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Introduction: The acute respiratory distress syndrome (ARDS), secondary to viral
pneumonitis, is one of the main causes of high mortality in patients with COVID-
19 (novel coronavirus disease 2019)—ongoing SARS-CoV-2 infection— reached
more than 0.7 billion registered cases.

Methods: Recently, we elaborated a non-surgical and reproducible method of
the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice–a
publicly available imitation of the ARDS caused by SARS-CoV-2. Our data read
that two C–C chemokine receptor 5 (CCR5) ligands, macrophage inflammatory
proteins (MIPs) MIP-1α/CCL3 and MIP-1β/CCL4, are upregulated in this DAD
model up to three orders of magnitude compared to the background level.

Results: Here, we showed that a nonpeptide compound TAK-779, an antagonist of
CCR5/CXCR3, readily prevents DAD in the lung with a single injection of 2.5mg/kg.
Histological analysis revealed reduced peribronchial and perivascular mononuclear
infiltration in the lung and mononuclear infiltration of the wall and lumen of the
alveoli in the TAK-779-treated animals. Administration of TAK-779 decreased the
3–5-fold level of serum cytokines and chemokines in animals with DAD, including
CCR5 ligands MIP-1α/β, MCP-1, and CCL5. Computed tomography revealed rapid
recovery of the density and volume of the affected lung in TAK-779-treated animals.

Discussion: Our pre-clinical data suggest that TAK-779 is more effective than the
administration of dexamethasone or the anti-IL6R therapeutic antibody tocilizumab,
which brings novel therapeutic modality to TAK-779 and other CCR5 inhibitors for
the treatment of virus-induced hyperinflammation syndromes, including COVID-19.
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Introduction

The socio-medical significance of the COVID-19 pandemic is
hard to overestimate as it has led to the death of more than
6.9 million people around the world. The treatment of severe
COVID-19, which is accompanied by the development of acute
respiratory distress syndrome or diffuse alveolar damage (ARDS/
DAD), is still challenging (Ntatsoulis et al., 2021). Clinical signs of
ARDS include a dysfunction of the alveolar epithelium and erupted
gas exchange. An attempt to restore the condition to normal often
leads to a fibroproliferative state (Fears et al., 2022). The ARDS
causes disability, morbidity, and mortality, while the current
treatment is focused on basial patient support to give the lungs
enough time to recover (Luo et al., 2020; Wick et al., 2021). The
course of ARDS is generally associated with a cytokine storm,
consisting in the enormous release of cytokines and chemokines
(Martonik et al., 2023).

The immune response toward SARS-CoV-2 in humans occurs
in several stages. Activation of the type I interferon (IFN I) response
induces the recruitment of macrophages, NK cells, and neutrophils
to the virus penetration site (Tamir et al., 2022). It is believed that
resident alveolar macrophages are the first defensive line to fight the
virus (Kumar et al., 2023), and neutrophils may undergo TNF-
dependent necroptosis among seriously ill patients (Schweizer et al.,
2021; Mairpady Shambat et al., 2022). During the adaptive immune
response stage, CD4+ and CD8+ T cells spread and hyperactivate,
which may lead to a lack of reactivity or cell death (Alberca and
Baddour, 2021). In addition, immune response modulation is
actively driven by Th17 and Th22 subpopulations (Martonik
et al., 2023). The levels of IgG, IgM, and IgA antibodies
produced by B lymphocytes increase during COVID-19 infection
(Ruhl et al., 2021). B cells also release IL-6, which intensifies the
cytokine storm (Upasani et al., 2021). As a result of cytokine release,
the integrity of endotheliocytes is erupted and TxA2 is released,
which, in turn, causes thrombosis (Conti et al., 2021). The
physiological effect of cytokines is maintained mainly through
the activation of the JAK/STAT signaling pathway. Levels of
cytokines, e.g., IL-6, positively correlate with the mortality of
COVID-19 patients (Stebbing et al., 2021). Fanning et al. showed
that the level of C–C/C–X–C chemokine ligands and C-reactive
protein (CRP) are correlated with COVID-19 progression in
patients treated by convalescent donor plasma (Fanning et al.,
2021). As the cytokine storm escalates, apoptosis of the
pulmonary epithelium increases, the blood–air barrier and vessels
become damaged, resulting in alveolar edema and hypoxia
(Martonik et al., 2023). A high level of cytokines in the blood is
also associated with bacterial superinfections in COVID-19 patients
(Mairpady Shambat et al., 2022).

The current list of Food and Drug Administration (FDA)-
approved COVID-19 therapeutics includes the anti-interleukin-
6 receptor monoclonal antibody Actemra (tocilizumab) (Abani
et al., 2021; Salama et al., 2021), the antiviral nucleotide analog
Veklury (remdesivir) (Beigel et al., 2020), the inhibitor of Janus
kinases JAK1 and JAK2 Olumiant (baricitinib) (Kalil et al., 2021;
Marconi et al., 2021), and a mixture of the 3CLpro protease
inhibitor and inhibitor of HIV-1 protease CYP3A Paxlovid
(nirmatrelvir and ritonavir) (Hammond et al., 2022). Therapy
for coronavirus infection evolved in various directions. For

example, remdesivir suppresses coronavirus replication by
inhibiting RNA-dependent RNA polymerase (Martonik et al.,
2023). Another approach to the COVID-19 treatment is the
administration of glucocorticosteroids. These
immunosuppressors modify gene expression and trigger the
synthesis of NF-kB inhibitors, reducing the production of IL-1
and IL-6 (Martonik et al., 2023). Treatment of COVID-19 patients
was accomplished by the monoclonal antibody olokizumab, which
has high affinity to IL-6 and neutralizes this cytokine (Alfinito
et al., 2020). Furthermore, the anti-IL-17 monoclonal antibody
netakimab, utilized for patients with psoriasis and ankylosing
spondylitis, may be used for COVID-19 treatment (Bryushkova
et al., 2022). Pharmacodynamically, the netakimab effect is
beneficial since IL-17 increases the level of inflammatory
mediators such as G-CSF, IL-6, IL-1β, TNFα, IL-8, and matrix
metalloproteases. Tocilizumab proved its clinical effectiveness in
patients during the coronavirus pandemic (Io et al., 2021). One
more approach of the treatment is using colchicine, an indirect IL-
6 inhibitor, which is also applied in the treatment of coronary heart
disease (Bonifácio et al., 2023). Colchicine suppresses the
recruitment of neutrophils, inhibits cytoskeleton metabolism,
and opposes SARS-CoV-2 functionality in human cells (Kasiri
et al., 2023). Rodriguez et al. suggested IL-8 antagonists to be
prospective agents to treat severe coronavirus infection (Rodriguez
et al., 2021). Indeed, convalescent plasma (Misset et al., 2023) and
SARS-CoV-2 neutralizing antibodies (Chen et al., 2021; Guo et al.,
2021) may also be regarded as direct agents for virus clearance.

Another pharmacological group, JAK inhibitors, such as
tofacitinib, seems to be also the perspective (Sharma and Ali,
2021). Baricitinib, a JAK1/JAK2 inhibitor, reduces the content of
phosphorylated STAT proteins, which prevents the
proinflammatory effects of IL-6, IL-12, IL-23, and IFN-γ
(Bryushkova et al., 2022). It is also suggested that JAK-STAT
pathway inhibition may ameliorate the condition during bacterial
sepsis-induced ARDS (Batra et al., 2022). The MAPK, RAS, and
PI3K-AKT pathways may be potential targets in ARDS as well
(Batra et al., 2022). Metformin, used to treat type 2 diabetes, is also
considered a promising drug that acts at different stages of the
SARS-CoV-2 development (viral entry, viral replication, etc.), but it
has yet to be investigated (Varghese et al., 2021). Additionally,
COVID-19 treatment can be carried out by HIF pathway exposure.
Thus, preclinical trials of FG-4592 (roxadustat) that suppressed
PHDs were conducted. The drug activated HIFs and reduced viral
burden and respiratory symptoms on the fourth day after infection
(Wing et al., 2022). Ewart et al. showed that small-molecule
acylguanidine BIT225 prevents weight loss in SARS-CoV-2-
infected K18 mice, suppresses virus reproduction, and exhibits
anti-inflammatory properties (Ewart et al., 2023).

Complement inhibitors may also be used in the treatment of
COVID-19. During coronavirus infection, C5a interacts with its
C5aR1 receptor, which promotes the migration of monocytes/
macrophages and neutrophils into the lung tissue resulting in the
cytokine storm (Chouaki Benmansour et al., 2021). The
administration of the anti-C5a monoclonal antibody vilobelimab
to COVID-19 patients showed a promising therapeutic effect (Vlaar
et al., 2020). A number of C5 inhibitors, such as the antibody
eculizumab and peptide zilucoplan, preventing the production of
C5b-9, showed beneficial results in clinical trials (Burwick et al.,
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2022; De Leeuw et al., 2022). The pharmacological effect of
compstatin AMY–101, an inhibitor of C3, was recently reported
(Mastaglio et al., 2020; Skendros et al., 2022). Finally, drugs, which
target the lectin pathway of complement, such as the human anti-
MASP-2 antibody narsoplimab, are satisfactorily applied in the
coronavirus infection management since all COVID-19 patients
receiving narsoplimab achieved recovery and survived (Rambaldi
et al., 2020).

Summarizing, the global medical community is faced with
creating and introducing into clinical practice new effective and
safe methods of treating not only COVID-19 but also similar virus-
induced lung inflammation syndromes. Despite the fact that
SARS-CoV-2 lost its pandemic status, the search for systemic
and etiotropic treatment of ARDS should prepare humanity for
possible future viral epidemics. The chemokine-driven migration
of activated T cells and monocytes to the infection site is critical for
the progression of COVID-19 (Gamage et al., 2020; Çelik et al.,
2023). Several reports showed that C–C/C–X–C chemokine
ligands CCL3, CCL4, and CXCL-10 take part in the
development of SARS-CoV-2 infection (Singh et al., 2021;
Calvier et al., 2023; Martonik et al., 2023). It is known that in
the severe form of the disease, CXCR2 signaling is activated, while
in the favorable course of the disease, a T helper “Th1–Th17”
profile, marked by an upregulation of the CXCR3 pathway
activator genes, is observed (Rodriguez et al., 2021). Recently,
Dai et al. showed that H5N1 AIV-induced inflammatory lung
injury is driven by infiltrating inflammatory macrophages with
massive viral replication and an emerging interaction of cell
populations through various chemokines, including CCL4 (Dai
et al., 2023). Thus, a possible way to treat coronavirus infection is
to target chemokine receptors. Among the three anti-chemokine
drugs (leronlimab, maraviroc, and cenicriviroc), the latter seems to
be the most optimal since it, by inhibiting CCR2 and
CCR5 pathways, precludes the pulmonary and vascular sequelae
associated with COVID-19 (Files et al., 2022).

TAK-779 is also a potent and selective nonpeptide antagonist
of CCR5/CXCR3 (Gao et al., 2003), with a Ki value of 1.1 nM. The
CCR5-related cognate ligands include CCL3, CCL4 (also known as
MIP 1α and 1β, respectively), and CCL3L1. CCR5 also interacts
with CCL5 (a chemotactic cytokine protein, also known as
RANTES). TAK-779 effectively and selectively inhibits R5 HIV-
1 in MAGI-CCR5 cells with an EC50 value of 1.2 nM (Baba et al.,
1999). In the dosage of 10 mg/kg per day, TAK-779 significantly
prolongs the allograft survival of the rat intestinal transplantation
model. It inhibits the migration of T cells but not its proliferation.
TAK-779 also decreases the number of CD4+ and CD8+ T cells in
the spleen, blood, and recipient mesenteric lymph nodes (MLNs)
(Takama et al., 2011). Zhu et al. demonstrated that TAK-779 in the
dosage of 150 µg per mouse suppresses the development of
experimental autoimmune encephalomyelitis (EAE) in myelin
oligodendrocyte glycoprotein (MOG)-immunized C57BL/
6 mice. It decreases the infiltration of CXCR3- and CCR5-
bearing leukocytes into the spinal cord (Ni et al., 2009). TAK-
779 ameliorates pulmonary granulomatosis in C57BL/6 mice and
diminishes the pool of CXCR3+CD4+ and CCR5+CD4+ T
lymphocytes in the bronchoalveolar lavage fluid (Kishi et al.,
2011). Tokuyama et al. showed that TAK-779 decreases the
recruitment of monocytes/macrophages, thereby precluding

dextran sodium sulfate-induced colitis in C57BL/6 mice
(Tokuyama et al., 2005). TAK-779 also impedes the progression
of chronic vasculopathy, fibrosis, and cellular infiltration by
reducing the number of CD4-, CD8-, and CD11c-positive cells
recruited to the transplanted allografts (Akashi et al., 2005).
Furthermore, it was shown that in a Pan02 murine tumor
model, a TAK-779-induced disruption of the CCR5/
CCL5 pathway led to decreased Treg migration to the tumor
(Tan et al., 2009). Likewise, TAK-779 inhibits the homing of
microglia in response to scrapie infection in vitro and in vivo
(Marella and Chabry, 2004).

The main restriction of COVID-19 modeling in mice is that
SARS-CoV-2 does not bind to mouse ACE2 (mACE2) (Rawle
et al., 2021). Thus, various artificial models are used to study the
effects of coronavirus infection. Yinda et al. reported that the
administration of 104 TCID50 or 10

5 TCID50 SARS-CoV-2 led to
80% and absolute lethality, respectively, in K18-hACE2 mice, as
well as a mild form of the disease in mice that received 102 TCID50

SARS-CoV-2 (Yinda et al., 2021). Nevertheless, the disadvantage
of this model is the possible fatal outcome after a fulminant SARS-
CoV-2 brain infection (Kumari et al., 2021; Bishop et al., 2022).
Two additional major obstacles of animal models, involving SARS-
CoV-2 inoculation, are the absence of prolonged monitoring due
to the high mortality rate and generally high variability between
individual animals in terms of cytokine levels and other
immunological indicators. These features limit statistical
analysis and yield a binary “yes or no” result of the
experimental therapy. Here, we assessed the therapeutic effects
of dexamethasone, tocilizumab, and TAK-779 on the course of the
ARDS in the non-lethal, highly reproducible ICR DAD murine
model mimicking SARS-CoV-2 infection (Chernov et al., 2022) by
histological evaluation, cytokine profiling, and computed
tomography analysis.

Materials and methods

Ethics statement

ICR male mice in the SPF category with an average weight of
37.4 ± 1.4 g were used. All animals were housed under standard
conditions in the animal breeding facility of BIBCh RAS (the Unique
Research Unit Bio-Model of the IBCh RAS; the Bioresource
Collection–Collection of SPF-Laboratory Rodents for
Fundamental, Biomedical, and Pharmacological Studies, Sontract
075-15-2021-1067). All experiments and manipulations with
animals were approved by the Institutional Animal Care and Use
Committee (IACUC № 831/22 from 12/04/22).

Reagents

LPS (Salmonella enterica) was purchased from Millipore Sigma
(United States), α-galactosylceramide was obtained from Avanti
Polar Lipids (United States), propofol was obtained from Hana
Pharmaceutical, Co. Ltd. (Republic of Korea), TAK-779 was
obtained from MedChemExpress (United States), and
tocilizumab was obtained from Roche (Japan).
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DAD modeling in ICR mice

DAD was induced by a single instillation into the left lung of the
mixture consisting of 100 μL (1 mg/mL) LPS from S. enterica and
100 μL (50 μg/mL) α-galactosylceramide using a 20G intravenous
catheter. As premedication, propofol at a dose of 20 mg/kg was
intravenously injected for anesthesia shortly before the intubation
of trachea.

Administration and doses of test substances

The animals were randomly assigned to five groups with
20 animals in each group: (1)–control, intact animals; (2)
intravenous injection of physiological saline (200 µL 0.9% NaCl)
as a placebo during DAD induction; (3) intravenous injection of
tocilizumab (25 mg/kg) during DAD induction; (4) intravenous
injection of TAK-779 (2.5 mg/kg) during DAD induction; and
(5) intravenous injection of dexamethasone (0.5 mg/kg) during
DAD induction. Animals were monitored daily for 45 days.

Computed tomography of the lungs

A CT scanner, MRS*CT/PET (MR Solution, United Kingdom),
was used with following parameters: energy 40 kVp, exposure
100 ms, current 1 mA, and stepping angle 1°. During imaging,
the animals were anesthetized with a 2% mixture of isoflurane
and air at a temperature of +37°S. The CT images were
processed using VivoQuant software (Invicro, United Kingdom).
The lung volume and the average density of left (exposed) and right
(control) lungs were measured in the automatic mode (using −400 to
100 Hounsfield units as the cut-off density). The volume was
expressed in mm3, and the density, in Hounsfield units (HU).

Plasma chemokine and cytokine
measurement

Mouse blood for EDTA plasma was collected after 3 h post-
DAD induction. Bio-Plex Pro Mouse Cytokine Panel 33-Plex (Bio-
Rad, United States) was used to measure the levels of chemokines
and cytokines. Plasma samples diluted at a ratio of 1:3 (50 μL) were
incubated with magnetic beads, washed up, and then incubated with
detecting antibodies and SA-PE, according to the manufacturer’s
instructions. Data were obtained using the Luminex 200 analyzer
and analyzed using xPONENT software.

Histological examination

Five animals from each groupwere sacrificed at days 7 and 45, and
histological studies were performed, as described previously
(Sharapova et al., 2021; Chernov et al., 2022). In brief, the lungs
were filled with a 10% solution of neutral formalin, embedded in
paraffin, and 4–5-μm-width sections were stained with hematoxylin
and eosin. The degree of fibrosis was examined on histological
preparations stained by the Mallory method. Histological analysis

of the lungs assessed the following morphological signs: peribronchial
and perivascular mononuclear infiltration, infiltration of the walls and
lumen of the alveoli by mononuclears, atelectasis, the presence or
absence of necrosis foci, and level of fibrosis. The severity of various
inflammatory phenomena in the lungs and the degree of
pneumofibrosis were evaluated by a semi-quantitative method (in
points), according to the 5-score scale (Sharapova et al., 2021). The
Kernogan index in the blood vessels of the left lobe of the lungs was
evaluated as the ratio of the thickness of the vascular wall to the radius
of the vessel lumen as an important indicator of the throughput of the
microcirculatory bed of the small circulatory circle using ZEN 2.6 lite
software (Carl Zeiss, Germany).

Statistical analysis

Data are presented as mean ± standard deviation. Differences
between treatment and control groups were tested for significance
using SigmaPlot software (SYSTAT Software Inc., Berkshire,
United Kingdom), using Student’s t-test. The p-values less than
0.05 were considered statistically significant.

Results

Treatment by TAK-779 significantly reduces
mononuclear infiltration in the lung in the
murine model of the SARS-CoV-2-related
acute respiratory distress syndrome

The DAD was induced in ICR mice by a single instillation into
the left lung of the mixture consisting of LPS from S. enterica and α-
galactosylceramide. On day 7 of monitoring, a similar
pathomorphological finding was observed in all test groups: total
or subtotal atelectasis of the left lobe with pronounced neutrophilic
and mononuclear infiltration into the walls and lumen of the alveoli
and moderate focal peribronchial and perivascular infiltration
(Figure 1A). The right lobes were intact in all cases.

The degree of atelectasis of the left lobe of the lungs was minimal in
the group of animals with DAD receiving dexamethasone and maximal
in case of saline administration (placebo) (Figure 1B; Table 1). In animals
treated with dexamethasone, the degree of neutrophil/mononuclear
infiltration of the walls and lumen of the alveoli was estimated at
3.6 points; focal perivascular neutrophil/mononuclear infiltration
corresponded to 3.3 points (Figure 1B; Table 1). The degree of focal
peribronchial neutrophil and mononuclear infiltration was minimal
among animals receiving tocilizumab and maximal among animals
receiving TAK-779 (Figure 1B; Table 1). Focal perivascular
neutrophil/mononuclear infiltration was also the highest in the TAK-
779-treated group (Figure 1B; Table 1). Statistically significant differences
between treated and non-treated animals were observed in the rate of
atelectasis in groups of mice receiving TAK-779 and tocilizumab.

Total lesion of the left lobe with a significant reduction in its
volume and total hypoventilation in all tested groups was observed
45 days after DAD induction (Figure 1A). Moderate focal
perivascular and insignificant focal peribronchial mononuclear
infiltration were detected. The walls and lumen of the alveoli
were also diffusely infiltrated by mononuclear cells (Figure 1B;
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FIGURE 1
Reduced peribronchial and perivascular mononuclear infiltration in the lung and mononuclear infiltration of the wall and lumen of the alveoli in the
TAK-779-treated ICRmice with DAD. (A)Histological analysis of the left lobe of the lungs of ICR mice with DAD on days 7th and 45th in comparison with
unexposed animals (gray) and mice treated by saline (control, red), tocilizumab (orange), TAK-779 (green), and dexamethasone (blue). Stained with
hematoxylin and eosin and by the Mallory method (right column). Magnification ×50, ×100, and ×200. (B) Semi-quantitative score (0–5 points) of
peribronchial and perivascular mononuclear infiltration, mononuclear infiltration into the wall, and lumen of the alveoli; atelectasis; necrosis; and fibrosis
on days 7 and 45 after DAD induction in unexposed mice (intact, gray), untreated mice (saline, red), and mice with DAD treated by tocilizumab (orange),
TAK-779 (green), and dexamethasone (blue). The Kernogan index after 45 days after DAD induction in test groups is shown in the right side. Bars represent
standard deviation. The statistically significant difference with non-treated animals with DAD (saline, red) is marked by an asterisk.
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Table 2). The lumen of a significant part of the bronchi was partially
or completely obstructed. Mononuclear infiltration of the walls and
lumen of the alveoli, as well as signs of hypoventilation in case of
dexamethasone administration, showed negative dynamics in
comparison with the non-treated group (Figure 1B; Table 2). The
latter was confirmed by the average estimated score of macroscopic
changes (5.0) in the left lobe of the animals receiving dexamethasone
(Figure 1B; Table 2). The fibrous changes in the left lobe also had a
negative trend and were estimated at 2.7 points. The Kernogan index
of dexamethasone-treated mice was comparable with the group of
animals receiving saline (0.49 ± 0.02) (Figure 1B).

Administration of tocilizumab resulted in significant
improvement in the pathomorphological findings on day 45 of the
observation in the left lobe of the lungs for all key indicators
(Figure 1B; Table 2). The average score of mononuclear infiltration
of the walls and lumen of the alveoli was estimated at 1.8 points, and
focal peribronchial and perivascular mononuclear infiltration were
estimated at 1.2 and 1.8 points, respectively. In addition, the left lobe
of the lungs participated in gas exchange as areas of atelectasis, and
fibrous changes were estimated on average at 1.6 (macroscopic
score–2.6) and 1.3 points, respectively (Table 2). The Kernogan
index evaluated in the group treated by tocilizumab had more
favorable values (0.45 ± 0.10) compared to groups of animals
treated with saline and dexamethasone (Figure 1B).

The most pronounced improvement on day 45 of the observation
was detected in the tested group treated by TAK-779 (Figure 1B;
Table 2). Macroscopic changes in the left lobe of the lungs
corresponded to 1.3. Atelectasis, according to histological data, was

estimated as 1.0. The degree of mononuclear infiltration of the walls
and lumen of the alveoli was determined at 1.3 points, while focal
peribronchial and perivascular mononuclear infiltration were
determined at 1.0 and 2.0 points, respectively. The degree of
fibrous changes in the left lobe was 1.0 points. The Kernogan
index was also the most favorable in comparison with all the
analyzed groups–0.40 ± 0.04 (Figure 1B).

Treatment by TAK-779 suppresses the
development of the cytokine storm in the
murine model of the SARS-CoV-2-related
acute respiratory distress syndrome

We next measured cytokine profiles in treated and non-treated
ICR mice with induced DAD and compared it with unexposed
animals (Figure 2A). Our data suggest that during the first 3 h,
almost all cytokines and chemokines were significantly elevated in
the plasma of mice with induced DAD compared to intact animals
(Figure 2B). Levels of IL-5, IL-12p40, tumor necrosis factor (TNF),
and interferon-gamma (IFNγ) were increased two- to five-fold; level
of IL-1a, IL-6, IL-9, IL-10, IL-12p70 and RANTES/CCL5 was
upregulated up to 10 times; and levels of IL-4, monocyte
chemoattractant protein 1 (MCP-1/CCL2, chemokine C–C motif
ligand 2), the keratinocyte chemoattractant (KC), and granulocyte
colony-stimulating factor (G-CSF) were elevated up to two orders of
magnitude in comparison with unexposed animals. Two
CCR5 ligands macrophage inflammatory proteins (MIP), namely,

TABLE 1 Left lung damage score on day 7 after DAD induction in ICR mice treated with saline, tocilizumab, TAL-779, and dexamethasone. The statistically
significant difference with non-treated animals (saline) is marked by an asterisk.

Test group Mononuclear infiltration Atelectasis Necrosis

Peribronchial Perivascular Walls and lumen of the alveoli

Intact 0 0 0 0 0

DAD + saline 2.7 ± 0.6 3.3 ± 0.6 4.3 ± 0.6 4.7 ± 0.6 0

DAD + tocilizumab 2.0 ± 0 3.3 ± 0.6 4.0 ± 0 3.7 ± 1.2 0

DAD + TAL-779 3.3 ± 0.6 4.0 ± 0 4.0 ± 0.8 3.3 ± 0* 0

DAD + dexamethasone 2.5 ± 0.5 3.3 ± 0.5 3.6 ± 0.5 3.0 ± 0.5* 0

TABLE 2 Left lung damage score on day 45 after DAD induction in ICRmice treatedwith saline, tocilizumab, TAL-779, and dexamethasone. The statistically
significant difference with non-treated animals (saline) is marked by an asterisk.

Test group Mononuclear infiltration Macroscopic
change

Atelectasis Necrosis Fibrosis

Peribronchial Perivascular Walls and lumen
of the alveoli

Intact 0 0 0 0 0 0 0

DAD + saline 2.1 ± 0.7 2.9 ± 0.6 2.9 ± 0.5 3.5 ± 0.6 2.4 ± 0.8 0.29 ± 0.08 2.0 ± 0

DAD +
tocilizumab

1.2 ± 0.5* 1.8 ± 0.5* 1.8 ± 0.8* 2.6 ± 0.4 1.6 ± 0.3 0 1.3 ± 0.3*

DAD + TAL-779 1.0 ± 0.3* 2.0 ± 0* 1.3 ± 0.4* 1.3 ± 0.4* 1.0 ± 0* 0 1.0 ± 0*

DAD +
dexamethasone

1.7 ± 0.8 2.8 ± 0.7 3.0 ± 0.8 5.0 ± 0* 2.5 ± 0.1 0 2.7 ± 0.5

Frontiers in Pharmacology frontiersin.org06

Chernov et al. 10.3389/fphar.2024.1351655

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1351655


(MIP-1α/CCL3) and (MIP-1β/CCL4) were upregulated up to three
orders of magnitude compared to the background level.
Administration of dexamethasone did not alter cytokine and
chemokine profile mice with DAD except the level of TNF,
which decreased twice in comparison with untreated animals.
Injection of tocilizumab and TAK-779 resulted in similar, 3–5-
fold downregulation of majority of cytokines except IL-6, MCP-1,
and G-CSF (Figure 2B).

Treatment by TAK-779 prevents collapse of
the injured lung in the murine model of the
SARS-CoV-2-related acute respiratory
distress syndrome

A dynamic assessment of the volume of pulmonary lobes and its
average density in Hounsfield units of the ICRmice from test groups
was performed using a CT scanner, MRS*CT/PET, on days 7, 14, 30,

and 45 after DAD induction (Figure 3A). Generally, we observed
development of the specific pattern in the left lung in all groups: total
or subtotal consolidation of the lung volume, less often mosaic-
located areas of ground-glass opacities, alveolar consolidation, and
rare areas of the intact lung tissue (Figure 3B).

Seven days after DAD induction, densities of the affected left
lung of the mice treated by saline, tocilizumab and dexamethasone
were 40.0 HU, 20.4 HU, and 33.4 HU, respectively (Figure 3S, D). In
mice treated by TAK-779, the density of the left lung was
significantly lower and equaled to −75 HU (Figures 3C, D). The
volume of the affected lung 14 days after DAD induction decreased
to less than 40% in the group of mice treated by TAK-779, whereas
non-treated animals and dexamethasone-treated mice showed 60%–

70% collapse of the left lung volume. Further monitoring of the
density and volume of the affected lung in test groups revealed rapid
recovery of the injured lung in TAK-779-treated mice, a minimally
beneficial effect of tocilizumab, and a negative influence of
dexamethasone administration. Treatment by TAK-779 first

FIGURE 2
Administration of TAK-779 decreases 3–5-fold level of serum cytokines and chemokines in ICR mice with DAD. (A) Study design: blood was
collected after 3 h post-DAD induction, and levels of cytokines and chemokines were estimated by multiplex immunoassay. (B) Levels of plasma
cytokines and chemokines (pg/mL) in ICR mice 3 h after DAD induction treated by tocilizumab (orange), TAK-779 (green), and dexamethasone (blue) in
comparison with unexposed (gray) and non-treated animals with DAD (red). Bars represent the median, interquartile range with standard deviation.
Granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC), tumor necrosis factor (TNF), interferon gamma (IFNγ), Regulated on
Activation, Normal T-cell Expressed and Secreted (RANTES/CCL5), monocyte chemoattractant protein 1 (MCP-1/CCL2), and macrophage inflammatory
proteins (MIP)–MIP-1α and MIP-1β. The statistically significant difference with non-treated animals with DAD (saline, red) is marked by an asterisk.
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FIGURE 3
Treatment by TAK-779 induces fast recovery of the injured lung in ICRmice with DAD. (A) Study design: computed tomography (CT) was performed
after days 7, 14, 30, and 45 after DAD induction. (B) Representative CT visualization ofmouse lungs after DAD induction. Subtotal consolidation of the lung
volume, less often mosaic-located areas of ground-glass opacities, alveolar consolidation, and rare areas of the intact lung tissue were observed. (C)
Representative 3D CT reconstruction of the murine lungs from different groups. The color legend for Hounsfield units is shown. Density (HU) and
volume (mm3) of murine left (D) and right (E) lungs of non-treated (Sal, red) and tocilizumab- (Toc, orange), TAK-779- (TAK, green), and dexamethasone
(Dex, blue)-treated animals. The statistically significant difference with non-treated animals with DAD is marked by an asterisk.

Frontiers in Pharmacology frontiersin.org08

Chernov et al. 10.3389/fphar.2024.1351655

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1351655


restored the caudal segments of the lung and further normalized the
segments of the apex. Parameters of the non-affected right lung of
mice from all test groups (Figure 3E) were equal to those of the
intact mice.

Discussion

In majority of clinical cases, innate and adaptive immunity
overcomes SARS-CoV-2 infection; however, some patients
develop a severe late stage, which promotes the cytokine storm
and accelerates the deterioration of patients to the ARDS/DAD
(Rondovic et al., 2022). The main pathological effect may be caused
by hypersensitivity reactions rather than the virus itself, as Zhenfei
et al. reported that formaldehyde-inactivated SARS-CoV-2 induces
ARDS in human ACE2-transgenic mice (Bi et al., 2021).

Dexamethasone has evident anti-inflammatory effects and is
widely used as an auxiliary treatment for viral pneumonia
(Andreakos et al., 2021). Low and moderate doses of
dexamethasone decrease the mortality rate in patients with a
severe form of COVID-19. However, it is not recommended for
patients with mild symptoms (Ahmed and Hassan, 2020). In
patients hospitalized with COVID-19, the use of dexamethasone
resulted in lower 28-day mortality among those who were receiving
either invasive mechanical ventilation or oxygen alone but not
among those receiving no respiratory support (Horby et al.,
2021). Interestingly, it was demonstrated that 6 mg of
dexamethasone (7–10 days) was less effective in accelerating the
recovery and reducing severity markers (CRP, D-dimer, and LDH)
than high-dose methylprednisolone (3 days), followed by
prednisone (2 weeks) (Pinzón et al., 2021). Moreover, in another
clinical study, 60-day mortality was not reduced when high-dose
dexamethasone was prescribed in patients with COVID-19-related
acute hypoxemic respiratory failure (Bouadma et al., 2022). In
another randomized controlled trial, it was found that 28-day
mortality was increased in hospitalized patients with COVID-19
pneumonia receiving high doses of dexamethasone (20 mg q. d.), in
contrast to patients receiving 6 mg of dexamethasone q. d. (Wu
et al., 2022).

On the COVID-19 model in hamsters, dexamethasone
prevented inflammation and helped preserve the integrity of the
lungs (Wyler et al., 2022). Moreover, in hamsters, dexamethasone
did not accelerate the virus replication and diminished the number
of inflammatory mediators (Wyler et al., 2022). Clinically, the
latter effect is important for preventing pulmonary edema and
enhancing gas exchange (Wyler et al., 2022). In SARS-CoV-2-
infected rhesus macaques, inhalation of a dose of 0.01 mg/kg
nanoDEX (engineered neutrophil nanovesicles to deliver
dexamethasone) reduced lung inflammation and preserved their
integrity better compared to the intravenous administration of
0.1 mg/kg dexamethasone (Meng et al., 2023). However, in the
other hamster COVID-19 model, dexamethasone administration
contributed to a decrease in the serum-neutralizing antibody and
RBD-specific antibody titers, which led to a minor growth of viral
replication (Yuan et al., 2022).

Our data suggest that dexamethasone, at least in our DAD
model and dosage regime, did not have any resulted beneficial effect
on ARDS pathology. It showed some non-statistically significant

effect revealed by histological analysis in the early period of ARDS
but failed to show any efficacy according to other evaluation
techniques. One may suggest that murine models may be
inappropriate for the testing of dexamethasone therapeutic
potential as Xu et al. showed that dexamethasone treatment in
the dosage of 2.5 mg/kg from days 3 to 14 post-inoculation has no
beneficial effect on ARDS in mice caused by the H5N1 virus (Xu
et al., 2009).

Tocilizumab was shown to be effective treatment in patients
with severe COVID-19 (Xu et al., 2020). It has a positive effect on
improving immune damage, lung functional injuries, and arterial
oxygen saturation. In addition, it was shown that tocilizumab
reduces the number of HDL-1 subfractions of cholesterol,
phospholipids, and Apo A2 and increases the levels of LDL-5,
HDL-4, IDL, VLDL-1, and VLDL-2, which helps in partially
restoring the indicators changed due to coronavirus infection
(Meoni et al., 2021). However, in the randomized trial
involving hospitalized patients with severe COVID-19
pneumonia, the use of tocilizumab did not result in
significantly better clinical status or lower mortality than
placebo at 28 days (Rosas et al., 2021). Moreover, in another
randomized clinical trial, it was shown that after tocilizumab
administration, the risk of intubation or death, disease
condition, or time to discontinuation of supplemental oxygen
did not significantly change in patients with COVID-19 (Stone
et al., 2020). In another clinical trial, it was found that 400 mg of
tocilizumab did not improve hypoxemia on days 14 or 28 and did
not change ventilator-free survival on day 14 among patients with
COVID-19 (Mehta et al., 2021). Finally, the following clinical trial
revealed that tocilizumab (8 mg/kg) may elevate mortality, and its
administration did not lead to better clinical outcomes at 15 days
(Veiga et al., 2021). In a murine model of COVID-19, it was found
that the use of interleukin-6 receptor blockers does not change the
contents of IL-1 and TNF, although it diminishes neutrophil
infiltration (Gu et al., 2020).

We showed that tocilizumab significantly decreased the release
of cytokines and chemokines and inhibited mononuclear
infiltration during DAD development. Despite several reports
claiming effects of tocilizumab in various experimental murine
models (Hu et al., 2018; Orabona et al., 2018; Wu et al., 2018;
Kamiya et al., 2019), the study by Loka et al. (2020) showed that
tocilizumab does not block IL-6 signaling in murine cells. These
data may explain the absence of tocilizumab effects on complex
injured lung restoration in our study visualized by computed
tomography.

COVID-19 may also be treated with leronlimab–a humanized
monoclonal antibody to CCR5 (PRO 140), which binds to the
extracellular loop 2 domain and the N-terminus of CCR5
(Patterson et al., 2021). Interestingly, healthy rhesus macaques
receiving 10 mg/kg or 50 mg/kg leronlimab injection had elevated
CCR5+CD4+ T-cell counts (Chang et al., 2021). Furthermore, this
drug was administered subcutaneously to COVID-19 patients on
days 0 and 7 of the study, which led to a decrease in the
inflammatory mediator IL-6 concentration, recovery of the
CD4/CD8 ratio, and a reduction in plasma viremia (pVL)
(Patterson et al., 2021). Another case study also showed a
decrease in the first and a recovery of the second indicator
(Agresti et al., 2021). In “long-term COVID-19,” leronlimab
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administered at 700 mg s.c. weekly also normalized the immune
downmodulation (Gaylis et al., 2022).

Files et al. reported that the CCR2 and CCR5 blocker
cenicriviroc reduces the infiltration of monocytes and
lymphocytes into the lung tissue (Files et al., 2022) and prevents
the replication of SARS-CoV-2 in VeroE6/TMPRSS2 cells by
inhibiting virus-dependent cell destruction (EC50 = 19 µM)
(Okamoto et al., 2020). This effect may not have a direct impact
on the virus, but the possible restriction of myeloid-derived
suppressor cells may increase the pool of effector lymphoid B
and T cells that will exhibit antiviral exposure in an indirect way
(Files et al., 2022). In one clinical trial, cenicriviroc (100 and 200 mg)
was effective and well-tolerated by HIV-1-infected patients
(Thompson et al., 2016). Thus, a growth in the concentration of
cenicriviroc contributed to the improvement of virological outcomes
(Thompson et al., 2016). In another clinical trial, cenicriviroc
(150 mg) ameliorated fibrosis, prevented the progression of
steatohepatitis, and diminished the indicators of systemic
inflammation in patients with non-alcoholic steatohepatitis
(Friedman et al., 2018). In the third clinical trial in patients with
the same disease, cenicriviroc (150 mg) also precluded systemic
inflammation and fibrosis by reducing C-reactive protein, IL-6,
IL-1β, and fibrinogen levels (Ratziu et al., 2020). However, a
randomized clinical trial revealed that hospitalized COVID-19
patients treated with cenicriviroc did not recover faster than
those patients who received a placebo (O’Halloran et al., 2023).
Another low-weight CCR5 antagonist, maraviroc, was also applied
for COVID-19 treatment. This drug is quite promising due to its low
protein-binding efficiency and high bioavailability (Shamsi et al.,
2020). At the same time, maraviroc strongly inhibits SARS-CoV-
2 Mpro and suppresses the coronavirus infection development
(Shamsi et al., 2020). In “long-term COVID-19,” the
combination of maraviroc and pravastatin improved clinical
indicators among 18 patients in a case study (Patterson et al.,
2023). As of today, two clinical trials (NCT04435522 and
NCT04710199) have been completed and two
(NCT04441385 and NCT04475991) have been terminated.
Nevertheless, in the African green monkey kidney cell model of
COVID-19, it was demonstrated that the administration of
maraviroc reduces the viral load by precluding membrane fusion,
which affects the reproduction and dissemination of the coronavirus
(Risner et al., 2022). In the same study, it was revealed that
maraviroc suppresses S-protein transport to the extracellular
surface of the cell.

Our data uniquely read that the selective CCR5/
CXCR3 inhibitor TAK-779 is highly efficient in the prevention
of the ARDS in our murine DAD model. Its therapeutic effect is
reasoned by a milder course of the inflammatory process in the
lungs with early and effective involvement of the affected lung lobe
in the systemic gas exchange. These suggestions are confirmed by a
low degree of fibrosis and volume loss of the injured lung,
decreased mononuclear infiltration, and the rate of density
restoration among animals treated with TAK-779. A more
favorable Kernogan index observed in this group is as an
important quantitative indicator of the capacity of small-circle
vessels and, as a consequence, an indicator of the load on the
systemic blood flow. Our study indicates that TAK-779 can
effectively alleviate DAD and lung collapse in mice by its direct

inhibitory effects on inflammation, cytokine release, and immune
cell migration. The CXCR3 and CCR5 receptors in humans are
actively involved in immune hyperactivation during SARS-CoV-
2 infection (Chua et al., 2020). The limitation to our study is that
the acute phase of LPS-induced ARDS is 12–24 h, whereas the
SARS-CoV-2-induced lung injury reaches its peak in 72–120 h.
Thus, in case of COVID-19, TAK-779 may be potentially
administrated daily for 4–5 days directly after clinical symptoms
of SARS-CoV-2 infection or for the same period in case of the
critical disease onset.

Conclusion

The pathogenesis of the SARS-CoV-2 infection is tightly linked
with the cytokine storm, resulting in the enormous release of
cytokines and chemokines. Its clinical manifestation, the acute
respiratory distress syndrome (ARDS), may be caused by self-
sustaining hypersensitivity reactions, leading to lung collapse
even after virus clearance. Here, we report that two macrophage
inflammatory proteins, namely, MIP-1α/CCL3 and MIP-1β/CCL4,
seem to orchestrate mononuclear infiltration into the lungs during
diffuse alveolar damage (DAD) in ICR mice—our murine model of
ARDS caused by SARS-CoV-2. Inhibition of the C–C chemokine
receptor 5 (CCR5)—a parental receptor for MIP-1α and MIP-1β, by
the nonpeptide antagonist TAK-779—results in significant
amelioration of DAD in terms of reduced mononuclear
infiltration into the lung, suppressed cytokine storm, and restored
physiology of the affected lung, according to computed tomography
data. We finally suggest that targeted inhibition of CCR5 should be
further elucidated as a safe and effective approach to overcome
severe viral pneumonia in humans.
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