugs were predicted using
“oncoPredict” (R package) based on the Genomics of Drug
Sensitivity in Cancer (http://www.cancerrxgene.org) database.
Correlations between lncRNAs and specific drugs were analyzed
using information from the LncMAP database (http://bio-bigdata.
hrbmu.edu.cn/LncMAP/) and visualized using Cytoscape (version 3.
9.0, http://www.cytoscape.org/23).

2.5 Cell culture

The HEK293T cell line (293T), and OC cell lines (CAOV3, and
HEY) were purchased from Meisen CTCC (Zhejiang Meisen Cell
Technology Co., Ltd., Hangzhou, China). All cell lines were cultured
in Dulbecco’s modified Eagle’s medium (Gibco, Thermo Fisher
Scientific Inc., Waltham, MA, United States), enriched with 10%
fetal bovine serum (epizyme, Shanghai, China), at 37°C and
5% CO2.

2.6 Generation of RP11-508M8.1-
overexpressing cell line

We designed and synthesized the full sequence of RP11-
508M8.1 in vitro and cloned it into the pCDH-EF1-MCS-IRES-puro
vector. LncRNA-overexpressing lentivirus vectors and corresponding
negative control lentiviruses were generated by packaging in 293T cells,
and the viral particles were harvested after 60 h. OC cell lines were
infected with the lentivirus. HEY and CAOV3 cells in good condition
were selected, counted, and cultured in 10 cm cell culture dishes at 37°C
and 5% CO2 overnight. The medium was discarded the following day,
and 2 mL lentivirus and 2mL complete culture medium were added to
each dish. Infection was terminated after 18 h, and the medium was
replaced with complete culture medium. After 48 h of virus addition,
0.5 mg/mL puromycin was used for screening.

2.7 Detection of candidate lncRNAs via
reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

For RNA purification, cells were lysed in TRIzol reagent (Invitrogen
Life Technologies, Grand Island, NY, United States). RNAwas extracted
from each sample using the RNeasy Mini kit (Qiagen, Hilden,
Germany). The extracted RNA was further digested with DNase I
(Invitrogen, Waltham, MA, United States) to remove residual DNA.
Total extracted RNA was stored at −80°C until use.

RT-qPCR was performed using a QuantStudio 6 Real-Time PCR
instrument (Thermo Fisher Scientific Inc.); the reaction mixture
comprised 1 µL diluted cDNA, 18.2 µL of 1 × SYBR Green PCR
Master Mix, and 0.4 µL each of the forward and reverse primers
(10 µmol). The PCR amplification conditions were as follows: 95°C
for 5 min, followed by 40 cycles each at 95°C for 10 s and 60°C for
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30 s. All samples were tested in triplicate. The relative levels of
lncRNAs in cells was calculated using the following equation:

Amount of target � 2−ΔCt,whereΔCt � CtlncRNA–CtGAPDH

Gene-specific primers for lncRNA and the housekeeping gene
GAPDH are listed in Supplementary Table S2. Three primers were
designed for the RP11-508M8.1 sequence to identify the
overexpression of lncRNA.

2.8 EdU staining assay

The proliferation ability of RP11-508M8.1 in OC cells was
determined using an EdU assay kit (Cell Light EdU DNA imaging
Kit, RiboBio). A total of 1 × 104 cells were seeded in 96-well plates,
incubated overnight, and treated with EdU (50 μMol) for 2 h.
Subsequently, the plate was removed, and the remainder of the
experiment was conducted according to the instructions provided
with the kit. Finally, five visual fields were randomly selected under a
fluorescence microscope to acquire images as well as to calculate the
proportion of EdU-positive cells.

2.9 Migration and invasion Transwell assays

Cell migration and invasion experiments were performed using a
Transwell chamber (3422, Corning, United States). The invasion
experiment required the addition of Matrigel (BD Pharmingen, San
Jose, CA, United States) to the bottom of the chamber in advance,
followed by a subsequent experiment post-solidification. A total of 2 × 105

cells were suspended in serum-free medium in the upper chamber. For
the migration assay, 1 × 105 cells were suspended in serum-free medium
in the upper chamber, followed by the addition of 600 μL complete
medium to each culture hole. The Transwell chamber was placed in the
plate and returned to the incubator for further culture for 6 (HEY) or 8 h
(CAOV3). After removing the chamber, the cells were fixed with 4%
paraformaldehyde for 10 min and stained with 0.1% crystal purple for
10min. The operational procedure for the invasion experiment was
consistent with that for the migration assay. Each chamber was
photographed under a microscope (Leica, London, United Kingdom).

2.10 Wound healing assay

When the cells seeded in six-well plates reached 100% confluence,
the plateswere removed. Scratchesweremade on each plate, and the cells
were rinsed gently with phosphate-buffered saline to remove floating
cells. Cell culture was continued with a medium containing 2% fetal
bovine serum. Representative images of cells at 0 and 24 h were obtained
using a microscope, and the confluence of cells was calculated using
ImageJ 1.53a (Schneider et al., 2012) to observe the invasion and
migration abilities of RP11-508M8.1 in OC cell lines.

2.11 Cell transfection and Western blotting

Small interfering RNA (siRNA) against METTL3 was
synthesized by RiboBio (Guangzhou, China; Supplementary

Table S3) and then transfected using Lipofectamine 2000
(Invitrogen Life Technologies, Carlsbad, CA, United States)
according to the manufacturer’s instructions. After 48 h of
transfection, cells were lysed in RIPA lysis buffer
supplemented with a proteasome inhibitor. Following whole
cell lysis, proteins separated via SDS-PAGE (12%) were
transferred onto a PVDF membrane. The membrane was then
blocked with skimmed milk and incubated with specific primary
and secondary antibodies (anti-METT3: huabio; anti-GAPDH:
Proteintech). Finally, protein expression was visualized using a
Bio-Rad ChemiDoc Touch Imaging System.

2.12 RNA sequencing and analysis

Cells were collected, and total cellular RNA was extracted as
described above. One microgram of total RNA was used for
library preparation; poly (A) mRNA was isolated using Oligo
(dT) beads, and mRNA fragmentation was performed using
divalent cations under high temperature. Priming was
performed using Random Primers. First- and second-strands
of cDNA were synthesized; then, double-stranded cDNA was
purified, treated to repair both ends, and subjected to dA-tailing
in a single reaction. Subsequently, T-A ligation was performed to
add adaptors to both the ends. Size selection of adaptor-ligated
DNA was performed using DNA Clean Beads. Each sample was
amplified via PCR using P5 and P7 primers, and the PCR
products were validated. Libraries with different indices were
then multiplexed and loaded on an Illumina HiSeq/Illumina
Novaseq/MGI2000 instrument for sequencing using the 2 ×
150 paired-end (PE) configuration according to the
manufacturer’s instructions.

Pass filter data in the fastq format were processed using
Cutadapt (V1.9.1, phred cutoff: 20, error rate: 0.1, adapter
overlap: 1 bp, min. length: 75, proportion of N: 0.1) to
remove technical sequences, including adapters, PCR primers
or fragments thereof, and bases of quality lower than 20, to
obtain high-quality clean data. First, human GRCh38 genome
sequences and annotation files of relative species were
downloaded from ENSEMBL. Then, Hisat2 (v2.0.1) was used
to index the reference genome sequences. Finally, clean data
were aligned to the reference genome via the Hisat2 software
(v2.0.1). The initial transcripts in the fasta format were
converted from a known gff annotation file and indexed
properly. Next, using the file as the reference gene file, gene
and isoform expression levels were estimated from cleaned pair-
end data via HTSeq (v0.6.1). DEGs between groups were
determined using “DESeq2” (R package) based on p <
0.05 and foldchange ≥1.5.

2.13 Dot blot assay

First, total RNA was denatured at 65°C for 5min and transferred on
to a nitrocellulose membrane (Millipore, United States) according to
experimental requirements. Next, the membrane was cross-linked using
UV for 30min and washed in Phosphate Buffered Saline with Tween at
room temperature for 10min to remove the unbound RNA and
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subsequently sealed with milk at room temperature for 1 h. Finally, the
membrane was incubated overnight with an m6A antibody (1:1,000,
Synaptic Systems, Germany) at 4°C and a horseradish peroxidase-
conjugated secondary antibody (1:1,000, Cell Signaling Technology,
United States) at room temperature for 1 h. After washing, the signal
of the membrane was detected using a chemiluminescence system (Bio-
Rad). The membrane was stained with 0.02% methylene blue (MB)
dissolved in 0.3M sodium acetate solution (pH 5.2), and images
were acquired.

2.14 m6A RNA immunoprecipitation-qRT-
PCR (m6A MeRIP-qRT-PCR)

METTL3 expression in ovarian cancer cells was knocked downusing
siRNA (Supplementary Table S3), and an m6A-modified RNA
enrichment analysis was performed on the control and METTL3-
knockdown cell samples according to the instructions of the
riboMeRIP m6A Transcriptome Profiling Kit (C11051-1, RiboBio
China). Briefly, 50 μg total RNA was extracted and segmented into
100–150 nt fragments, andmagnetic beadswith anti-m6Awere prepared
using 1/10 segmented RNA as input. The remaining segmented RNA
required forMeRIP reaction solutionwas prepared, rotated andmixed at
4°C, and incubated for 2 h. Finally, the methylated RNA bound to the
m6A antibody was eluted and recovered. RT-qPCR was used to detect
RP11-508M8.1 expression as well as to analyze the data following
normalization to the input.

2.15 Identification of the lncRNA-miRNA-
mRNA regulatory axis

Potential target miRNAs for candidate lncRNAs were predicted using
RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid), whichwas
also used to predict the secondary structures of lncRNAs. Key miRNAs
associated with the candidate lncRNA RP11-508M8.1 were further
screened based on the following criteria: (i) the miRNAs were
significantly associated with survival in OC according to the
ONCOMIR (https://www.oncomir.org) database and (ii) miRNA seed
region (5′-> 3′) with the 2–7 bpwas strictlymatchedwith that of lncRNA.
Moreover, potential target genes of these key miRNAs were further
screened according to the following criteria: (i) the miRTarBase
database (https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_
2022/php/ index.php) was used to predict the target genes for the key
miRNAs; (ii) the target genes were further identified by combining with
the DEGs (|foldchange| > 1.5 and p < 0.05) in cell lines overexpressing
RP11-508M8.1; (iii) Kaplan–Meier (KM) survival analysis was applied to
filter the prognosis-related mRNAs; (iv) mRNA expression levels in
patients with OC were aberrant.

2.16 Statistical analysis

Continuous variables were analyzed using Student’s t-test or the
nonparametric Wilcoxon test. Prognostic analyses were performed
using KM survival and univariate Cox analyses. Data were analyzed
using R 4.0.1 (http://www.r-project.org/). p-values < 0.05 were
considered statistically significant.

3 Results

3.1 Construction of the m6A-LRM for
patients with SOC

The detailed procedure for identifying m6A effector-related
lncRNAs is illustrated in Figure 1. GEP data for 33 m6A effectors
and 15,900 lncRNAs of patients with SOCwere obtained from TCGA.
A total of 2,244 m6A effector-related lncRNAs were identified based
on Pearson’s correlation analysis (|R| > 0.3 and p < 0.001). The m6A
effectors and their related lncRNAs were visualized in a correlation
network (Figure 2A). Among the 2,244 m6A effector-related lncRNAs
in the training set, 895 lncRNAs that were significantly correlated with
OS were identified using univariate Cox regression analysis (p < 0.05;
Supplementary Table S4). Subsequently, we performed LASSO Cox
regression analysis to identify candidate lncRNAs associated with the
prognosis of patients with SOC. As a result, 13 m6A effector-related
lncRNAs were selected based on the λminimization method (Figures
2B, C). Model self-rating indicated that these 13 lncRNAs had
significant diagnostic value (AUC = 0.802) as well as
discriminatory power in the training set (Figures 2D, E).
Multivariate Cox regression analysis, which was performed to
control confounding factors, detected six m6A effector-related
lncRNAs that were independently correlated with OS. Among
them, RP11-508M8.1 and AC138761.4 were identified as risk
factors [hazard ratio (HR) > 1, p < 0.05], whereas AL513211.1,
LINC02384, MYCNOS, and AC072062.3 were identified as
protective factors (HR < 1, p < 0.05; Figure 2F;
Supplementary Figure S1).

Subsequently, the m6A-LRM was constructed based on the
above-mentioned six lncRNAs, the GEPs and regression
coefficients of which were used to calculate prognostic risk
scores in the training set. The concordance index of the
m6A-LRM was 0.672 ± 0.025 (Figure 2F), indicating a favorable
prognostic value. Surprisingly, the correlations between m6A
effectors and candidate lncRNAs were complex, suggesting
interactions and a crosstalk (Figure 2G). Patients with SOC
were stratified into low- and high-risk groups based on the risk
scores. The distribution of risk scores from the m6A-LRM and
survival status of patients in the training set are shown in
Figure 3A. High-risk patients had significantly shorter OS than
low-risk patients (p < 0.001, Figure 3B).

3.2 External validation of the prognostic
model m6A-LRM

To validate the prognostic ability of the m6A-LRM, risk
scores in the testing and validation sets were determined. The
distributions of risk scores, survival status, and survival time of
patients with SOC are depicted (Figures 3C, E). As expected, the
high-risk patients with SOC had shorter OS than the low-risk
patients (Ptesting set < 0.001, Pvalidation set < 0.001; Figures 3D, F).
Furthermore, the AUC values for 1-, 3-, 5-, 10-year OS estimated
using the m6A-LRM were stable over time (Supplementary
Figure S2). Furthermore, principal components analysis was
performed to analyze the discriminatory power of the
m6A-LRM for low- and high-risk patients with SOC using
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GEPs obtained from the following: all RNA-seq data, coding
genes, 33 m6A effectors, 6 m6A effector-related lncRNAs, and
m6A-LRM. These GEPs did not effectively discriminate between
patients with SOC in the low- and high-risk groups, except for
the m6A-LRM (Figure 3G). Interestingly, the m6A-LRM showed

remarkable discriminatory power and provided an efficient
prognostic signature in patients with SOC.

To evaluate whether the m6A-LRM shows potential as an
independent prognosis estimator for patients with SOC, univariate
and multivariate Cox regression analyses were conducted on the

FIGURE 1
Schematic of the study.
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FIGURE 2
Identification of m6A effector-related lncRNAs in patients with serous ovarian carcinoma (SOC). (A) Relationship between 33 m6A effectors and
related lncRNAs (YTHDF2 is not shown because there was no significant relationship between YTHDF2 and lncRNAs). (B) LASSO coefficient plots of
overall survival (OS)-related lncRNAs. Perpendicular imaginary lines were drawn at the value chosen via 10-fold cross-validation. (C) Tuning parameters
(log λ) of OS-related lncRNAs were selected to cross-verify the error curve. According to the minimal criterion (left vertical line) and 1-se criterion
(right vertical line), perpendicular imaginary lines were drawn at the optimal value. (D) ROC curves of the model in internal validation. (E) Predictive
discrimination of the model based on the results fromminimal criterion (left panel) and 1-se criterion (right panel). (F)Multivariate cox regression analysis
of six independent lncRNAs associated with prognosis; two were risk factors and the other four were protective factors. (G) Sankey diagram for
correlations between 33 m6A effectors and 6 prognostic m6A effector-related lncRNAs; the diagram shows that IGF2BP1 and HNRNPC are correlated to
risk-related and protective lncRNAs. In addition, different effectors were related to the same lncRNAs (METTL3/HNRNPC to RP11-508M8.1, TRMT112/
RBMX/IGF2BP1/HNRNPC to MYCNOS).
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FIGURE 3
Prognostic value of them6A-LRM in training, testing, and validation sets. (A)Distribution of m6A-LRM-based risk scores (upper panel), survival status,
and survival time between high- and low-risk patients (bottom panel). Blue represents the low-risk group, whereas red represents the high-risk group. (B)
KM analysis of survival of patients in the training set in the high- and low-risk groups. (C,E) Distribution of risk scores, survival status, and survival time of
patients divided bym6A-LRM in the (C) testing set and (E) validation set. (D,F) KM survival analysis in the (D) testing and (F) validation sets. (G) Principal
components analysis between the high- and low-risk groups based on following data: (1) All gene expression profiles, (2) Expression profiles of coding
genes, (3) Expression profiles of 33m6A effectors, (4), Expression profiles of sixm6A effector-related lncRNAs, (5)m6A-LRM. (H)Univariate andmultivariate
analyses of clinical features and risk scores with OS; CI, confidence interval. (I) Prognostic ability of the risk score in distinguishing between the OS of
patients ≤50 years of age and those aged >50 years (left panel). Prognostic ability of the risk score to distinguish between theOS of patients with SOCwith
stage III and stage IV (Middle panel). Prognostic ability of the risk score to distinguish between theOS of SOCpatients with grades 1 and 2 or grades 3 and 4
(Right panel).
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m6A-LRM risk score, the patients’ International Federation of
Gynecology and Obstetrics (FIGO) stage, tumor grade, and age. Only
them6A-LRM risk score was found to be an independent prognostic risk
factor for patients with SOC (p < 0.001; Figure 3H). Univariate Cox
regression analysis revealed that the m6A-LRM risk score had HR and
95% confidence interval (CI) values of 2.00 and 1.60–2.51, respectively,
similar to those obtained using the multivariate Cox regression analysis
(1.97 and 1.57–2.48, respectively). These results highlighted the
m6A-LRM risk score as the key independent prognostic factor for
patients with SOC. Moreover, based on their clinicopathological
characteristics, patients were stratified into low- and high-risk groups
in the validation set. According to classification by patients’ age, FIGO
stage, and grade, theOS of low-risk patients was longer than that of high-
risk patients (Figure 3I).

3.3 Nomogram construction and evaluation

To enhance the clinical applicability of the m6A-LRM, a nomogram
consisting of them6A-LRM risk score, FIGO stage, tumor grade, and age
of patients was constructed for predicting the 1-, 3-, 5- and 10-year OS in
SOC (Figure 4A). Stratification of patients into low- and high-risk
groups, based on their nomogram scores, indicated that the OS of
patients with low nomogram scores was longer than that of patients with

high nomogram scores (Figure 4B). Additionally, the nomogram (0.692)
as well as them6A-LRM(0.632) had higher ROC values than those of the
other clinicopathological characteristics (Figure 4C).Moreover, the AUC
value of the nomogram was greater than that of other clinical features
and similar to that corresponding to m6A-LRM over time (Figure 4D).
Compared with clinical characteristics alone, the nomogram showed a
predominant predictive ability for SOC (Figure 4E). The calibration
charts further displayed that the 1-, 3-, 5- and 10-year survival curves
were ideally consistent between the actual and predicted OS (Figure 4F),
confirming its prognostic value.Moreover, we established a user-friendly
web link for clinicians (https://leley.shinyapps.io/OC_m6A_lnc/). These
results suggest that the nomogram can be effectively used to assess the
prognosis of patients with SOC.

3.4 Functional enrichment analysis of the
m6A-related lncRNAs between low- and
high-risk patients with SOC

To explore the underlying molecular mechanisms of
m6A-related lncRNAs, GO, pathway, GSEA, and GSVA analyses
were performed. DEGs were identified based on fold
change >1.5 and p < 0.001. GO analysis revealed that the most
significantly altered pathways in the high-risk subgroup were those

FIGURE 4
Construction and assessment of a prognostic nomogram. (A) Nomogram constructed using the m6A-LRM risk score and clinical features for 1-, 3-,
5-, and 10-year overall survival (OS). (B) KM survival analysis of patients in the high- and low-nomogram scores groups. (C) ROC curves of clinical features,
m6A-LRM, and nomogram for OS. (D) Time-dependent AUC of the nomogram, m6A-LRM, and clinical features. (E)Decision curve analyses (DCAs) of the
nomogram, m6A-LRM, and clinical features. (F) Calibration plot of the nomogram, showing the correlation between the actual and predicted 1-, 3-,
5-, and 10-year OS in SOC.
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mainly associated with angiogenesis, cell migration, neutrophil
degranulation, innate immune response, the integrin-mediated
signaling pathway, and the MHC class II protein complex. T-cell-
related pathways, including T-helper 1 cell differentiation, T-cell
migration, and T-cell proliferation, positive regulation of monocyte
chemotactic protein-1 production, the Wnt signaling pathway, and
negative regulation of fibroblast proliferation, were mainly
converged in the low-risk group (Figure 5A). Pathway analyses

based on two databases confirmed these findings and showed some
extent of overlap with the GO analysis results (Figure 5B). A GSEA,
conducted to clarify the specific roles of these pathways according to
the risk categories, revealed that DEGs were enriched in
inflammation-related pathways, including the interferon-gamma
response, interferon-alpha response, inflammatory response,
TNFα signaling via NF-κB, IL6 JAK STAT3 signaling and
IL2 STAT5 signaling, the epithelial mesenchymal transition

FIGURE 5
Functional enrichment analysis of m6A-related lncRNAs between the low- and high-risk patients with SOC. (A)GO terms are displayed by GOCircle
plots. Red and blue dots represent the genes upregulated in the high-risk and low-risk groups separately. (B) Pathway analyses based on the KEGG and
Reactome databases. (C)GSEA enrichment analysis. (D) GSEA plots for the two subgroups of patients with SOC. Top panel, pathways enriched the high-
risk group; bottom panel, pathways enriched in the low-risk group.
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(EMT), and the hypoxia and reactive oxygen species
pathway (Figure 5C).

Importantly, the upregulated genes were enriched in the EMT
and inflammation-related pathways, whereas the downregulated

genes were enriched in DNA repair and WNT beta-catenin
signaling (Figure 5D). These findings suggest that DEGs between
high- and low-risk groups are implicated in the
cancer–immunity pathway.

FIGURE 6
Tumor immune microenvironment characteristics of the m6A-related lncRNAs in SOC. (A) Heat map depicts the distribution of clinicopathological
features and risk scores calculated by the m6A-LRM; value of immune sets and expression levels of lncRNAs included in the m6A-LRM. (B–F,H)
Deconvolution algorithms of the CIBERSORT (B) and EPIC (E) algorithms based on the expression levels ofmarker genes, includingMCPcounter (C), xCell
(D), GSVA (F), and ssGSEA (H), were applied to estimate the immune cell infiltration status between the high- and low-risk groups. ****p < 0.0001;
***p < 0.001; **p < 0.01; *p < 0.05. (G) Ratios of pro-to anti-inflammatory cytokines.
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3.5 Characteristics of m6A-related lncRNAs
in the tumor immune microenvironment
in SOC

Owing to the close relationship between m6A-related lncRNAs
and the immune process, the differences between the immunological
data and tumor-infiltrating immune cells associated with high- and
low-risk SOC were compared. The high-risk patients with SOC had
higher scores for immune sets than the low-risk patients (Figure 6A).
Multiple algorithms, including CIBERSORT, MCPcounter, xCell,
EPIC, and GSVA, were used to evaluate the extent of infiltration of
immune cells. The expression levels of CD4+ T cells, monocytes,
dendritic cells, B cells, Th1 cells, Th2 cells, and Tumor-infiltrating
lymphocytes (TILs) in the high-risk subgroup were higher than
those in the low-risk subgroup. In addition, the ratio of pro-to anti-
inflammatory cytokines in the high-risk subgroup was elevated
compared with that in the low-risk group (p < 0.05; Figures
6B–G). ssGSEA algorithms for approximately 28 immune cells
were also used to substantiate the above-mentioned findings.
Consistent with these results, the heat maps showed that most
immune cells were enriched in the high-risk group, indicating a
proinflammatory status in the high-risk group and an immune-
inhibiting environment in the low-risk group (Figure 6H). These
results indicate that the high-risk group is characterized by an
activated immune phenotype, whereas the low-risk group exhibits
a suppressed immune phenotype.

3.6 Mutational landscape of m6A-related
lncRNAs in SOC

Considering that hot tumors are more susceptible to immune
therapy, we anticipated that patients with SOC in the high-risk
group (as defined by the m6A-LRM) may respond to immune
therapies more readily than those in the low-risk group. Previous
studies have indicated that high levels of somatic mutations and
neoantigens may signify a greater probability of a favorable
chemotherapeutic response. We investigated the variability
observed between the mutation statuses of these two groups.
First, the top 20 genes with high mutation frequencies in low-
and high-risk patients with SOC were identified and compared. A
higher mutational rate of USH2A was observed in the high-risk
group, while a higher mutational rate of SYNE2 was observed in the
low-risk group, with the other genes not showing any statistically
significant differences (Supplementary Figure S3A). Next, we
identified differentially mutated genes and found generally
greater mutational rates in the high-risk group, indicating that
the m6A-LRM did not affect frequently mutated genes but
instead exerted an additive effect on those with low-frequency
mutations (Figure 7A; Supplementary Figure S3A). Moreover,
TP53 had the highest mutation frequency in patients with SOC
(89% and 92% in the low- and high-risk groups with gene mutation,
respectively). However, no significant differences were observed in
the tumor mutational burden (TMB), TP53 mutations, and
neoantigens between the low- and high-risk groups
(Supplementary Figures S3A–C).

The prognostic ability of m6A-LRM for the TMB, TP53
mutations, and neoantigens in patients with SOC were further

explored. TP53 effectively distinguished the survival statuses of
patients with SOC (Riskscore-H + TP53 mutation vs. Riskscore-
H + wild TP53, p = 0.460; Riskscore-L + TP53 mutation vs.
Riskscore-L + wild TP53, p = 0.955; Figure 7B). Interestingly, the
TMB also effectively distinguished between the survival statuses of
patients with SOC (Riskscore-H + TMB-H vs. Riskscore-H + TMB-
L, p = 0.011; Riskscore-L + TMB-H vs. Riskscore-L + TMB-L, p <
0.001; Figure 7C), as did neoantigens in patients with SOC with low-
risk scores (Riskscore-L + NEO-H vs. Riskscore-L + NEO-L, p =
0.019, Figure 7D).

Furthermore, patients with SOC with high neoantigen levels in the
high-risk group showed a propensity for higher OS compared with those
with low neoantigen levels without significant differences (Riskscore-H+
NEO-Hvs. Riskscore-H+NEO-L, p= 0.071, Figure 7D). Them6A-LRM
showed significant effectiveness for classifying patients who had the same
TP53, TMB, and neoantigen status (Riskscore-H + TP53 mutation vs.
Riskscore-L + TP53 mutation, p < 0.001; Riskscore-L + wild TP53 vs.
Riskscore-L + wild TP53, p < 0.001; Riskscore-H + TMB-H vs.
Riskscore-L + TMB-H, p < 0.001; Riskscore-H + TMB-L vs.
Riskscore-L + TMB-L, p = 0.022; Riskscore-H + NEO-H vs.
Riskscore-L + NEO-H, p < 0.001; Riskscore-H + NEO-L vs.
Riskscore-L + NEO-L, p = 0.008, Figures 7B–D), confirming the
superiority of m6A-LRM over the currently available biomarkers.
Additionally, we found that combining the risk scores with TMB and
neoantigens increased the accuracy of prognosis estimation of patients
with SOC (Riskscore-H + TMB-L vs. Riskscore-L + TMB-H, p < 0.001;
Riskscore-H + NEO-L vs. Riskscore-L + NEO-H, p < 0.001, Figures 7C,
D). These results indicated that the prognostic value of the m6A-LRM
was superior to that of the TMB and neoantigens in patients with SOC.

3.7 Estimation of drug sensitivity and
identification of novel compounds that
target m6A-related lncRNAs in SOC

Considering the above-mentioned findings, we explored the
association between m6A-related lncRNAs and immunotherapy.
First, we compared the expression of immune checkpoints
between the two subgroups. As expected, the high-risk patients
were more likely to respond positively to immunotherapy than the
low-risk patients and showed high expression of immune
checkpoint targets, except for CD200 (Figure 8A), which
suggested that risk classification based on the m6A-LRM may
serve as an indicator for response to immunotherapy.

Next, we investigated the association between the lncRNAs utilized
in the m6A-LRM and drug compounds to identify potential drugs
targeting m6A effector-related lncRNAs. Interactions between
lncRNAs and these drugs were predicted, resulting in the
identification of 26 lncRNA-drug pairs (Supplementary Table S5);
then, the complex interactions between them were observed
(Figure 8B; Supplementary Figure S4). Considering its potential role
in modifying immunotherapy, we used the calcPhenotype algorithm to
predict the response of a common drug used for OC treatment based on
the half-maximal inhibitory concentration (IC50) to explore the clinical
use of the m6A-LRM. The results indicated that of the 16 commonly
used drugs, six (cisplatin, gemcitabine, vinorelbine, doxorubicin,
camptothecin, and irinotecan) had lower IC50 values (p < 0.05,
Figure 8C) in the low-risk group. Furthermore, there was no
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significant difference between the IC50 values of other 10 drugs
(Supplementary Figure S4). To further explore drugs that may
potentially target SOC, we screened the Genomics of Drug Sensitivity
in Cancer database. The top 10 potential compounds that exhibited
significant differences in efficacy between the high- and low-risk groups
are shown (Figures 8C, D). Seven compounds, including doxorubicin,
displayed lower IC50 values in the low-risk group (Figure 8C), whereas
three drugs exhibited greater sensitivity in the high-risk patients. These
results indicate that the m6A-LRM has potential for predicting the
sensitivities of certain drugs beneficial to different groups of
patients with SOC.

3.8 Cytological function of RP11-508M8.1 in
OC cells

RP11-508M8.1 is closely related to METTL3 and HNRNPC, while
AC138761.4 is closely related to IGF2BP1 and HNRNPC. Previous

studies have shown thatMETTL3 is the only catalytic subunit of them6A
methyltransferase complex that plays critical roles in various cancers
(Deng et al., 2022; Fang et al., 2022). This information indicates that
RP11-508M8.1 may play an important role in SOC. Thus, we initially
selected RP11-508M8.1 and investigated its mechanism in ovarian
cancer. First, in a previous study, we detected the expression of
RP11-508M8.1 in normal ovaries and ovarian cancer cell lines (Ye
et al., 2022). Then, to explore the functions of a candidate lncRNA, two
stable SOC cell lines (HEY and CAOV3) overexpressing RP11-
508M8.1 were successfully constructed (Figure 9A). Overexpression
of RP11-508M8.1 resulted in only minor effects on the proliferation
ofOC cell lines (Figure 9B) but significantly promoted themigration and
invasion of HEY and CAOV3 (Figure 9C). Furthermore, the wound
healing assay revealed that overexpression of RP11-508M8.1 may
enhance the wound-healing ability of OC cells (Figure 9D). To
further explore the association between the m6A modification effector
and lncRNA, we detected the expression ofMETTL3, which is associated
with RP11-508M8.1 (Figure 2G). Overexpression of RP11-508M8.1 did

FIGURE 7
Mutations and survival in low- and high-risk patients with SOC. (A)Waterfall plot of differentiated somatic mutation features between the high- and
low-risk groups. (B–D) KM survival analysis of patients classified via m6A-LRM risk scores, combining TP53mutation status, TMB loads, and neoantigens
levels. TMB, tumor mutational burden; NEO, neoantigen; H, high; L, low.
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not alter the expression of METTL3 (Figure 9E). However, the RNA
expression of RP11-508M8.1 in HEY and CAOV3 was increased
following METTL3 knockdown (Figures 9F, G). These results
indicated that METTL3 is an upstream regulator of RP11-508M8.1.
Furthermore, to determine the manner in which METTL3 regulates

RP11-508M8.1 expression, we conducted a dot blot assay, which
revealed that METTL3 knockdown reduced the m6A level of RNA in
CAOV3 (Figure 10A). Next, m6AMeRIP-qRT-PCRwas used to analyze
METTL3 expression via m6A-dependent regulation of RP11-508M8.1
expression; we found that RP11-508M8.1 was immunoprecipitated by

FIGURE 8
Prediction of the therapeutic response for distinct subgroups and screening of potential drugs targetingm6A-related lncRNAs in SOC. (A)Differential
analysis of immune checkpoints between the two groups. (B) Interaction between 6 lncRNAs and 16 SOC-targeting compounds; LINC02384 exhibited
the strongest correlation with compounds. (C) Evaluation of the sensitivities of various drug, including six common drugs for SOC. Y-axis represents the
half maximal inhibitory concentration (IC50). (D) Top 10 novel candidate compounds targeting SOC according to the m6A-LRM (The result of
Doxorubicin is shown in this figure (C)].
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FIGURE 9
RP11-508M8.1 promotesmigration and invasion of ovarian cancer cells in vitro. (A) RT-qPCR assay was used to detect the overexpression efficiency
of RP11-508M8.1 in CAOV3 and HEY OC cell lines with stable overexpression of RP11-508M8.1 and a negative control. (B) Proliferation ability of HEY and
CAOV3 cells overexpressing RP11-508M8.1 was detected via an EdU assay. (C) Transwell representative images (upper) and quantitative results (lower)
showed that overexpression of RP11-508M8.1 enhanced the migration and invasion abilities of ovarian cancer cells. (D) Wound healing assay
demonstrated that increased expression of RP11-508M8.1 promoted the wound-healing ability of OC cells. Data are presented as mean ± SD. (E) Protein
levels of METTL3 in OC cells overexpressing RP11-508M8.1 (Rep: repeat). (F) Knockdown of METTL3 expression in CAVO3 and HEY cells via siRNA. (G)
Relative RNA levels of RP11-508M8.1 in METTL3-knockdown OC cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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m6A-MeRIP, suggesting the existence of m6A modification in RP11-
508M8.1. METTL3 knockdown significantly reduced the m6A
enrichment level in RP11-508M8.1 (Figure 10B). These results
indicate that METTL3 may exert regulatory control over m6A
modification, thereby modulating RP11-508M8.1 expression.

To further explore the potential effects exerted by RP11-508M8.1 on
SOC, we performed RNAseq analysis of OC cells overexpressing RP11-
508M8.1. DEGswere identified based on fold change>1.5 and p < 0.001,
and then GO and pathway analyses were performed. GO analysis
identified the processes that were most significantly altered by RP11-
508M8.1; they were mainly related to cell migration, including the
plasma membrane, extracellular space, extracellular region,
extracellular matrix organization, and positive regulation of cell
migration (Figure 10C). Pathway analyses based on three databases
confirmed thesefindings.DEGswere enriched in the extracellularmatrix
and cell movement pathways, such as cell adhesion molecules, the TGF-

beta signaling pathway, angiogenesis, the Wnt signaling pathway,
extracellular matrix organization, and extracellular matrix degradation
(Figures 10D–F). These results indicated that RP11-508M8.1 may play
an oncogenic role by affecting extracellular matrix organization and
cell migration.

3.9 Identification of a ceRNA regulatory axis

RP11-508M8.1 may be involved in the progression of OC. The
potential molecular mechanism underlying the role of RP11-
508M8.1 in SOC was subsequently investigated using a regulation
axis of ceRNA interactions (Figure 11A). The RNAhybrid and
ONCOMIR databases predicted the presence of a total of seven
miRNAs (hsa-miR-1270, has-miR-1301-3p, hsa-miR-3605-5p, hsa-
miR-363-3p, hsa-miR-892b, hsa-miR-205-3p, and hsa-let-7f-2-3p)

FIGURE 10
Potential function of RP11-508M8.1 in patients with SOC. (A)m6A dot blot assay in CAOV3with knockdown of METTL3. Methylene blue (MB) stain as
the loading control. (B) Detection of the RP11-508M8.1 m6A modified levels in METTL3-knockdown CAOV3 and the normal control using MeRIP qRT-
PCR. *p < 0.05. (C) GO analysis of DEGs in CAOV3 cells overexpressing RP11-508M8.1. (D–F) Pathway analyses of DEGs in CAOV3 cells overexpressing
RP11-508M8.1. Based on the KEGG (D), PANTHER (E), and Reactome (F) databases.
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FIGURE 11
Construction of an lncRNA-miRNA-mRNA regulatory network and bioinformatic analysis. (A) Data analysis-based overview of the lncRNA-miRNA-
mRNA regulatory axis. (B) Seven miRNA targets of the lncRNA PR11-508M8.1. (C) Univariate Cox regression and KM survival analysis of the highly
connected miRNAs based on TCGA and ENCORI databases. (D) The correlation between survival possibility and the expression of hsa-miR-1270 targets
(ARSD, IGFBP5, and WT1) and has-miR-1301-3p targets (GOLGA8B, NAT8L, NPTXR, and SYNGR1) is shown via KM analysis using data from the
ENCORI database. (E) Expression of ARSD in SOC and normal ovary tissues. (F) Single gene enrichment analysis of ARSD.
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that bind to RP11-508M8.1 under the following conditions: miRNA
seed region (5′- > 3′) and 2–7 bp should be closely matched with the
lncRNA to execute screening (Figure 11B). However, univariate Cox
regression and KM analyses showed that only hsa-miR-1270 and
has-miR-1301-3p expression was correlated with the survival of
patients with OC (Figure 11C). Furthermore, analysis of data from
the miRTarBase database indicated that the gene targets binding to
the miRNAs hsa-miR-1270 and has-miR-1301-3p may constitute
the miRNA-mRNA axis. We combined the DEGs in RP11-508M8.1-
OE OC cells to filter the genes. A total of three (ARSD, IGFBP5, and
WT1) and four (GOLGA8B, NAT8L, NPTXR, and SYNGR1) gene
targets were found to bind hsa-miR-1270 and has-miR-1301-3p,
respectively (Figure 11D). The ENCORI database, which was used to
perform gene survival analysis in OC, showed that ARSD expression
(hsa-miR-1270 targeted gene) alone was significantly associated
with survival and that patients with higher ARSD expression had
a higher survival possibility, with an HR < 1 (Figure 11D). In
addition, ARSD expression was also detected; the results suggested
that ARSD was downregulated in OC tissues compared to that in
normal tissues (Figure 11E). Moreover, ssGSEA showed that ARSD
expression was correlated with the extracellular matrix organization
pathway (Top one enrichment), indicating that ARSDmay serve as a
regulatory factor in tumorigenesis and tumor progression
(Figure 11F). These findings indicated that the RP11-508M8.1/
hsa-miR-1270/ARSD regulatory axis may be of importance in the
progression of OC.

4 Discussion

4.1 Potential of m6A-related lncRNAs as
biomarkers in SOC to improve PPPM

High-grade SOC is the most prevalent and aggressive form of
SOC, which is an intractable disease (Drumond-Bock and Bieniasz,
2021). Most patients with SOC are diagnosed at stage III or IV,
which results in a significant reduction in their responsiveness to
treatment as well as survival (Drumond-Bock and Bieniasz, 2021).
Many studies have focused on identifying reliable early diagnostic
biomarkers, novel therapeutic targets, and prognostic biomarkers to
improve the prognosis of patients in advanced stages (van Zyl et al.,
2018). However, the currently used imaging, histological evaluation,
serum markers (i.e., CA125), and predictive models for managing
SOC lack sensitivity and specificity, making it difficult to meet the
needs of PPPM (Punzón-Jiménez et al., 2022). The m6A
modification, which is considered the most common
modification among lncRNAs (Patil et al., 2018), has currently
become the focus of attention of cancer researchers. The m6A
modification and its effectors influence the fate of RNA
molecules via lncRNA regulation, often resulting in the onset and
development of cancers (Dai et al., 2020; Huang et al., 2020).
LncRNAs regulated by the m6A modification have shown
potential applicability in the diagnosis, treatment, and prognosis
of various cancers (Dai et al., 2020), especially as diagnostic and
prognostic tools in clinical settings, thereby facilitating the
prediction, targeted prevention, and personalized treatment of SOC.

Considering that the functions of lncRNAs are dynamically
regulated by m6A writers, readers, and erasers (He et al., 2020)

and that the role of lncRNAs in cancer has been attributed to
integrated m6A effector regulation (Lan et al., 2021), the present
study analyzed a comprehensive set of m6A effectors. In this study,
we identified six m6A effector-related lncRNAs (RP11-508M8.1,
AC138761.4, AL513211.1, LINC02384, MYCNOS, and
AC072062.3) and constructed a risk model, m6A-LRM, to
accurately predict the OS of patients with SOC as well as their
response to treatment. Of these six lncRNAs, only MYCNOS and
LINC02384 were extensively investigated. MYCNOS expression is
associated with various cancers. For example, MYCNOS, which is
upregulated in hepatocellular carcinoma cells and tissues, affects
disease progression, shortens patient survival (Yu et al., 2020) and
acts as an endogenous sponge of miR-216b, thereby regulating the
expression of FOXM1 and promoting the proliferation of
glioblastoma cells (Zhao et al., 2021). MYCNOS upregulation is
associated with poor prognosis in neuroblastoma patients (Vadie
et al., 2015). Interestingly, in this study, MYCNOSwas identified as a
protective factor in patients with SOC. However, lncRNAs
reportedly play opposing roles in different cancers via crosstalks
among multiple mechanisms (Fang and Fullwood, 2016; Goodall
andWickramasinghe, 2021); thus, the role of MYCNOS in SOCmay
require further investigation. Furthermore, studies have suggested
that LINC02384, which stimulates melanoma progression by
reducing the expression of the tumor-protecting miRNAs
miR.891a.5p and miR.203b.3p (Zhang C. et al., 2021), may also
act as a protective factor in renal cell carcinoma (Li et al., 2021) and
breast cancer (Xu Z. J. et al., 2021). Although the results of the
current study indicated that LINC02384 may act as a protective
factor in SOC, data on the remaining four lncRNAs are lacking. The
findings of subsequent univariate and multivariate analyses
indicated that the m6A-LRM may also be useful as an
independent prognostic factor for SOC. Moreover, the m6A-LRM
may predict risks across different age groups. However, the risk
model demonstrated predictive trends (p > 0.05) only when
stratifying the OS of stage IV and grade 1 and 2 patients with
SOC. This may be attributed to the limited sample size. The
nomogram further indicated that risk models based on m6A
effector-related lncRNAs exhibited a strong association with SOC
and may therefore serve as a valuable tool for effective risk
stratification of patients with SOC.

4.2 Application of the m6A-LRM in
immunotherapy and chemotherapy

To explore the potential of the m6A-LRM in predicting the
immunotherapeutic response of SOC, we performed comparative
analyses of tumor-infiltrating immune cell levels, ICIs expression,
tumor mutations, and neoantigen loads. The TME, including
immune cells, cytokines, and chemokines, exhibits high
heterogeneity and plasticity, which evolve with tumor
progression, thus forming a complex immune landscape (Hiam-
Galvez et al., 2021; Liu and Sun, 2021). Dendritic cells initiate anti-
tumor immunity by capturing and presenting tumor antigens, which
activate CD8+ and CD4+ T cells (Jhunjhunwala et al., 2021).
However, tumor cells remodel the TME to augment immune-
suppressive cells, thereby evading immune surveillance (Cao
et al., 2023; de Visser and Joyce, 2023). Growing evidence
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suggests that m6A modification regulates the metabolism and
activation of immune cells as well as the processes associated
with immune response, thereby playing a pivotal role in
reshaping the TME and orchestrating immune evasion in tumors,
which in turn undermines the efficacy of immunotherapy (Li X.
et al., 2022; Cao et al., 2023). LncRNAs not only play a key regulatory
role in the process of proliferation, migration, and invasion of cancer
cells but also act as active participants in the immune system by
regulating the development, differentiation, and function of various
immune cells (Chen et al., 2017; Denaro et al., 2019; Zhang Y. et al.,
2021). In this study, we constructed the m6A-LRM using m6A
effector-related lncRNAs and applied the model to stratify the
risk of patients with SOC. Moreover, we comprehensively
analyzed the disparities between the TMEs of the high- and low-
risk groups to determine immune cell infiltration patterns within the
TME. We found that the counts of CD4+ T cells, monocytes,
dendritic cells, B cells, Th1 cells, Th2 cells, and TILs in the high-
risk group were increased and the proportion of pro- and anti-
inflammatory cytokines in the high-risk group was higher than that
in the low-risk group, indicating an adaptive immune activation
status. Considering the proinflammatory immune milieu observed
in the high-risk group and the immunosuppression environment
observed in the low-risk group, it is plausible that the high- and low-
risk groups based on the m6A-LRM signature may encompass “hot”
and “cold” tumors, respectively. Thus, the high-risk group may
display elevated responsiveness toward immunotherapeutic
interventions.

Cancer cells may suppress the immune system by activating
immune checkpoints, a class of immunosuppressive molecules that
are expressed on immune cells and regulate the extent of immune
activation (Darvin et al., 2018). ICIs, which exert an oncostatic effect
by enhancing T-cell activation and proliferation, are emerging as
potential therapeutic modalities for cancer (Darvin et al., 2018; Ribas
and Wolchok, 2018). Many ICIs, such as cytotoxic T lymphocyte
associate protein-4 (CTLA-4), programmed cell death-1 (PD-1), and
programmed cell death-ligand 1 (PD-L1) antibodies, have been
applied in clinical settings (Postow et al., 2015). The TMB is an
independent biomarker used to determine the suitability of patients
for immunotherapy. A higher TMB leads to tumorigenesis andmore
neoantigens, which in turn drive T cell-mediated antitumor immune
responses; thus, patients with high TMB may benefit more from
immunotherapy than patients with low TMB (Jardim et al., 2021). In
the present study, we found that low-frequency mutations that were
closer to the upper end of the low frequency range were prevalent in
the high-risk group, indicating that the high-risk group was more
suitable for immunotherapy. We also confirmed that the established
m6A-LRM had superior predictive power with respect to the
prognosis of patients with SOC compared with that of the TMB
and neoantigens. Thus, the m6A-LRM shows potential as a novel
prognostic marker for patients with SOC. Furthermore, the
expression levels of immune checkpoints may be compared to
assess their effectiveness in patients receiving immunotherapy.
We found that the expression levels of IC-related genes, such as
HAVCR2, CD86, LAIR1, and VTCN1, in the high-risk group were
significantly higher than those in the low-risk group, thereby
explaining the higher sensitivity shown by the high-risk group to
immunotherapy and confirming the high-risk group as a “hot
tumor” group.

Models based on the m6A-LRM signature may also be used to
predict the chemotherapy response of patients with SOC. Drug
sensitivity experiments revealed that the susceptibility of the low-
risk patients to conventional chemotherapeutic agents, such as
cisplatin, gemcitabine, vinorelbine, doxorubicin, camptothecin,
and irinotecan, was enhanced. Based on the close association
between the m6A-LRM and immunotherapy response, potential
lncRNA-targeting chemicals were identified for future
exploration. AZD6244, PD-0325901, and lapatinib were the top
three drugs predicted as being capable of targeting multiple
candidate lncRNAs. The MEK1/2 inhibitor AZD6244 reportedly
inhibited the growth of clear cell ovarian carcinoma (Bartholomeusz
et al., 2012). Sheppard et al. demonstrated that PF-04691502 and
PD-0325901 synergistically inhibited the growth of OC cells
(Sheppard et al., 2013). Meanwhile, treatment with nanocolloids
of paclitaxel and lapatinib effectively overcame the multi-drug
resistance of OC cells (Vergara et al., 2012). These findings imply
that the m6A-LRM may potentially be used to evaluate treatment
response, assess prognostic risk, and develop personalized treatment
strategies for individuals with SOC, thereby demonstrating a
superior ability to improve PPPM in SOC.

4.3 Molecular mechanisms underlying the
functions of m6A-related lncRNAs

Functional enrichment analyses and variation landscapes of the
high- and low-risk groups may provide insights into the effects and
underlying molecular mechanisms of m6A-related lncRNAs. Such
experiments may help optimize the prediction model, further reveal
the association between the immune microenvironment and
m6A-related lncRNAs, provide more treatment choices, and
reveal the presence of additional SOC-related pathways.

Our study showed that the high-risk group was in a state of
immunophenotype activation. Such immune signatures may be
explained via molecular signatures. GSEA indicated that the
upregulated genes in the high-risk group were significantly
enriched in the EMT and inflammation-related pathways. EMT
refers to the transformation of epithelioid cells into mesenchymal
phenotypic cells, which is recognized as malignant cellular behavior
that facilitates tumor metastasis (Huang et al., 2022). EMT interacts
with the tumor immune microenvironment in a significant manner
(Dongre and Weinberg, 2019). T lymphocytes and macrophages
may induce cancer cell EMT, thereby facilitating the recruitment of
various immune cells, including immunosuppressive regulatory
T cells, to inhibit tumor immunity and promote PD-L1
expression in cancer cells (Dongre and Weinberg, 2019). EMT
may well account for the poor prognoses and proinflammatory
statuses observed in the high-risk group. The genes that were
downregulated in the low-risk group were enriched in the DNA
repair and WNT beta-catenin signaling pathways. DNA damage
repair (DDR) maintains the genome integrity of cancer cells, which
plays a role in cancer progression, while downregulation of the DNA
repair pathway corresponded to better prognoses in the low-risk
group in our study (Xie et al., 2021). However, upregulation of DNA
repair genes is linked to a lack of immune cell infiltration, which is
inconsistent with the immunophenotypic suppression observed in
the low-risk group (Higgs et al., 2022). The association between
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DDR and the immune microenvironment requires in-depth
investigations, with particular reference to the treatment efficacy
of DDR inhibitors combined with ICIs, which has attracted the
attention of researchers (Sheng et al., 2020). The WNT beta-catenin
signaling pathway is known to be associated with carcinogenicity.
More importantly, the activation of WNT beta-catenin signaling is
positively correlated with DDR and EMT, which jointly participate
in cancer progression as well as in the shaping of the immune
microenvironment (Hashemi et al., 2023). These pathways as well as
a potential crosstalk between them are essential aspects of the
molecular mechanism underlying the accurate prediction of
tumor characteristics by the m6A-LRM.

In terms of the differences between the mutation landscapes of
the high- and low-risk groups, USH2A had a higher mutation
frequency in the high-risk group. A study found that ICIs exhibit
better efficacy in patients carrying USH2A missense mutations,
thereby providing an important reference for treatment selection
in high-risk patients (Yang et al., 2023). These findings are
consistent with those of Sun et al., who suggested that the
mutation of USH2A was associated with an increase in the TMB
and antitumor immunity (Sun et al., 2021). SYNE2 showed a higher
mutation frequency in the low-risk group. A previous study
suggested that ovarian cancer cell clusters with higher mutation
burden tend to display high mutation rates of SYNE2 (Li L. et al.,
2022), which is inconsistent with our results. We hypothesize that
this discrepancy may be attributed to variances within the analyzed
cohort and grouping. Specific reasons for these conflicting results
warrant further research.

4.4 RP11-508M8.1 regulates the expression
of ARSD via hsa-miR-1270

The results of this study indicated that RP11-508M8.1 was strongly
associated with the m6A-writer METTL3. METTL3 is a risk factor for
SOC and a corem6Amethyltransferase that plays critical roles in various
cancers (Zeng et al., 2020). The function of RP11-508M8.1 in OC was
explored in vitro. Preliminary results indicated that PR11-
508M8.1 promoted OC cell invasion and migration. Although PR11-
508M8.1 overexpression did not alter METTL3 levels, downregulating
METTL3 increased RP11-508M8.1 expression. These findings indicate
that METTL3 may be an upstream regulator of RP11-508M8.1 and that
the METTL3-m6A-RP11-508M8.1 axis plays a role in the
carcinogenicity mechanism underlying SOC.

ceRNA refers to RNA molecules such as mRNA, lncRNA, and
circRNA that can competitively bind miRNAs to alter the
transcriptional levels of miRNA-regulated mRNAs, thus exerting
biological functions in cancer (Tay et al., 2014; Braga et al., 2020). In
recent years, the ceRNA regulatory network has garnered significant
attention as a novel mechanism underlying RNA interactions
(Thomson and Dinger, 2016). Therefore, we investigated the
ceRNA network of RP11-508M8.1 and established a novel
lncRNA-miRNA-mRNA regulatory network, which has not been
previously reported in relation to SOC. Our results indicated that
RP11-508M8.1 may regulate ARSD expression by altering hsa-miR-
1270 expression. This regulatory axis may activate protumor
pathways (e.g., EMT, reactive oxygen species pathway, and
extracellular matrix organization pathway). Previous research has

shown that miR-1270 plays a novel tumor suppressor role in lung
adenocarcinoma (Saproo et al., 2023). Hsa-miR-1270 suppresses the
malignant progression of breast cancer by regulating gene
expression (Hu et al., 2022). A previous study reported that
ARSD exerts inhibitory effects on the proliferation and migration
of breast cells by activating the Hippo/YAP pathway (Lin et al.,
2021). Here, we identified ARSD as a potential protective factor in
the context of SOC, exhibiting an anti-tumorigenic role.
Furthermore, ARSD serves as a prognostic biomarker that
facilitates the progression of glioma cells via the activation of the
JAK2/STAT3 signaling pathway and infiltration of M2macrophages
(Song et al., 2023). Thus, ARSD may act as a potential novel
biomarker that may improve the prognosis of patients with SOC.

4.5 Limitations

The current study was affected by some limitations. First, our
data analysis was derived from TCGA data; thus, further large-
scale investigations are required to corroborate our findings.
Second, an increasing body of evidence indicates that various
modification types may interact during tumorigenesis and
progression, thereby establishing a complex regulatory
network. Consequently, additional modifications should be
incorporated into future studies to elucidate the specific
molecular mechanisms underlying SOC. Third, the data used
to analyze and construct the model were obtained from ovarian
cancer samples, and the role played by N6-methyladenosine
effector-related lncRNAs signature in other cancers remains to
be explored. Fourth, the expression and biological function of
RP11-508M8.1 in vivo must be verified in the future. Fifth,
further investigation should be performed to elucidate the
intricate regulatory network between m6A effector HNRNPC
and lncRNA RP11-508M8.1. Moreover, it is necessary to screen
specific mutant cell lines to further explore the potential in the
pathogenesis and progression of SOC. Finally, the ability of the
developed risk model to predict the response to immunotherapy
was only indirectly evaluated. These findings remain to be
confirmed by future studies possibly involving in vitro drug
sensitivity tests.

5 Conclusion

We constructed a novel risk prediction model for patients with SOC
based on six m6A effector-related lncRNAs, namely, RP11-508M8.1,
AC138761.4, AL513211.1, LINC02384, MYCNOS, and AC072062.3.
This novel risk prediction model effectively evaluated the survival rate
and treatment response in relation to SOC. A free web application of the
m6A-LRM for researchers and clinicianswas developed andmay provide
reference information for precision treatment, thereby facilitating the
PPPM of SOC. The influence of m6A-LRM on SOC was explored from
multiple perspectives, and the association betweenm6A effectors and key
lncRNAs as well as the preliminary mechanisms underlying their effect
on OC were explored via in vitro experimentation. In conclusion, we
propose that the regulatory axis involving METTL3/m6A/RP11-
508M8.1/hsa-miR-1270/ARSD may represent one of the molecular
mechanisms underlying SOC.
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