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Background: Immune checkpoint inhibitors (ICIs) have revolutionized cancer
treatment; however, a significant proportion of gastric cancer (GC) patients do
not respond to this therapy. Consequently, there is an urgent need to elucidate
the mechanisms underlying resistance to ICIs and identify robust biomarkers
capable of predicting the response to ICIs at treatment initiation.

Methods: In this study, we collected GC tissues from 28 patients prior to the
administration of anti-programmed death 1 (PD-1) immunotherapy and
conducted protein quantification using high-resolution mass spectrometry
(MS). Subsequently, we analyzed differences in protein expression, pathways,
and the tumor microenvironment (TME) between responders and non-
responders. Furthermore, we explored the potential of these differences as
predictive indicators. Finally, using machine learning algorithms, we screened
for biomarkers and constructed a predictive model.

Results: Our proteomics-based analysis revealed that low activity in the
complement and coagulation cascades pathway (CCCP) and a high
abundance of activated CD8 T cells are positive signals corresponding to ICIs.
By using machine learning, we successfully identified a set of 10 protein
biomarkers, and the constructed model demonstrated excellent performance
in predicting the response in an independent validation set (N = 14; area under the
curve [AUC] = 0.959).

Conclusion: In summary, our proteomic analyses unveiled unique potential
biomarkers for predicting the response to PD-1 inhibitor immunotherapy in
GC patients, which may provide the impetus for precision immunotherapy.
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1 Introduction

Unprecedented advances have been made in cancer treatment
with the use of immune checkpoint inhibitors (ICIs). However, the
response to ICIs is limited to a subset of patients (Morad et al., 2021).
Different studies on ICI treatment revealed a highly variable
objective response rate, ranging from 10% to 23% in gastric
cancer (GC) patients (Kang et al., 2017; Shitara et al., 2018;
Huang et al., 2019). Therefore, it is urgent to identify the
mechanism of resistance to ICI treatment and discover reliable
biomarkers capable of predicting the treatment response at the
onset of therapy.

Various factors play a crucial role in influencing the response to
ICIs. Among these, the expression, landscape, and composition of
neoantigens within tumors emerge as robust indicators of the
response (McGranahan et al., 2016; Morad et al., 2021).
Additionally, oncogenic signaling, metabolic pathways, and their
associated mutations have been conclusively demonstrated to drive
immunogenic responses across diverse cancer types. Recent studies
highlight the potential involvement of extracellular vesicles,
specifically the exosome subset, in tumor immunity and
resistance to ICIs (Chen et al., 2018; Poggio et al., 2019).
Growing evidence suggests that the contribution of the tumor
microenvironment (TME), encompassing stromal cells and
immune cells, governs immune evasion and resistance to ICIs
(Morad et al., 2021).

Biomarkers predictive of the ICI response are under
investigation. Many biomarkers, including tumor mutation
burden, programmed cell death 1 ligand 1 (PD-L1) expression,
microsatellite instability, and Epstein–Barr virus infection status,
identify susceptibility to PD-1/PD-L1 inhibitors (Kim et al., 2018;
McGrail et al., 2021). However, the results of several clinical trials
using these biomarkers at an individual level are not consistent;
some are even contradictory (Ji et al., 2019; Kim et al., 2019; Di
Bartolomeo et al., 2020). Therefore, to date, no single biomarker is
available for adequate patient stratification (not only in GC) due to
the complexity of the immune response to cancer.

Machine learning has exhibited significant potential in predicting
responses to ICIs, especially when applied to omics data (Polano et al.,
2019; Lu et al., 2020; Sung and Cheong, 2022). Mass spectrometry
(MS)-based proteomics techniques provide accurate, specific, and
high-throughput quantification capabilities. Moreover, the
proteomic layer more precisely reflects cellular function. Despite
these advantages, limited research has explored the application of
MS-based proteomics techniques to identify predictive biomarkers for
ICI response (Longuespée et al., 2023). To the best of our knowledge,
no study has yet integrated machine learning and proteomics in the
context of GC for this purpose.

In this study, clinical GC tissue samples were collected from a
cohort of 28 GC patients before initiating treatment with
camrelizumab. Through proteomic data analysis, we aimed to
elucidate the underlying mechanisms that may influence patient
response, including relevant signaling pathways and the TME.
Additionally, by employing machine learning techniques, we
successfully identified a panel of biomarkers and developed a
robust prediction model, which was subsequently validated on an
independent dataset. We are confident that the findings from this
study will contribute to the advancement of personalized cancer

treatment and ultimately lead to improvements in patients’
quality of life.

2 Results

2.1 Clinical–pathological features and
sample processing of the GC patients

Between June 2019 andMay 2021, a total of 28 GC patients were
enrolled in this study. Following the completion of immunotherapy,
17 patients exhibited a favorable response to PD-1 inhibitors, while
the remaining 11 patients did not manifest a similar response. As
shown in Table 1, the median age of the enrolled patients was
59 years (range: 37–78 years), with 64.2% being men. Tumors had
invaded the outer lining of the stomach (T4) in 85.7% of cases, and
metastasis to other parts of the body (M1) was observed in 78.5% of
cases. No significant association was found between the response to
immunotherapy and clinical–pathological characteristics.

Archival pre-treatment tissue specimens were available for all
patients. The protein was extracted from formalin-fixed, paraffin-
embedded (FFPE) tissues and subjected to quantitative analysis using
MS. Stringent quality control measures were implemented to ensure the
reliability of the data (see Methods for details, Supplementary Figure S1).
Details of the comprehensive study design are given in Figure 1.

2.2 Differences in protein expression
between responders and non-responders to
immunotherapy

To gain an insight into the proteomic profile differences between
responder and non-responder groups, we conducted differential
expression analysis. First, our principal component analysis (PCA)
revealed no significant outliers and minor intergroup variance,
suggesting limited distinction among the sample sets (Figure 2A).
Subsequently, by employing Student’s t-test with a statistical
threshold (p-value < 0.05; fold change > 1.2 or < 1/1.2), we
identified 320 differentially expressed proteins (DEPs), consisting
of 139 upregulated and 181 downregulated proteins in non-
responders (Figure 2B; Supplementary Table S5). The most
significantly altered DEPs included ERO1A, NCEH1, THEM6,
JUP, DSP, LYAR, TFRC, IGF2BP2, COL12A1, CGN, C7, OGN,
COL14A1, CYBRD1, FBLN5, ACTA1, TMEM119, VWF, GFAP,
RARRES2, and FGA. These protein expression profiles across
diverse patients are illustrated in Figure 2C. Notably, in non-
responders, genes exhibiting higher expression levels tended to
correlate with poorer prognoses in GC patients (Supplementary
Figure S3). Importantly, upon incorporating validation data from an
external experiment following a similar methodology, we observed a
strong correlation and concordance in our findings (Figure 2D).

2.3 Functional enrichment analysis
with DEPs

To gain a deeper understanding of the pathways associated with
these DEPs, we conducted enrichment analyses using Gene
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Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Gene Set Enrichment Analysis (GSEA). The
outcomes of the GO enrichment analysis unveiled that the DEPs
are primarily implicated in processes such as “complement
activation,” “humoral immune response,” “regulation of blood
coagulation,” “collagen-containing extracellular matrix,” and
“blood microparticle” pathways (Figure 3A; Supplementary Table
S6). Corresponding with the findings from both KEGG (Figure 3B;
Supplementary Table S7) and GSEA (Figure 3C; Supplementary
Table S8), the complement and coagulation cascades pathway
(CCCP) emerged as notably significant. As shown in Figure 3D,
nearly all genes within the CCCP exhibited upregulation in non-
responders. A detailed exploration of the inter-regulatory
relationships among proteins within the CCCP is given in
Supplementary Figure S4.

2.4 Impact of the TME on the response to
immunotherapy

The hallmarks of the response and resistance to the immune
checkpoint blockade were amplified by a cross-talk between tumor
cells and stromal and immune cells within the TME (Morad et al.,
2021). Therefore, we observed an association between the ICI
response and the TME. To investigate this relationship, we

employed single-sample Gene Set Enrichment Analysis (ssGSEA)
to assess the differential infiltration levels of various immune cell
types (He et al., 2018). We observed significant differences in the
abundance of certain tumor-infiltrating immune cells, including
activated B cell, activated CD8 T cell, central memory CD8 T cell,
memory B cell, natural killer T cell, and plasmacytoid dendritic cell,
between the two groups. Notably, activated CD8 T cells showed
consistency in the validation data (Figure 4;
Supplementary Table S9).

2.5 Prediction of patient response to
immunotherapy

Although some genes with significant changes also exhibit
discriminative patterns (Supplementary Figure S5), individual
indicators tend to lack robustness. To improve the biological
comprehensibility of our predictive model, we evaluated the
potential of utilizing pathway enrichment scores and levels of
immune cell infiltration as predictors of patient response to
immunotherapy. To provide clarity, we plotted the receiver
operating characteristic (ROC) curves for the CCCP and
activated CD8 T-cell infiltration. With the CCCP as the
predictor, the AUC values for our data and validation data were
0.82 and 0.78, respectively (Figures 5A, B). With the level of

TABLE 1 Baseline characteristics of gastric cancer (GC) patients.

Progressors (n = 11) Responders (n = 17) p-value

Sex (%)

Female 4 (36.4) 6 (35.3) 1

Male 7 (63.6) 11 (64.7)

Age [mean (SD)] 57.91 (11.72) 59.00 (8.69) 0.779

Degree of differentiation (%)

Moderate–poorly differentiated 4 (36.4) 7 (41.2) 0.497

Moderately differentiated 1 (9.1) 4 (23.5)

Poorly differentiated 6 (54.5) 6 (35.3)

Lauren’s criteria (%)

Diffuse 8 (72.7) 7 (41.2) 0.206

Intestinal 1 (9.1) 6 (35.3)

Mix 2 (18.2) 4 (23.5)

T (%)

1 0 (0.0) 1 (5.9) 0.361

2 0 (0.0) 3 (17.6)

4 11 (100.0) 13 (76.5)

N (%)

0 1 (9.1) 7 (41.2) 0.215

1 3 (27.3) 5 (29.4)

2 3 (27.3) 1 (5.9)

3 4 (36.4) 4 (23.5)

M (%)

0 1 (9.1) 5 (29.4) 0.355

1 10 (90.9) 12 70.6)
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activated CD8 T-cell infiltration as the predictor, the AUC values for
our data and validation data were 0.65 and 0.92, respectively
(Figures 5C, D).

While both predictors show some potential for the response to
immunotherapy, we further sought to harness the power of machine
learning algorithms to achieve superior predictive performance.
Specifically, we implemented support vector machines (SVMs)
and optimized the performance of our predictive model
(Supplementary Table S10). Table 2 shows the performance
achieved by our predictive model on the different datasets. The
ROC curves show that our model achieved AUC values of 0.97 and
0.96 in our data and the validation data, respectively, indicating
excellent prediction accuracy and robustness across datasets
(Figures 5E, F).

3 Discussion and conclusion

Immunotherapy has emerged as a promising approach for
treating various malignancies, leveraging the patient’s immune
system to target and eliminate cancer cells. However, not all
patients respond uniformly to immunotherapy, and predicting
individual treatment responses remains a challenge. Therefore,
there is a need to identify more convenient and reliable
biomarkers for predicting the benefits of ICIs in clinical practice.

We have pinpointed several differentially expressed proteins
with high credibility between responders and non-responders to
immunotherapy (Figure 2C). Notably, the expression of the ERO1A
protein was significantly elevated in responders. In vivo studies

demonstrated that ERO1A overexpression promoted tumor growth
by suppressing antitumor immunity, acting in collaboration with
protein disulfide isomerase (Kukita et al., 2015). The inhibition of
ERO1A in tumors might have a synergetic antitumor effect on the
immune checkpoint blockade by turning the tumor immunogenic
and removing immune-suppressive signals, thereby restoring the
antitumor capacity of the T cells in tumor hosts (Liu et al., 2023).
Therefore, individuals with higher ERO1A levels may exhibit
increased responsiveness to ICIs. ERO1A not only serves as a
predictive biomarker but also emerges as a promising therapeutic
target for cancer treatment (Johnson et al., 2020). Furthermore, in
melanomas, the systemic levels of VWF antigen were measured,
confirming VWF as a biomarker of ICI response and overall
prognosis (Stadler et al., 2023). Our results also underscore the
robust predictive power of VWF for ICIs (Supplementary Figure S5).
Similarly, the high levels of GFAP in non-responders also deserve
attention. Our findings also validate GFAP as a biomarker for both
ICI response and prognosis. These robust results not only provide
new evidence for existing studies but also support the value of the
other new markersidentified. These molecules hold promise as
potential predictive factors for immunotherapy or as novel
therapeutic targets.

Our results show that DEPs are enriched in the CCCP.
Previously, many studies of preclinical models of lung, colon, and
liver cancers have indicated that inflammatory mediators derived
from the complement system, such as C5a, together with PD-1
blockade, markedly reduce tumor growth and metastasis, leading to
prolonged survival by enhancing antitumor CD8 T-cell responses
(Wang et al., 2016; Ajona et al., 2017; Zha et al., 2017). Moreover,

FIGURE 1
Schematic representation of the experimental design in this study.
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cancer cells can exploit the CCCP to shape the TME, thus impacting
the efficacy of ICIs (Afshar-Kharghan, 2017; Ruf and Graf, 2020).
Another study directly proved that CCCP risk score is an
independent biomarker that predicts the efficacy of ICIs in
metastatic urothelial cancer patients (Gong et al., 2023). Our
results suggest that the CCCP may serve as a potential
biomarker in GC.

The TME influences the response to ICIs. ICIs take advantage of
immune cell infiltration in the tumor to reinvigorate an efficacious
antitumoral immune response (Petitprez et al., 2020; Zhang and
Zhang, 2020). By exploring the TME, we found that natural killer
T cells, activated CD8 T cells, and memory B cells have an impact on
the response to immunotherapy in GC patients. However, only

activated CD8 T cells showed consistency between our data and the
validation data. It is clear that the presence of infiltrating CD8 T cells
in combination with increased PD-L1 expression/amplification is
positively associated with the therapeutic efficacy of the PD-1
blockade (Raskov et al., 2021; Chen et al., 2022). In a study of
various cancers, the abundance of CD8 T cells within a tumor was
found to be the best predictive factor for the response to anti-PD-1/
PD-L1 therapy (Lee and Ruppin, 2019). As expected, when protein
data were used to infer the extent of CD8 T-cell infiltration, excellent
response prediction ability was also shown in GC. However,
different types of natural killer T cells, primarily type I and type
II, may play completely opposite roles in tumor progression (Terabe
et al., 2000; Terabe et al., 2003; Pilones et al., 2012; Robertson et al.,

FIGURE 2
Identification and profiling of differentially expressed proteins (DEPs). (A) The principal component analysis (PCA) illustrates the overall variance
between the two groups. (B) Volcano plot demonstrating 320 DEPs. The red and blue dots indicate proteins with high and low expressions in non-
responders, respectively. (C)Heatmap displaying the 21 proteins that significantly differed (p < 0.05; fold change > 2 or < 1/2) between the two groups. (D)
Correlation analysis of DEPs between our data and validation data. The green and gray dots denote consistent and opposing directions of change,
respectively. Cor, correlation coefficient.
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2014; Altman et al., 2015; McEwen-Smith et al., 2015; Nair and
Dhodapkar, 2017). Therefore, interpreting the degree of natural
killer T-cell infiltration in the context of immunotherapy responses
necessitates a more in-depth investigation.

While some molecules and pathways have demonstrated the
ability to predict the response to ICIs, a comprehensive and diverse
panel of markers providing comparable prognostic accuracy is
desirable for clinical applications. Leveraging the capabilities of
machine learning, we developed a prediction model utilizing the
expression of a specific set of 10 proteins, namely, COL15A1,
SAMHD1, DHX15, PTDSS1, CFI, ORM2, VWF, APOA1, EMC2,
and COL6A2 (Supplementary Figure S6). The model exhibited
robust predictive performance (Figure 5E). Upon validation set
assessment, a clear differentiation between responders and non-
responders was observed (p = 0.003).

While we have demonstrated consistency in the variation
between our data and the validation cohort data (Figure 2D), we
recognize that the limitations due to the small sample size and the
constraints of proteomics technology are significant. Specifically, the
limited number of analyzable and overlapping proteins identified
across different experimental projects resulted in discrepancies
when performing downstream analysis using the DEPs from each
dataset (Figure 4). Furthermore, there is a scarcity of available

proteomic datasets with the same experimental goals as ours,
which restricts the ability to further validate the robustness of
our model. Finally, despite the model presenting high sensitivity
in predicting immunotherapy efficacy, its applicationmay be limited
across diverse cancer types. Tumor heterogeneity and tissue
specificity are presumed to be the main reasons. Addressing these
issues would require larger sample sizes and more independent
datasets. In the future, we will collect many GC samples before
immunotherapy to determine the robustness of the model for
consequent clinical practice.

Overall, our study revealed that proteomics data and the machine
learning method play a critical role in identifying predictive
biomarkers that can aid in stratifying patients for immunotherapy.
We acknowledge the need for more extensive and in-depth validation
studies to translate these findings into clinical applications.

4 Materials and methods

4.1 Clinical trial protocol

This study was a retrospective study involving 28 enrolled
patients with advanced GC between June 2019 and May 2021 at

FIGURE 3
Functional enrichment analysis. (A) Gene Ontology (GO) enrichment analysis in DEPs. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis in DEPs. (C) Gene Set Enrichment Analysis (GSEA) in all proteins. (D) Heatmap of DEPs within the complement and coagulation
cascades pathway (CCCP) between the responders and non-responders.
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the First Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China. The study obtained the ethical approval of our
hospital with number 2020-KY-386. All cases were reexamined
independently by senior pathologists, and histological diagnosis
was performed based on the WHO classification of central
nervous system tumors. The clinical data, including age, sex,
treatment, body mass index, and pathology results, were obtained
from the medical records of the enrolled patients. All patients and
their families provided informed consent. The clinical information is
shown in Supplementary Table S1. Patients use camrelizumab
(AiRuiKa™), a PD-1 inhibitor being developed by Jiangsu
Hengrui Medicine Co., Ltd. (Markham and Keam, 2019),
according to the protocol. Responders were defined as patients
with a RECIST complete response (CR) or partial response (PR),
while non-responders were defined as those with progressive disease
(PD) or stable disease (SD).

4.2 Tumor sample collection

Tumor tissues were obtained any time before initiation of study
treatment. The freshly acquired tissues were first rinsed with

physiological saline and subsequently fixed in a 10% formalin
solution, followed by embedding in paraffin wax.

4.3 MS-based protein quantification

After protein extraction, trypsin digestion, MS analysis, and
database search, we obtained the raw data of proteomics.
Supplementary Information provides more detailed processing
information (Supplementary Method).

4.4 Quality control and missing value
imputation

Following the database search usingMaxQuant, 5,107 proteins were
identified, of which 4,061 were quantified (Supplementary Table S2). On
average, 3,061 proteins per sample were quantified (Supplementary
Figure S1A; Supplementary Table S3). Subcellular distribution analysis
conducted through the Hum-mPLoc 3.0 database (Zhou et al., 2017)
revealed that the majority of identified proteins were cytoplasmic,
followed by nuclear and plasma membrane proteins. This distribution

FIGURE 4
Comparison of the relative abundance of immune cell infiltration in the tumor. *p < 0.05 and **p < 0.01.
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aligns with existing references and likely reflects the actual distribution
within the tissue, without any subcellular bias (Supplementary Figure
S1B). To control the variation among samples, 28 samples were assessed
using Pearson’s correlation. The results displayed high correlations
among samples with an average Pearson’s correlation coefficient of
0.827 (Supplementary Figure S1C). To identify samples with
abnormal protein abundance distributions, the log2-transformed
protein intensities were analyzed. The violin plot demonstrates that
each sample exhibited a similar distribution when log2-transformed
(Supplementary Figure S1D). Quantitative proteomics experiments
based on MS frequently generate data with missing values, which can
profoundly affect downstream analyses. To address this issue, we
evaluated several methods using NAguideR (Kang et al., 2017) and
selected the “SeqKNN” method for imputing missing values
(Supplementary Figure S2). This imputation process resulted in a

dataset consisting of 2,884 proteins for further downstream analysis
across all samples (Supplementary Table S4).

4.5 Validation data processing

The validation cohort (https://www.iprox.cn//page/subproject.
html?id=IPX0004819001) is a group of GC patients treated with
anti-PD1 therapy, including seven responder cases and seven non-
responder cases (Shi et al., 2023). The sample is also FFPE, and the
proteins were quantified using an MS-based label-free method. To
ensure data consistency, we downloaded the raw data and re-
performed database search and quantification using MaxQuant
with the same parameters. After database searching,
4,263 proteins were quantified. After missing value imputation,
2,472 proteins were used for further downstream analysis.

4.6 Statistical analysis

All statistical analyses were performed using R software. The
code for proteomics-based analysis is available at https://github.

FIGURE 5
Performance of the prediction model in our data and validation data. (A,B) Representative receiver operating characteristic (ROC) curve with the
CCCP score as the predictor, and comparison of the predicted score. (C,D) ROC curve with the score of the activated CD8 T-cell signature as the
predictor, and comparison of the predicted scores. (E,F) ROC curve of the machine learning prediction score, and comparison of the predicted scores.

TABLE 2 Performance metrics for the predictive model.

Accuracy Precision Recall F1 score

Our data 0.893 0.900 0.818 0.857

Validation data 0.857 1.000 0.714 0.833
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com/longfei8533/Predicting-Response-to-PD-1-Inhibitor. The
relationships between the treatment response and
clinical–pathological features were evaluated using Wilcoxon’s
test for continuous variables and Fisher’s exact test for
categorical variables. Pearson’s correlation coefficient was used in
the correlation analysis. We used two-sided Student’s t-test to
evaluate the difference in the log2-transformed protein intensity
between groups. The R “clusterProfiler” package (Cell, 2023) was
used for GO and KEGG functional enrichment analyses and GSEA.

4.7 Immune cell abundance inference

We selected immune-related signatures representing
28 different types of immune cells from the study by
Charoentong et al. (2017). To estimate the relative abundance of
immune cell infiltration in the tumor based on protein intensity, we
utilized the Gene Set Variation Analysis (GSVA) package
(Hänzelmann et al., 2013) with the ssGSEA method (Barbie
et al., 2009). To compare the differences between responders and
non-responders, we conducted unpaired one-sided Student’s t-tests.

4.8 Construction of prediction models

For the CCCP predictor, we selected the “KEGG_
COMPLEMENT_AND_COAGULATION_CASCADES” gene set
from MSigDB (Liberzon et al., 2011). For the activated CD8 T-cell
predictor, the signature gene set from the study by Charoentong was
used. Both prediction methods through the utilization of ssGSEA were
used to infer the relative activity of pathway.

Considering the small-sample size issue, we utilized SVM as a
machine learning approach from the “e1071” package to predict the
patient response to medication. Initially, we aligned our dataset with
the validation set by selecting overlapping analyzable proteins and
then normalized the data using these proteins. Subsequently,
important features were chosen using Boruta (Kursa and
Rudnicki, 2010), resulting in the retention of 10 proteins as
features. We conducted model training after adjusting the SVM
parameters; please refer to the Supplementary Material for the
specific parameter values. The classifiers developed from the
training cohort were then applied to the validation cohort, and
the AUC of each classifier was calculated.
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