Check for updates

OPEN ACCESS

EDITED BY Karim Hosni, Institut National de Recherche et d'Analyse Physico-Chimique (INRAP), Tunisia

REVIEWED BY Guangqiang Ma, Jiangxi University of Traditional Chinese Medicine, China Sen Zhang, Nanjing University of Chinese Medicine, China

*CORRESPONDENCE Xin-Cai Hao, in haoxincai666@163.com Yong-Heng Zhao, in 20140515@hbmu.edu.cn

 $^{\mathrm{t}}\mathrm{These}$ authors have contributed equally to this work

RECEIVED 04 December 2023 ACCEPTED 16 February 2024 PUBLISHED 14 March 2024

CITATION

Wang B-L, Ge Z-K, Qiu J-R, Luan S-Q, Hao X-C and Zhao Y-H (2024), *Sedum aizoon* L.: a review of its history, traditional uses, nutritional value, botany, phytochemistry, pharmacology, toxicology, and quality control. *Front. Pharmacol.* 15:1349032. doi: 10.3389/fphar.2024.1349032

COPYRIGHT

© 2024 Wang, Ge, Qiu, Luan, Hao and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

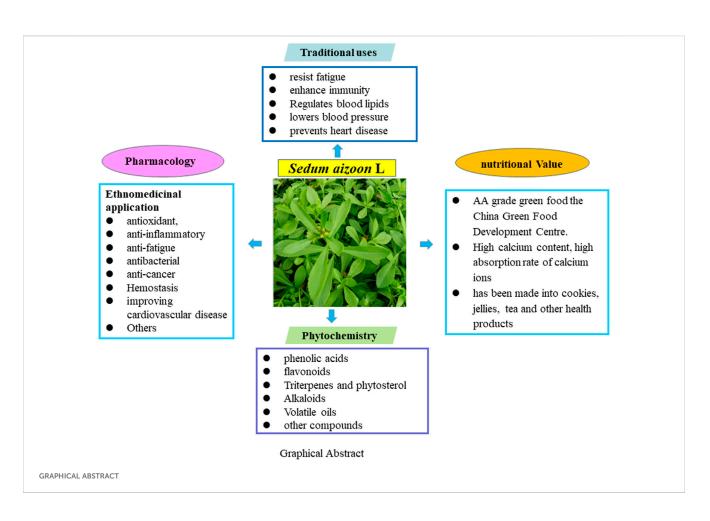
Sedum aizoon L.: a review of its history, traditional uses, nutritional value, botany, phytochemistry, pharmacology, toxicology, and quality control

Bai-Ling Wang^{1,2,3}, Zhen-Kai Ge¹, Jing-Ran Qiu¹, Si-Qi Luan¹, Xin-Cai Hao^{1*†} and Yong-Heng Zhao^{1,2,3}*[†]

¹School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China, ²Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, China, ³Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Shiyan, China

In China, Russia, Mongolia, Japan, North Korea, and Mexico, *Sedum aizoon* L. (*S. aizoon*) is used as an edible plant. Up to now, over 234 metabolites, including phenolic acids, flavonoids, triterpenes, phytosterols, and alkaloids, among others, have been identified. In addition to its antioxidant, anti-inflammatory, antifatigue, antimicrobial, anti-cancer, and hemostatic activities, *S. aizoon* is used for the treatment of cardiovascular disease. This paper provides an overview of the history, botany, nutritional value, traditional use, phytochemistry, pharmacology, toxicology, and quality control of *S. aizoon*.

KEYWORDS


Sedum aizoon L., pharmacological activities, quality control, hemostatic activity, active metabolites

Highlights

- *S. aizoon* L. is frequently prescribed in both China and other countries as a traditional folk herbal remedy for various diseases
- This review contributes to updating the herbalogical textual research, traditional use, botany, phytochemistry, pharmacology, toxicity, and nutritional value and quality control of S. aizoon L.
- In earlier literature, there was no systematic review of S. aizoon L

1 Introduction

Sedum aizoon L. (Chinese name:景天三七) is a perennial herbaceous plant that is widely distributed in China, Russia, Mongolia, Japan, North Korea, and Mexico. It is a member of the Sedum genus in the Sedum family (Crassulaceae) (Guo and Lin, 2007). Its name is also consistent with the plant name recorded in "The Plant List" (http://www.theplantlist.org), which is now incorporated into the requirement for traditional medicine in the provinces of Jiangsu and Fujian (Jia et al., 2014). It is one of the renowned "Taibai seven medicine (太白七药)" in the Qinling Mountains, which has the effects of dispersing blood stasis, stopping bleeding, tranquilizing the mind, detoxifying, and analgesia, and is used in the treatment of various kinds of bleeding, palpitations, and insomnia. Growing in

the natural environment, *S. aizoon* is a unique pest-free plant that does not require pesticides during its whole phenological cycle and has been designated as AA grade green food by the China Green Food Development Center. Its fresh stems and leaves are consumed as vegetables (Xue, 2015).

Despite the fact that the phytochemistry and ethnopharmacology of *S. aizoon* have been previously reviewed, a comprehensive study linking its bioactive metabolites with its pharmacological properties is lacking. Therefore, this paper provides an overview of the history, botany, nutritional value, traditional use, phytochemistry, pharmacology, toxicology, and quality control of *S. aizoon*.

2 Materials and methods

Information about *S. aizoon* was gathered from scientific literature sources, including PubMed, Baidu Scholar, Google Scholar, Web of Science, SciFinder, CNKI, Wanfang, the Plant List (www.theplantlist.org), and books. The history, nutritional value, traditional uses, botany, phytochemistry, pharmacology, toxicology, and quality control or a combination between them was used as keywords to search for data up to July 2023. Approximately, 767 research studies of *S. aizoon* were gathered from various databases. With the removal of duplicate literatures, 300 literatures were selected according to research purpose, relevance, and article type. The articles which contained information apart from that mentioned above or written in

languages rather than English were also excluded. ChemBioDraw Ultra version 14.0 was used to draw chemical structures.

3 History and traditional uses

3.1 History

S. aizoon was first recorded in "Jiu Huang Ben cao" (救荒本草) (Ming Dynasty), which is the earliest book with agronomy and botany as its monograph on the history of China. Later, it was also included in many other famous works on Chinese herbal medicine, including "Wild Vegetables Bo lu" (野菜博录) (Ming Dynasty), "Plants Ming Shi Tu Kao" (植物名实图考), and "Discussion on varieties of Chinese medicinal materials" (中药材品种论述).

The medicinal parts of *S. aizoon* were roots and grass in *S. aizoon*, and *S. kamshaticum*. *S. aizoon* has more than 60 synonyms and is distributed in more than 20 provinces or autonomous regions. In addition, the herb and the syrup were included in the Pharmacopoeia of the People's Republic of China (Part I) (1977 edition) (Chinese Pharmacopoeia Committee, 2005).

3.2 Traditional uses

In folk medicine, the flat and sweet whole herb and the roots of *S. aizoon* are widely used for dispersing blood stasis and stopping

FIGURE 1 Morphological characteristics of *S. aizoon*: (A) leaves, (B) roots, (C) dry drug, (D) buds, and (E) whole plant.

blood bleeding. For instance, daily administration of 60-90 g of S. aizoon decoction can treat bleeding symptoms, including hemoptysis, bleeding gums, epistaxis, gingival bleeding, and internal bleeding. The fresh juice was effectively used for the treatment of leukemia, aplastic anemia, thrombocytopenic purpura, hemoptysis, and different forms of bleeding (i.e., gingival, digestive tract, and hematuria) (Chinese herbal medicine research group, 1971). In addition, ancient medical classics, such as Li Shizhen's "Compendium of Materia Medica" (本草纲目), Chen Shiduo's "New Compilation of Materia Medica" (本草新编), and Zhang Xichun's "Intergrating Chinese And Western Medicine" (医学衷中参西录), explicitly stated that S. aizoon had good hemostasis and analgesic function, which was known as "the god medicine for hemostasis" (止血神药). It is also used as a heart and mind tranquillizing agent with an excellent effect on hysteria palpitation, restlessness, hypertension, and rheumatic heart disease (Chen, 2003). Likewise, the detoxifying and clearing heat effects have also been reported.

Of note, *S. aizoon* has a long history as both an edible and medicinal herb. For example, vegetables with *S. aizoon*'s stems and leaves as metabolites have good nutritional value. "Jiu Huang Ben Cao" (救荒本草) in the Ming Dynasty stated that the regular consumption of the fresh, tender stems and leaves of *S. aizoon* can promote blood circulation and calm the heart.

4 Nutritional value

The tender stems and leaves contain moisture (87 g), protein (2.1 g), fat (0.7 g), carbohydrate (8.0 g), crude fiber

(1.5 g), ash (1.2 g), energy (196.65 KJ), Ca (315 mg), P (39 mg), Fe (3.2 mg), carotene (2.54 mg), vitamin B1 (0.05 mg), vitamin B2 (0.07 mg), vitamin PP (90 mg), and vitamin C (90 mg) (Yi, 2000; Liu et al., 2012). Owing to its unique aroma and taste, S. *aizoon* is used for the preparation of cookies, jellies, and tea (Wang, 2013).

5 Botany

5.1 Geographical repartition

S. aizoon belongs to the genus *Sedum* of the *Crassulaceae* family. There are approximately 600 species widely distributed in the temperate and subtropical regions of the northern hemisphere with Mexico being the largest center of origin and diversity of *Sedum* species.

5.2 Morphology

S. aizoon is an annual or perennial, succulent herb, growing in clusters and has a strong ability to bifurcate. S. aizoon has coarse, woody rhizomes that resemble ginseng in form. The stems are erect, cylindrical, and glabrous, which can reach heights of 15-50 cm. At each node, the stems carry just one leaf, which is nearly opposite on both sides. The leaves are 2.5-5 cm long, 5-12 mm wide, obovate or long oval in shape, and broad and thick with more juice. Additionally, they feature a cuneate base, a serrated border toward the apex, a moderately rounded top, and few sessile leaves. The loose, terminal verticillaster contains ten stamens that are around the same length as the petals, five distinct pistils that are slightly longer than the stamens, five orange-yellow petals with lancolate, sharp tips, and five sepals with blunt ends. Follicles are either reddish or brown in color and are grouped in a star pattern. Seeds are obovate, smooth, have wings along the edge, and have a wider apical. Flowers usually bloom in summer. The photos of S. aizoon are pictured and shown in Figure 1.

6 Phytochemistry

Up to now, more than 234 metabolites, including flavonoids (1-48), phenolic acids (49-78), triterpenes and phytosterols (79-90), alkaloids (91-98), volatile constituents (99-216), and others (217-234), have been preliminarily isolated or identified from *S. aizoon*. Among these, flavonoids are the main metabolites of *S. aizoon*. The main metabolites and their structure are given in Table 1 and Figures 2–5.

6.1 Flavonoids

So far, 48 flavonoid metabolites (1-48) with definite structure have been isolated and identified from *S. aizoon*, which are grouped into flavonols (1-36), isoflavones (37-39), flavones (40-43), flavanonols (44-47), and flavan-3-ol (48). Among flavonols, rhamnazin-3-O- β -D-

Metabolite	Plant part	Molecular formula	Reference
F	lavonoid		
Trifolin	Leaves and stems	C ₂₁ H ₂₀ O ₁₁	Xu et al. (2019)
Rutin		C ₂₇ H ₃₀ O ₁₆	
Isoquercitrin		$C_{21}H_{20}O_{12}$	
Isorhamnetin		C ₁₆ H ₁₂ O ₇	
Astragalin		$C_{21}H_{20}O_{11}$	
Genistein		C15H10O5	
Lonicerin		C ₂₇ H ₃₀ O ₁₅	
Scutellarein		C15H10O6	
Catechin		C ₁₅ H ₁₄ O ₆	
Rhamnetin-3-O-β-D-glucopyranoside	Rhizome	$C_{22}H_{22}O_{12}$	Li et al. (2020a)
Isorhamnetin-3-O-β-D-xylopyranoside		$C_{21}H_{20}O_{11}$	
Isorhamnetin-3-O-α-L-arabinopyranoside		$C_{21}H_{20}O_{11}$	
Rhamnazin-3-O-β-D-glucopyranoside	Aerial parts	$C_{23}H_{26}O_{12}$	Xiong et al. (2019)
Quercetin	Aerial parts, rhizome, and leaves and stems	$C_{15}H_{10}O_7$	
Myricetin	Aerial parts and leaves and stems	$C_{15}H_{10}O_8$	
Luteoloside	N/A	$C_{21}H_{20}O_{11}$	
Quercitrin	Aerial parts and leaves and stems	$C_{21}H_{20}O_{11}$	Wolbi and Olszewska (1996), Li et al. (2007)
Myricitrin	Aerial parts	$C_{21}H_{20}O_{12}$	
Quercetin-3-o-(2'-galloyl) rhamnoside	N/A	$C_{28}H_{30}O_9$	Wolbi and Olszewska (1996)
Quercetin-3-O-a-L-arabinopyranoside	Leaves and stems and rhizome	$C_{20}H_{18}O_{11}$	Han et al. (2017)
Myricetin-3-O-a-L-arabinopyranoside	Aerial parts	$C_{20}H_{18}O_{12}$	
Kaempferol-7-O-glucoside	Leaves and stems	$C_{21}H_{20}O_{11}$	
Kaempferol-3-O-β-D-glucopyranoside		$C_{21}H_{20}O_{11}$	
Herbacetin-3-O-α-L-arabinopyranoside		$C_{20}H_{18}O_{10}$	
Myricetin-3-β-D-glucopyranoside	Aerial parts and leaves and stems	$C_{21}H_{20}O_{13}$	Li et al. (2008)
$Myricetin-3-\beta\text{-}D\text{-}(6''\text{-}o\text{-}galloyl)\text{-}glucopyranoside}$	Whole grass	$C_{28}H_{24}O_{17}$	
Myricetin-3-o-β-D-(6"-o-galloyl)-galactopyranoside		C ₂₈ H ₂₄ O ₁₇	
Myricetin-3'-o-β-D-glucopyranoside	Leaves and stems	$C_{21}H_{20}O_{13}$	Jia et al. (2014)
Kaempferol	Leaves and stems and rhizome	C ₁₅ H ₁₀ O ₆	Lin et al. (2014), Xiong et al. (2019)
Kaempferol-3-O-α-L-rhamnoside	Leaves and stems	C ₂₁ H ₂₀ O ₁₀	Zhang et al. (2010)
Herbacetin-8-O-a-D-lyxoside		C ₂₀ H ₁₈ O ₁₁	
Herbacetin-8-O-β-D-xylopyranoside		C ₂₀ H ₁₈ O ₁₁	
Luteolin		C15H10O6	
Herbacetin-8-O-β-D-glucopyranoside	Aerial parts	C ₂₅ H ₂₃ O ₇ D ₃	Xu et al. (2015)

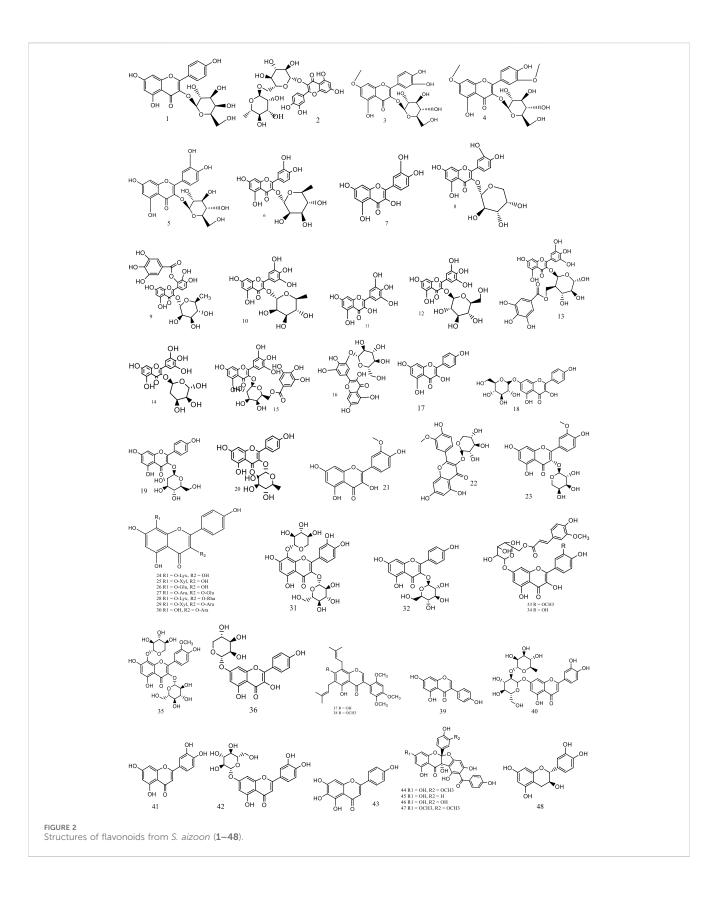
Metabolite	Plant part	Molecular formula	Reference
$Herbacetin-3-O-\beta-D-glucopyranosyl-8-O-\alpha-L-arabinopyranoside$		$C_{74}H_{105}O_{32}$	
Herbacetin-3-O-α-L-rhamnopyranosyl-8-O-α-D-lyxopyranoside	-	C ₂₆ H ₂₈ O ₁₄	
Herbacetin-3-O-α-L-arabinopyranosyl-8-O-β-D-xylopyranoside	-	C ₂₅ H ₂₆ O ₁₄	
Gossypetin-3-O-β-D-glucopyranosyl-8-O-β-D-xylopyranoside	-	C ₇₃ H ₁₀₆ O ₃₄	
$3'-Methoxyl-gossypetin-3-O-\beta-D-glucopyranosyl-8-O-\beta-D-xylopyranosie$	-	C ₂₇ H ₃₀ O ₁₇	
6″-O-(E)-feruloyl isorhamnetin	Whole plant	C32H30O15	(Li J. X. et al., 2011)
6″-O-(E)-feruloyl quercetin	-	C31H28O15	
3,4′,5,7-Tetrahydroxyflavone-7-O-α-D-xylopyranoside	Whole grass	C ₂₀ H ₁₈ O ₁₀	Han et al. (2021)
Sedacin A	Whole plant	C ₂₈ H ₃₂ O ₇	Li J. X. et al. (2011)
Sedacin B		C ₂₉ H ₃₄ O ₇	
1,3,8,10,10b-Pentahydroxy-5a-(4-hydroxy-3-methoxyphenyl)-9-(4-hydroxybenzoyl)- 5a,10b-dihydro-11H-benzofuro[2,3-b]chromen-11-one	Roots	$C_{29}H_{21}O_{12}$	Li et al. (2017)
1,3,8,10,10b-Pentahydroxy-9-(4-hydroxybenzoyl)-5a-(4-hydroxyphenyl)-5a,10b-dihydro- 11H-benzofurochromen-11-one	-	C ₂₈ H ₁₉ O ₁₁	
5a-(3,4-Dihydroxyphenyl)-1,3,8,10,10b-pentahydroxy-9-(4-hydroxybenzoyl)-5a,10b- dihydro-11H-benzofurochromen-11-one	-	C28H19O12	
1,8,10,10b-Tetrahydroxy-5a-(4-hydroxy-3-methoxyphenyl)-9-(4-hydroxybenzoyl)-3- methoxy-5a,10b-dihydro-11H-benzofuro[2,3-b]chromen-11-one		$C_{30}H_{23}O_{12}$	
Phenol	ic acids		
Sedumol	Whole grass	C ₁₂ H ₁₆ O ₈	Han et al. (2021)
Vanillic acid	Aerial parts	C ₈ H ₈ O ₄	Lin (2014)
Protocatechuic acid	Aerial parts and leaves and stems	$C_7H_6O_4$	
Caffeic acid	N/A	C ₉ H ₈ O ₄	
P-hydroxybenzoic acid	Aerial parts and leaves and stems	C ₇ H ₆ O ₃	Lin et al. (2014)
Pyrogallol	Aerial parts	C ₆ H ₆ O ₃	
5,7-Dihydroxychromone	N/A	C ₉ H ₆ O ₄	
Glucosyringic acid	Leaves and stems	C ₁₅ H ₂₀ O ₁₀	Jia et al. (2014)
P-hydroxybenzoyl arbutin	-	C ₁₉ H ₂₀ O ₉	
Pyroside	-	C14H18O8	
Arbutin	Roots and leaves and stems	C ₁₂ H ₁₆ O ₇	
4-Methoxy-3,5-dihydroxybenzoic acid	Whole grass	C ₈ H ₈ O ₅	Han et al. (2021)
4-Hydroxybenzeneethanol		C ₈ H ₁₀ O ₂	
4-Hydroxybenzaldehyde		C ₇ H ₆ O ₂	
cis-4-Coumaric acid	Aerial parts	C ₉ H ₈ O ₃	Xiong et al. (2019)
2-O-(trans-caffeoyl) malic acid		C ₁₃ H ₁₂ O ₈	
2-O-(trans-caffeoyl)-malic acid 1-methyl-ester		C ₁₄ H ₁₄ O ₈	
2-O-(trans-caffeoyl)-malic acid 1,4-dimethyl ester		C ₁₅ H ₁₆ O ₈	
Isolariciresinol-9-O-β-D-glucopyranoside		C ₂₆ H ₃₄ O ₁₁	
Iriflophenone-2-O-β-D-glucopyranoside		C ₁₉ H ₂₀ O ₁₀	

Metabolite	Plant part	Molecular formula	Reference
Ethyl gallate	Aerial parts and leaves and stems	$C_9H_{10}O_5$	
Gallic acid	Aerial parts, whole plant, and leaves and stems	C ₇ H ₆ O ₅	Zhang et al. (2010)
Methyl gallate	Aerial parts and leaves and stems	C ₈ H ₈ O ₅	
Echinochlorin A	Rhizome	C ₂₆ H ₄₀ O ₈	Li et al. (2020a)
1-O-sinapoyl glucopyranoside	Aerial parts	C ₁₇ H ₂₂ O ₁₀	Xu et al. (2015)
Chrysophanol-8-O-β-D-glucoside	Whole grass	C ₂₁ H ₂₀ O ₉	Li et al. (2008)
Hydroquinone	Roots and whole grass	C ₆ H ₆ O ₂	
Vanilloloside	Leaves and stems	C14H20O8	Han et al. (2017)
Woodorien		C ₁₃ H ₉ N ₃ O ₂	
Iriflophene	Aerial parts and rhizome	C ₁₃ H ₁₀ O ₅	Xiong et al. (2019), Li et al. (2020a)
Trite	erpenes		
Ginsenoside Re	Roots	C ₄₈ H ₈₂ O ₁₈	Gong (2020)
a-Amyrin	N/A	C ₃₀ H ₅₀ O	
Ursolic acid	Roots	C ₃₀ H ₄₈ O ₃	Li et al. (2008)
Glutin-5-en-3-one	Leaves and stems	C ₃₀ H ₄₈ O	
Isomoliol-3β-acetate	_	C ₃₂ H ₅₂ O ₂	
Taraxerone	Rhizome	C ₃₀ H ₄₈ O	Li et al. (2020a)
Isomotiol	_	C ₃₀ H ₅₀ O	
Oleanolic acid	Roots	C ₃₀ H ₄₈ O ₃	Lin (2014)
Phyt	osterols		
β-Sitosteryl linoleate	Rhizome	C47H80O2	Li et al. (2020a)
Daucosterol	Rhizome and whole grass	C35H60O6	
β-Sitosterol	Rhizome, leaves and stems, and roots	C ₂₉ H ₅₀ O	Zhang et al. (2010)
Stigmasterol	N/A	C ₂₉ H ₄₈ O	Cao (2011)
AII	aloids		
Sedinine	N/A	C ₁₇ H ₂₅ NO ₂	Kim et al. (1996)
Despun methylisopelletierine	_	C ₉ H ₁₇ NO	
Sedamine	Roots	C ₁₄ H ₂₁ NO	Li et al. (2008)
Aizoonoside A	Aerial parts	C ₁₈ H ₁₉ NO ₈	Xu et al. (2015)
Thymine	Aerial parts	C ₅ H ₆ N ₂ O ₂	Lin et al. (2014)
Senecionine	Roots	C ₁₈ H ₂₅ NO ₅	Wu et al. (2008)
Seneciphylline		C ₁₈ H ₂₃ NO ₅	
Integerrimine	-	C ₁₈ H ₂₅ NO ₅	

Metabolite	Plant part	Molecular formula	Reference
Vola	tile oils		
2,6-Di(tbutyl)-4-hydroxy-4-methyl-2,5-cyclohexadien-1-one	Whole plant	C ₁₅ H ₂₄ O ₂	Qian et al. (2018)
β-Ionone		C ₁₃ H ₂₀ O	
Epiglobulol		C ₁₅ H ₂₆ O	
α-Guaiene		C ₁₅ H ₂₄	
Isophytol		C ₂₀ H ₄₀ O	
Squalene		C ₃₀ H ₅₀	
Tritriacontane		C ₃₃ H ₆₈	
Hexadecane		C ₁₆ H ₃₄	
Pristane		C19H40	
Octadecane		C ₁₈ H ₃₈	
Tricosane		C ₂₃ H ₄₈	
Tetracosane		C ₂₄ H ₅₀	
Pentacosane		C ₂₅ H ₅₂	
Hexacosane		C ₂₆ H ₅₄	*
Heptacosane		C ₂₇ H ₅₆	
Octacosane		C ₂₈ H ₅₈	
Nonacosane	-	C ₂₉ H ₆₀	
Hentriacontane		C31H64	
Cetyl palmitate		C ₃₂ H ₆₄ O ₂	
4, 8, 12, 16-Tetramethyl heptadecan-4-olide		C ₂₁ H ₄₀ O ₂	
Cyclohexyl benzoate		$C_{13}H_{16}O_2$	
Methyl palmitoleate		C ₁₇ H ₃₂ O ₂	
Methyl palmitate		C17H ₃₄ O ₂	
Ethyl palmitate		C ₁₈ H ₃₆ O ₂	
Methyl linolelaidate		C19H34O2	
Methyl oleate		$C_{19}H_{36}O_2$	
Methyl stearate	_	C ₁₉ H ₃₈ O ₂	
Ethyl linoleate		$C_{20}H_{36}O_2$	
Ethyl oleate		$C_{20}H_{38}O_2$	
1-Hexacosanol		C ₂₆ H ₅₂ O	
Hexahydrofarnesyl acetone	Whole plant and fresh herbs	C ₁₈ H ₃₆ O	Guo et al. (2006), Qian et al. (2018)
2-Undecanone	Fresh herbs	C ₁₁ H ₂₂ O	Guo et al. (2006)
2-Tridecanone		C ₁₃ H ₂₆ O	
Nerolidol		C ₁₅ H ₂₆ O	
(–)-Spathulenol		C ₁₅ H ₂₄ O	
Cedrol		C ₁₅ H ₂₆ O	
Globulol		C ₁₅ H ₂₆ O	

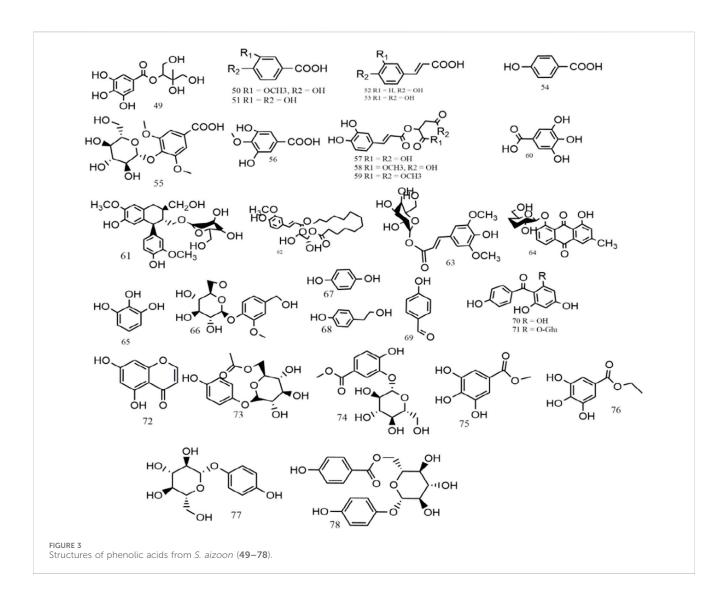
Metabolite	Plant part	Molecular formula	Reference
1-Nonene		C9H18	
(†)-Aromadendrene		C15H24	
Calamenene		C ₁₅ H ₂₂	-
Caryophyllene epoxide		C ₁₅ H ₂₄	-
Bornyl acetate		C ₁₂ H ₂₀ O ₂	_
Geraniol acetate		C ₁₂ H ₂₀ O ₂	_
15-ene-heptadecanal		C ₁₇ H ₄₈ O	_
Hexadecanoic acid		C ₁₆ H ₃₂ O ₂	_
Phytol	Leaves, stems, fruits, and fresh herbs	C ₂₀ H ₄₀ O	-
4-hepten-2-one	Aerial parts	C ₇ H ₁₂ O	Chen et al. (2014)
Elsholtzia ketone		C ₁₀ H ₁₄ O ₂	-
3-Methyl-2-butanol		C ₅ H ₁₂ O	
2,3-Butanediol		C ₄ H ₁₀ O ₂	~
1-Octanol		C ₈ H ₁₈ O	
4-Terpineol		C ₁₀ H ₁₈ O	
3-Hexen-1-ol		C ₆ H ₁₂ O	
Pentylfuran		$C_9H_{14}O$	
β-Phellandrene		C ₁₀ H ₁₆	
4-Carene		C ₁₀ H ₁₆	
β-Terpinene		C ₁₀ H ₁₆	
Isoterpinolene		$C_{10}H_{16}$	
α-Thujene		C ₁₀ H ₁₆	
β-Farnesene		C15H24	
π-Muurolene		C ₁₅ H ₂₄	
Heptanal		C ₇ H ₁₄ O	
Benzaldehyde		C ₇ H ₆ O	
Hexanal		C ₆ H ₁₂ O	
Furfural		$C_5H_4O_2$	_
Octanal		C ₈ H ₁₆ O	
Benzeneacetaldehyde		C ₈ H ₈ O	
Nonanal		C ₉ H ₁₈ O	
Decanal		C ₁₀ H ₂₀ O	
1-Octadecanol	Roots and leaves	C ₁₈ H ₃₈ O	Chen and Qiang (2017)
(Z) 9-Octadecenoic acid, methyl ester	Roots and stems	$C_{19}H_{36}O_2$	
2,2'-Methylenebis(6-tert-butyl-4-methylphenol	Leaves, stems, and fruits	C ₂₃ H ₃₂ O2	
Dimethyl phthalate		C ₁₀ H ₁₀ O ₄	
Methyl tetradecanoate		$C_{15}H_{30}O_2$	
Heptadecanoic acid methyl ester		$C_{18}H_{36}O_2$	
Pentatriacontane	Leaves, stems, and roots	$C_{35}H_{72}$	(Continued on following page)

Metabolite	Plant part	Molecular formula	Reference
Heptadecane	Leaves, and whole plant	C ₁₇ H ₃₆	
3-Ethyl-2,4-dimethyl-pentane	Leaves	C ₉ H ₂₀	
2,6-Dimethyl-octane		C ₁₀ H ₂₂	
6,10,14-Trimethyl2 pentadecanone	-	C ₁₈ H ₃₆ O	
1-Pentadecanol	_	C ₁₅ H ₃₂ O	
Oxacycloheptadec-8-en-2-one	_	C ₁₆ H ₂₈ O ₂	
Tridecanoic acid, methyl ester	_	$C_{14}H_{28}O_2$	
2,6,11-Trimethylodlodecane		$C_{15}H_{32}$	
3-Methyl-undecane		$C_{12}H_{26}$	
Octadecane	Fruits	$C_{18}H_{38}$	
2,6,10,14-Tetramethyl-hexadecane		$C_{20}H_{42}$	
Icosane	Stems	$C_{20}H_{42}$	
Nonadecane		$C_{19}H_{40}$	
3,8-Dimethyl-decane		$C_{12}H_{26}$	
4-Methyl-pentadecane		$C_{16}H_{34}$	
1-Octadecene		$C_{18}H_{36}$	
2-Methyl-tridecane		$C_{14}H_{30}$	
Tetratetracontane		$C_{44}H_{90}$	
Tetradecane		$C_{14}H_{30}$	
Pentadecane	Leaves and stems	$C_{15}H_{32}$	
2,4,4-Trimethylhexane	_	C ₉ H ₂₀	
2,4-Dimethylhexane	_	C8H18	
4,6-Dimethyl-dodecane	_	C ₁₄ H ₃₀	
Heneicosanoic acid-methyl ester	_	$C_{22}H_{44}O_2$	
Tricosanoic acid, methyl ester	_	$C_{24}H_{48}O_2$	
2,4-bis(1,1-Dimethylethyl)-phenol	_	C ₁₄ H ₂₂ O	
Hexadecyl-oxirane	_	C ₁₈ H ₃₆ O	
3,3- Dimethylhexane		C ₈ H ₁₈	
3, 3-Dimethyl-heptane	Roots	C ₉ H ₂₀	
Tetratriacontane	_	C ₃₄ H ₇₀	
1-Heptadecanol		C ₁₇ H ₃₆ O	
Octacosanoic acid, methyl ester		C ₂₉ H ₅₈ O ₂	
Octadecanal		C ₁₈ H ₃₆ O	
2-Hexadecyl-1,1'-bi-cyclopentyl		C ₂₆ H ₅₀	
P-Cymene	Aerial parts	C ₁₀ H ₁₄	
Pentadecanoic acid, methyl ester	Roots, leaves, stems, and fruits	C ₁₆ H ₃₂ O ₂	
Dibutyl phthalate	ii uits	C ₁₆ H ₂₂ O ₄	
(Z,Z,Z)-9, 12, 15-octadecatrienoic acid, methyl ester		C ₁₉ H ₃₂ O ₂	
Eicosanoic acid, methyl ester		$C_{21}H_{42}O_2$	


Metabolite	Plant part	Molecular formula	Reference
Docosanoic acid, methyl ester		$C_{23}H_{46}O_2$	
Tetracosanoic acid, methyl ester		C ₂₅ H ₅₀ O ₂	
Hexacosanoic acid, methyl ester		C ₂₇ H ₅₄ O ₂	
	Others		
Glucose	Whole grass	C ₆ H ₁₂ O ₆	Zheng (1975)
Fructose		C ₆ H ₁₂ O ₆	
Sedoheptulose		C ₇ H ₁₄ O ₇	
Sucrose		C ₁₂ H ₂₂ O ₁₁	
(3S,5R,6R,7E,9S)-megastigman-7-ene-3,5,6,9-tetrol 9-O-β-D-glucopyranoside	Aerial parts	C ₂₈ H ₃₅ O ₄ D	Xu et al. (2015)
(3S,5R,6R,7E,9S)-megastigman-7-ene-3,5,6,9-tetrol 3-O-β-D-glucopyranoside		C ₂₈ H ₃₅ O ₄ D	
Picein	Leaves and stems	C ₁₄ H ₁₈ O ₇	Jia et al. (2014)
Koaburaside		C14H20O9	
Hexacosoic acid	Whole grass	C ₂₆ H ₅₂ O ₂	Li et al. (2008)
Salidroside		C ₁₄ H ₂₀ O ₇	
Malic acid	N/A	C ₄ H ₆ O ₅	Xuan (2014)
N-triacontanoic acid	Roots and stem	C ₃₃ H ₆₆ O ₂	Li et al. (2020a)
1-Hexadecanol		C ₁₆ H ₃₄ O	
Dioctadecylsulfide		C ₃₆ H ₇₄ S	
1-Naphthalen-2-yl-ethanone	Whole grass	C ₁₂ H ₁₀ O	Lin et al. (2011)
Lotaustralin	Aerial parts	C ₁₁ H ₁₉ NO ₆	Xiong et al. (2019)
Butanedioic acid		$C_4H_6O_4$	
9(Z)-octadecenamide		C ₁₈ H ₃₅ NO	

N/A: not applicable or not explicitly stated.

glucopyranoside myricitrin myricetin-3-O-a-L-(4), (10), arabinopyranoside (14) (Xiong et al., 2019), herbacetin-8-O-β-Dglucopyranoside (26), herbacetin-3-O- β -D-glucopyranosyl-8-O- α -Larabinopyranoside (27), herbacetin-3-O-a-L-rhamnopyranosyl-8-O-a-D-lyxopyranoside (28), herbacetin-3-O- α -L-arabinopyranosyl-8-O- β -D-xylopyran-oside (29), gossypetin-3-O-β-D-glucopyranosyl-8-O-β-Dxylopyranoside (31), and 3'-methoxyl-gossypetin-3-O-β-Dglucopyranosyl-8-O-β-D-xylopyranosie (35) (Xu et al., 2015) were obtained mainly from the aerial part of S. aizoon. Later, Xu et al. (2019) successfully identified four flavonols [i.e., trifolin (1), rutin (2), astragalin (32), and isoquercitrin (5)], two flavones [i.e., lonicerin (43) and scutellarein (46)], and one isoflavone [i.e., genistein (39)] in the leaves and stems of S. aizoon. Two new prenylated isoflavones, sedacin A (37) sedacin B (38), and two flavonols, sedacin C (6"-O-(E)-feruloyl quercetin) (33) and sedacin D (6"-O-(E)-feruloyl isorhamnetin) (34), were isolated from the whole plant of S. aizoon (Li W. L. et al., 2011). Among them, sedacin A and sedacin B had the function of scavenging DPPH and ABTS+ free radicals (Li J. X. et al., 2011). Rhamnetin-3-O-β-D-glucopyranoside (3), quercetin-3-O- α -L-arabinopyranoside (8), isorhamnetin-3-O-β-D-xylopyranoside (22), and isorhamnetin-3-O-α-L-arabinopyranoside (23) have also been detected in rhizomes (Li et al., 2020a). Four flavanonols (**44–47**) with rare dimeric structures, with the character of an iriflophene unit and a flavonoid unit connecting via a furan ring, were isolated from the roots and identified using NMR, IR, UV, HRESIM, DEPT, HSQC, HMBC, and CD methods. In addition, studies were conducted to assess the activity of these four substances, and they revealed that 5a-(3,4-dihydroxyphenyl)-1,3,8,10,10b-pentahydroxy-9-(4-hydroxybenzoyl)-5a,10b-dihydro-11H-benzofurochromen-11-one (**46**) and 1,8,10,10b-tetrahydroxy-5a-(4-hydroxy-3-methoxyphenyl)-9-(4-hydroxybenzoyl)-3-methoxy-5a,10b-dihydro-11H-benzofuro[2,3-b] chromen-11-one (**47**) had good anti-proliferative activities *in vitro* against the tumor cell lines BXPC-3, A549, and MCF-7 (Li et al., 2017). The structures of flavonoids from S. *aizoon* are displayed in Figure 2.


6.2 Phenolic acids

Phenolic acids are the most important chemical derivatives of plant secondary metabolites. Currently, 31 phenolics (**49–78**) have been found from *S. aizoon*, including phenolic acids (**49–58**, **60**), lignans (**61**), phenylpropanoids (**59**, **62–63**), and other phenolics (**64–78**). Two phenolic acids, namely, sedumol (**49**) and 4-methoxy-

3,5-dihydroxybenzoic acid (**56**) (Han et al., 2021), were obtained from the 95% ethanol extract of *S. aizoon's* whole grass. Other phenolic acids, including vanillic acid (**50**) (Lin, 2014), protocatechuic acid (**51**), cis-4-coumaric acid (**52**), p-hydroxybenzoic acid (**54**) (Xiong

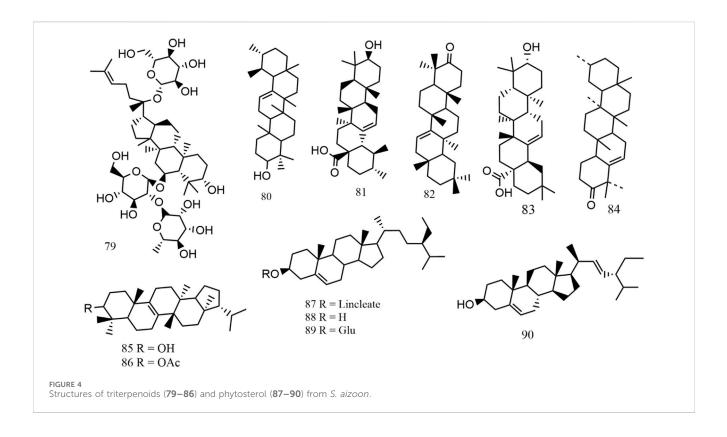
et al., 2019), and caffeic acid (**53**) (Lin et al., 2014), were isolated from the aerial part of *S. aizoon*. Isolariciresinol-9-O- β -D-glucopyranoside (**61**) is classified as cyclolignans, which was obtained from the 70% ethanol extract via silica gel column chromatography (300–400 mesh).

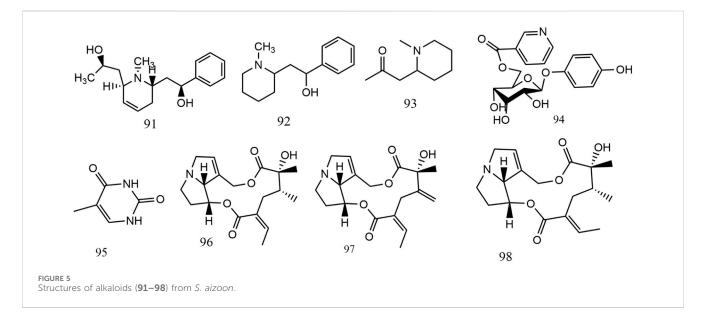
2-O-(trans-caffeoyl)-malic acid 1,4-dimethyl ester (**59**) (Xiong et al., 2019), echinochlorin A (**62**) (Li et al., 2020a), 1-O-sinapoyl glucopyranoside (**63**) (Xu et al., 2015), and chrysophanol-8-O- β -D-glucoside (**64**) (Li et al., 2008) have been identified in *S. aizoon*. The structures of phenolic acids from *S. aizoon* are displayed in Figure 3.

6.3 Triterpenes and phytosterol

6.3.1 Triterpenes

A type of terpenoids known as triterpenoids has a parent nucleus that contains 30 carbon atoms. Triterpenoids exist in plants in free form or as glycosides or esters and have various biochemical activities. Up to now, eight triterpenes (**79–86**) were separated from *S. aizoon*, including one tetracyclic triterpenes (**79**) and seven pentacyclic triterpenes (**80–86**). The only tetracyclic triterpene, ginsenoside Re (**79**), is a dammarane-type triterpene. Seven pentacyclic triterpenes are divided into four groups: ursane type (**80**), oleanane type (**81–83**), friedelane type (**84**), and fernane type (**85–86**). In the studies of Li et al. (2008, 2020a), glutin-5-en-3-one (**84**), isomoliol-3β-acetate (**86**), taraxerone (**82**), and isomotiol


(85) were isolated from *S. aizoon* for the first time. The structures of triterpenoids from *S. aizoon* are displayed in Figure 4.


6.3.2 Phytosterols

Up to now, a total of four phytosterols (87–90) have been identified in *S. aizoon*. These include β -sitosteryl linoleate (87) (Li et al., 2020a), daucosterol (89) (Guo et al., 2010; Lin et al., 2011), β -sitosterol (88), and stigmasterol (90) (Cao, 2011). The structures of phytosterol from *S. aizoon* are displayed in Figure 4.

6.4 Alkaloids

Eight alkaloids (91–98) have been isolated and identified from *S. aizoon*. In 1996, Kim et al. (1996) examined the alkaloids in *Sedum* species and discovered the presence of three alkaloids, namely, sedinine (91), sedamine (92), and despun methylisopelletierine (93) in *S. aizoon*. Thymine (95) was obtained from the ethyl acetate fraction of aqueous extracts of *Sedum aizoon* L. In the study of Gao et al. (2006), three pyrrolizidine alkaloids (PAs), namely, senecionine (96), seneciphylline (97), and integerrimine

(98) were identified in the extracts of *S. aizoon*'s root, which had strong hepatotoxicity. The structures of alkaloids from *S. aizoon* are displayed in Figure 5.

cardiovascular disease, and other activities. The related biological activities and main effects are listed in Table 2.

7 Pharmacological activities

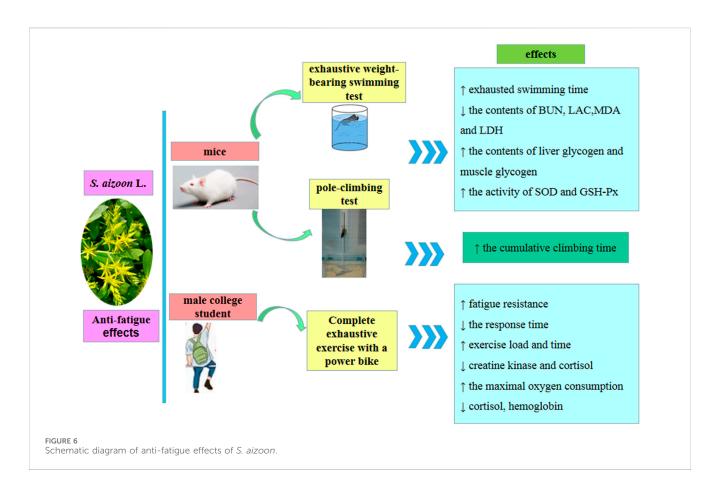
According to pharmacological studies, *S. aizoon* has a wide range of pharmacological activities, including antioxidant, antifatigue, and anti-inflammatory activities, improving

7.1 Antioxidant activity

S. aizoon has excellent antioxidant activity, as demonstrated by several pharmacological studies *in vitro* and *in vivo*. An in-depth *in vivo* study showed that the juice from the stems and leaves of *S. aizoon* increased the peroxidase (POD) and superoxide dismutase

TABLE 2 Biological activitie	of the S. aizoon ext	racts and bioactive metabolites.

Tested substance	Model	Key result	Reference
Ethanol extract	<i>In vitro</i> , total antioxidant capacity, superoxide anion, OH radical scavenging assay, and blood antioxidant	Obvious antioxidant activity	Ma et al. (2019), Qi et al. (2022)
	Stomach bleeding model in mice, clean grade healthy ICR Mice	Reduced gastric mucosal injury and shortened the bleeding time and clotting time in mice	Zhong et al. (2014)
	In vitro, aeromonas, Rhizopus nigricans, Botrytis cinerea, Penicillium italicum, Pseudomonas fragi, and Shewanella putrefaciens isolated from sea food	Exhibited antibacterial activity, caused membrane damage, disruption of mycelial morphology, the bacterial surface, and internal ultrastructure, resulted in the leakage of sugars and proteins, retarded the microbial growth, and delayed meat spoilage	Xu et al. (2019), Luo et al. (2020), Wang et al. (2020), Wang et al. (2022a), Wang et al. (2022b), Wang et al. (2023c), Ge et al. (2023)
	Human liver cancer cell line	The inhibitory rate of liver cancer cells was as high as 52.04% with 200 $\mu g/mL$ ethanol extract	Wang et al. (2013)
	ICR mice weigh 18~20 g	Reduced the weight gain of mice and TC and TG levels increased HDL-C levels	Wang et al. (2013)
	Type 1 diabetes mellitus mice	Significantly restored body weight gain, improved food utilization, decreased the coefficients for both the liver and kidney, the levels of TC and TG, and the MDA content, increased the levels of HO-1 and NQO1 in the livers of mice, activated the Nrf2 pathway, thereby regulating the expression of downstream proteins, and regulated glucose metabolism in T1DM mice	Qi et al. (2022)
	In vitro, MDRPA, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcaceae, Escherichia coli, Salmonella paratyphi B, bacillary dysentery, Proteus mirabilis, Clostridium perfringens, Bacillus subtilis, Bacillus anthracis, Candida parapsilosis, Candida tropicalis, and Candida albicans	The MIC50 for <i>pseudomonas aeruginosa</i> was 0.125 g/mL, which exerted definite bacteriostatic effects on bacteria and weak effect on fungus	Zhang et al. (2011), Zhang et al. (2012)
Sap	In vivo, the liver in Cyprinus carpio Linnaeus	Increased SOD, POD activities, and MDA content	Zhang and Wang (2012)
	College students who have completed exhaustive exercise	Prolonged the time of extreme exercise in mice, decreased BUN and MDA levels and LDH, increased SOD, muscle glycogen content, and liver glycogen content, play an anti-fatigue role, increased the amount of blood return and the content of hemoglobin in the blood, reduced the blood flow at the end of the limb and the concentration of cortisol and serum creatine kinase in the blood, improved the ability of metabolic regulation and response speed, accelerated fatigue recovery, and prevented and relieved fatigue	Ding, 2019; Ren (2020)
	<i>In vivo</i> , rats with gastrointestinal tract hemorrhage induced by aspirin	Turned positive rat fecal occult blood into negative, increased PC, GPIIb/IIIa, P selectin, PLT, IL8, ET-1, and platelet number and aggregation, decreased PAF, significantly shortened TT and APTT, and significantly increased FIB	Liu et al. (2011), Liu et al. (2015), Bai et al. (2016)
	Senile stroke patients	Promoted blood circulation, removed blood stasis, and reduced blood pressure	Chen (2000)
Ethyl acetate extracts	LPS-stimulated RAW 264.7 cells	Inhibited LPS-induced NO, TNF-α, and IL- 6 production	Lin et al. (2015a)
	α-Glucosidase activity assay	Inhibit α -glucosidase activity	Cao (2011)


TABLE 2 (Continued) Biological activities of the S. aizoon extracts and bioactive metabolites.

Tested substance	Model	Key result	Reference
N-Butanol extracts	α-Glucosidase activity assay	Inhibit α-glucosidase activity	Cao (2011)
Methanol extracts	α-Glucosidase activity assay	Inhibit α-glucosidase activity	Cao (2011)
	<i>In vivo</i> , male ICR mouse croton oil-induced ear edema, rat CGN-induced paw edema, TPA-induced ear edema assay of sub- chronic inflammation, mouse acetic acid- induced writhing, and LPS-stimulated RAW 264.7 cells	Inhibited PGE2 production by the downregulation of COX-2 expression and COX-2 induction and inhibited acute as well as sub-chronic inflammation dose- dependently	Kim et al. (2004)
	<i>In vivo</i> , H/R model in neonatal rat cardiomyocytes	Decreased the LDH, apoptosis, and caspase-3 activity, activated P13K/Akt, increased eNOS phosphorylation, NO, and the Bcl-2/Bax ratio, reduced H/R-induced cardiomyocyte damage, and protected cardiomyocytes	Qiang (2013)
S. aizoon tablet	244 cases with peptic ulcer bleeding	Increased the PC and shortened bleeding time	Xu (2012)
Aqueous extracting—ethanol precipitating extract	Stomach bleeding model in mice	Exerted the strongest protective effects on gastric mucosa	Zhong et al. (2014)
Petroleum ether	Stomach bleeding model in mice	Reduced gastric mucosal injury and shortened the bleeding time and clotting time in mice	Chen et al. (2012)
Ethyl acetate of water extraction	Clean grade healthy ICR mice	Good hemostatic effect	Chen et al. (2012)
Aqueous extracts	Stomach bleeding model in mice	Reduced gastric mucosal injury and shortened the bleeding time and clotting time in mice	Chen et al. (2012)
	In vitro, MDRPA, Staphylococcus aureus, and Pseudomonas aeruginosa	Have certain bacteriostasis, and the MIC50 for <i>pseudomonas aeruginosa</i> was 0.5 g/mL	Tan et al. (2001)
	In vivo, male Kunming mice	Increased the amount of sleeping mice and decreased the autonomic activities in mice	Guo et al. (2009)
	Esophageal carcinoma cells	Destroyed the structure of phospholipid and resulted in the damage of the ultrastructure of esophageal carcinoma cells	Fu et al. (2008)
	In vivo, patients with cardiovascular and cerebrovascular diseases	Protected blood vessels, removed blood stasis, and prevented blood clots	Xuan (2015)
Herbacetin-3-O-a-L-rhamnopyranosyl-8-O-	Escherichia coli; Staphylococcus aureus	Showed certain growth inhibition, and it	Xu et al. (2015)
α-D-lyxopyranoside	Rosenbach and Bacillus subtilis	showed more potency against Gram- positive than against Gram-negative bacteria	
Myricetin-3-O-β-D-glucopyranoside	Escherichia coli, Staphylococcus aureus Rosenbach, and Bacillus subtilis	Showed more potency against Gram- positive than against Gram-negative bacteria	Xu et al. (2015)
Gossypetin-3-O-β-D-glucopyranosyl-8-O- β-D-xylopyranoside	Escherichia coli, Staphylococcus aureus Rosenbach, and Bacillus subtilis	Showed more potency against Gram- positive than against Gram-negative bacteria	Xu et al. (2015)
Ethyl acetate from alcohol extract	In vivo, male Kunming mice	Obviously decreased the autonomic activities in mice, prolonged the sleeping time, and increased the amount of sleeping mice	Guo et al. (2010)
N-butanol extracted from alcohol extract	In vivo, the male Kunming mice	Obviously decreased the autonomic activities in mice, prolonged the sleeping time, and increased the amount of sleeping mice	Guo et al. (2010)
Yangxincao Anshen Granule	In vivo, Kunming mice	Significantly decreased spontaneous activity, prolonged sleep time, and	Zhang et al. (2015b)

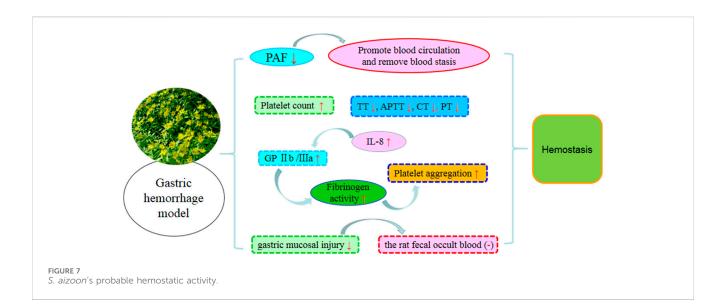
TABLE 2 (Continued) Biological activities of the S. aizoon extracts and bioactive metabolites.

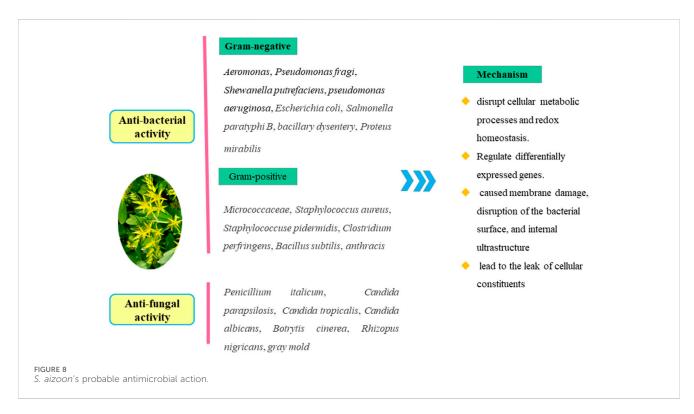
Tested substance	Model	Key result	Reference
		increased rates of sleeping in mice on the high (12 g/kg/d) and medium dosages (6 g/kg/d)	
S. <i>aizoon</i> (30 g) and <i>Semen Ziziphus</i> Spinosa (15 g)	In vivo, Kunming mice	Extented the sleep time significantly and increased the sleep rate	Zhang et al. (2015a)
C. aizoon (22.5 g) and Semen Ziziphus Spinosa (22.5 g)	In vivo, Kunming mice	Extended the sleep time and increased the sleep rate	Zhang et al. (2015a)
Ayricetin-3-O-β-D-glucopyranoside	<i>In vitro</i> , human hepatoma cell line (HepG2), human breast cancer (MCF-7), and human lung carcinoma (A549) tumor cell lines	Had anti-proliferative activities on cell proliferation with IC50 values of 46.30, 75.27, and 49.76 µmol/L, respectively	Xu et al. (2015)
a-(3,4-Dihydroxyphenyl)-1,3,8,10,10b- entahydroxy-9-(4-hydroxybenzoyl)- a,10b-dihydro-11H-benzofuro chromen- 1-one, an iriflophene unit, and a quercetin nit connecting via a furan ring	<i>In vitro, in situ</i> pancreatic adenocarcinoma cell (BXPC-3), A549, and human breast cancer (MCF-7) tumor cell lines	Exhibited moderate cytotoxic activities against BXPC-3, A549, and MCF-7 tumor cell lines with IC50 ranging from 24.84 to 37.22μ mol/L	Li et al. (2017)
,8,10,10b-Tetrahydroxy-5a-(4-hydroxy-3- nethoxyphenyl)-9-(4-hydroxybenzoyl)-3- nethoxy-5a,10b-dihydro-11H-benzofuro 2,3-b]chromen-11-one, an iriflophene unit nd a rhamnazin unit connecting via a furan ing	<i>In vitro</i> , anti-proliferative activities against BXPC-3, A549, and MCF-7 tumor cell lines	Exhibited moderate cytotoxic activities against BXPC-3, A549, and MCF-7 tumor cell lines with IC50 ranging from 24.84 to $37.22 \ \mu mol/L$	Li et al. (2017)
CtOAc fraction of aqueous extract	<i>In vitro</i> , LPS-stimulated RAW 264.7 macrophages	Inhibited the release of NO from inflammatory cells	Lin (2014)
',4',5,7-Tetrahydroxy	<i>In vitro</i> , LPS-stimulated RAW 264.7 macrophages	Inhibited the release of TNF- α	Lin (2014)
Galuteolin	<i>In vitro</i> , LPS-stimulated RAW 264.7 macrophages	Inhibited the release of NO and TNF- $\!\alpha$	Lin (2014)
Protocatechuic acid	<i>In vitro</i> , LPS-stimulated RAW 264.7 macrophages	Inhibited the release of TNF-a, IL-6, NO, and IL-1 β	Huang, 2014; Lin (2014)
Caffeic acid	<i>In vitro</i> , LPS-stimulated RAW 264.7 macrophages	Inhibited the release of TNF-a, IL-6, NO, and IL-1 β	Huang, 2014; Lin (2014)
% S. aizoon	Renal hypertensive male rat model	Lowered SBP and MAP, thereby lowering blood pressure	Han et al. (2022)
0% S. aizoon	Renal hypertensive male rat model	Decreased SBP, MAP, blood pressure, serum creatine kinase CK activity, left ventricular stroke index LVWI (LW/BW) and HWI (HW/BW), and the expression of AT1 protein, increased the expression of AT2 and catalase protein, reversed myocardial remodeling, and protected the heart	Han et al. (2022)
<i>Yangxincao</i> capsules	Hyperlipidemia rat model	Significantly decreased the levels of serum TC, TG, and LDL-C, decreased the level of apoB, and increased the levels of HDL-C and its subcomponents HDL2-C, HDL3-C, and the ratio of HDL-C/TC; significantly increased the activities of LCAT and LPL and the level of apoA in the serum	Liu et al. (2005)
Leaching solution	Rabbit and frog	Stimulated the action of the heart and reduced the toxicity of amphetamine	Zheng (1975)
Polysaccharide	Mice	Significantly improved thymus index and spleen index, T- and B-lymphocyte transformation and proliferation, and NK cell activity; increased the percentage values of CD3 ⁺ , CD4 ⁺ , CD19 ⁺ , and CD4+/CD8+ in the peripheral blood	Huang (2019)

N/A, not applicable or not explicitly stated.

(SOD) of the liver in *Cyprinus carpio* Linnaeus as well as reduced the content of malondialdehyde (MDA), thus preventing the peroxidation damage of the liver cell membrane (Zhang and Wang, 2012). Experimental tests *in vivo* showed that ethanol extracts of *S. aizoon* were able to enhance antioxidant enzymes in T1DM mice and successfully alter the Nrf2/Keap1/ARE signaling pathway (Qi et al., 2022). Additionally, 95% ethanol extract of *S. aizoon* increased the activity of SOD, CAT, and GSH-Px and reduced the contents of MDA and ROS on the rat adrenal pheochromocytoma cell line (PC12) induced by H_2O_2 , showing a protective effect on the cell (Zhao, 2015).

7.2 Anti-fatigue effects


As national fitness activities expand, more individuals participate in sports, and the negative consequences of exercise fatigue on the body become more obvious. The effective recuperation of the body and the rapid removal of exercise exhaustion are becoming increasingly vital to society. The animal experiments (mice) demonstrated that the extracts of *S. aizoon* (3.6 and 0.9 mL/kg, 30 days) prolonged the time of extreme exercise in mice, reduced the contents of blood urea nitrogen (BUN), lactic acid (LAC), MDA, and lactate dehydrogenase (LDH) in the serum of mice, improved the activity of SOD and GSH-Px, and increased the contents of liver and muscle glycogen of mice (Ding, 2019). In a human clinical trial, it has been found that the administration of the sap (0.225 mL/kg.d, 0.9 mL/kg.d, and 3.6 mL/kg.d, 28 days) of the aerial part from *S. aizoon* [5 mL/(60 kg.d), 14 days] reduced the response time


of male college students to the stimulus signal, improved fatigue resistance, and accelerated fatigue recovery by decreasing the content of blood perfusion index, cortisol, and creatine kinase in the serum and increasing hemoglobin and the load of final exercise (Ren, 2020). The above studies showed that *S. aizoon* improved exercise endurance, affected their metabolic activity, and produced anti-fatigue effect. *S. aizoon*'s probable anti-fatigue effects of action are shown in Figure 6.

7.3 Hemostatic activity

S. aizoon has an effect comparable to that of *Notoginseng* Radix in terms of reducing bleeding without causing stasis and nourishing blood. A series of experiments *in vivo* and *in vitro* revealed that extracts and preparations of *S. aizoon* exhibited good hemostatic activities. Previous studies showed that alcohol and aqueous extracts (6, 12 g/kg b.w) of *S. aizoon* could significantly shorten the bleeding time and clotting time of mice (Chen et al., 2012). The juice of the whole herb from *S. aizoon* could increase the levels of GP Ilb/Illa, P selectin, and ET-1 and the number of platelets and enhance the platelet aggregation and release function of the rats with aspirininduced gastric hemorrhage, thus achieving hemostasis. Since *S. aizoon* could increase the level of IL-8, it was used in patients with bleeding accompanied by inflammation (Huang, 2014).

S. aizoon combined with other drugs can also be used for the treatment of bleeding diseases. Patients with bleeding peptic ulcers was treated upon treatments with herbs *S. aizoon* in conjunction with omeprazole (Xu, 2012). After intravenous injection in rabbits

and intraperitoneal injection in mice of *S. aizoon* syrup, the blood coagulation time and bleeding time were decreased (Chinese Academy of Medical Sciences, 1972). The probable hemostatic mechanism is shown in Figure 7.

7.4 Antimicrobial activity

The crude extracts from *S. aizoon* have antimicrobial activity. According to transcriptome and RNA sequencing analyses, the ethanol extracts extracted from *S. aizoon* had significant antimicrobial activities against *B. cinerea* (Wang K. et al., 2022), *Aeromonas* (Xu et al., 2019), postharvest citrus blue mold (Luo

et al., 2020), *Shewanella putrefaciens* (Wang et al., 2020), and *Pseudomonas fragi* (Wang H. X. et al., 2022). Studies revealed that alcohol extracts had a good inhibitory ability against 20 strains of multidrug-resistant *Pseudomonas aeruginosa* (MIC50 value = 0.125 g/ mL) (Zhang et al., 2012; Wang H. et al., 2023), *Staphylococcus aureus, Staphylococcus epidermidis*, and *Micrococcus* (MIC value = 0.125 g/mL). However, the inhibitory impact on three types of fungus, including *Candida tropicalis, Candida parapsilosis*, and *Candida albicans*, was very poor, with MIC values above 0.5 g/mL (Zhang et al., 2011).

Furthermore, monomer metabolites isolated from *S. aizoon* also have antimicrobial activity. Xu et al. (2015) revealed that herbacetin-3-O- α -L-rhamnopyranosyl-8-O- α -D-lyxopyranoside (28), myricetin-3-O- β -D-glucopyranoside (12), and gossypetin-3-O- β -D-

glucopyranosyl-8-O- β -D-xylopyranoside (31) exhibited more potency against Gram-positive than against Gram-negative bacteria. *S. aizoon*'s probable antimicrobial actions are shown in Figure 8.

7.5 Sedative and hypnotic effects

Traditional Chinese medicine and its preparations are commonly used to treat sleeplessness, agitation, and other symptoms. They offer the benefits of safety and dependability, as well as fewer toxicity and side effects, as compared to Western medication with sedative and hypnotic properties. Using the mouse model, Guo et al. (2009) showed that the water and alcohol extracts have tranquilizing mind and the calming effects. Later, they also found that the ethyl acetate and butanol extracts could effectively lower the autonomic activity in mice, lengthen sleeping duration in mice, and increase the number of sleeping mice (Guo et al., 2010).

Additionally, the *S. aizoon*'s prescription or in combination with other drugs also possess sedative and hypnotic properties, which are often used to treat sleeplessness, restlessness, and other disorders. For instance, Yangxincao Anshen Granules made with *S. aizoon* (12, 6 g/kg/d) significantly reduced the spontaneous movements of mice, and the granules, in conjunction with pentobarbital, extended the duration of their sleep, providing good sedative and hypnotic effects without negative side effects (Zhang R. Z. et al., 2015). Similar results have been recorded for the combination between *S. aizoon* and *Semen ziziphus spinosa* (Zhang L. et al., 2015).

7.6 Anti-cancer activity

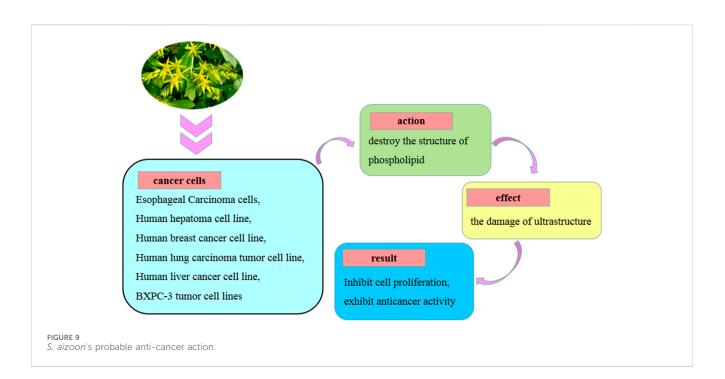
S. aizoon's active metabolites and crude extracts with anti-cancer potential have piqued the interests of researchers in recent years. The ethanol extracts isolated from *S. aizoon* (50, 100, and 200 μ g/mL) could lower the survival rate of human liver cancer cells HepG2 and inhibit human hepatocarcinoma proliferation by 11.15%, 41.96%, and 52.04%, respectively. With the increase in concentration, the inhibition rate of liver cancer cells increased, showing a certain dose–effect relationship (Wang et al., 2013). The aqueous extracts of *S. aizoon* [equivalent to adding 15.9 mg raw drug, containing 31.7 μ g gallic acid (**60**)] could destroy the phospholipid-dominated structures and block nucleic acid synthesis and metabolism, which caused the death of cancer cells, and the killing effect was improved when the drug treatment period was extended (Fu et al., 2008).

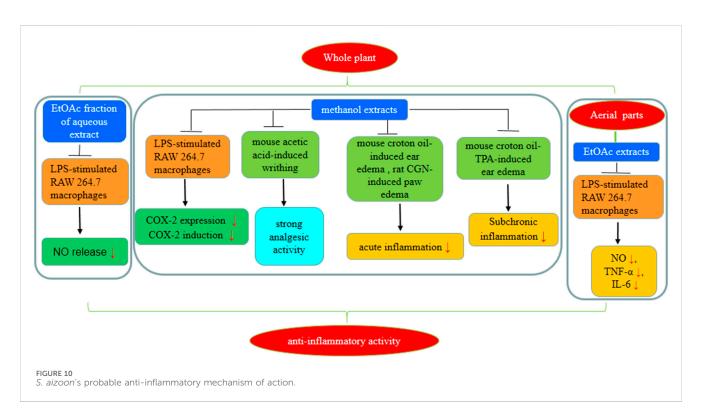
Among the active metabolites tested, myricetin-3-O-D-glucopyranoside (12) obtained from the aerial portion of *S. aizoon* exhibited an effect on cell proliferation against HepG2, MCF-7, and A549 tumor cells, with IC50 values of 46.30, 75.27, and 49.76 mol/L, respectively (Xu et al., 2015). Li et al. (2017) found that 5a-(3,4-dihydroxyphenyl)-1,3,8,10,10b-pentahydroxy-9-(4-hydroxybenzoyl)-5a,10b-dihydro-11H-benzofuro chromen-11-one, an iriflophene unit, and a quercetin unit connecting via a furan ring (44) and 1,8,10,10b-tetrahydroxy-5a-(4-hydroxy-3-methoxyphenyl)-9-(4-hydroxybenzoyl)-3-methoxy-5a,10b-dihydro-11H-benzofuro[2,3-b]chromen-11-one, an iriflophene unit, and a rhamnazin unit connecting via a furan ring (47) isolated from the roots of *S. aizoon* exhibited cytotoxic activities against BXPC-3,

A549, and MCF-7 tumor cell lines, with IC50 ranging from 24.84 to 37.22μ mol/L. S. *aizoon*'s probable anti-cancer actions are shown in Figure 9.

7.7 Anti-inflammatory effect

In Northeast Asia, *S. aizoon* has been used as a traditional medicine to treat inflammatory illnesses. Several extracts (PE, EtOAc, and H₂O) of *S. aizoon* were administered to LPS-stimulated RAW 264.7 cells to investigate anti-inflammatory activities. The phenolic and flavonoid-rich EtOAc extracts reduced NO, TNF- α , and IL-6 production induced by LPS (Lin et al., 2015a). In a study by Kim et al. (2004), methanol extracts of *S. kamtschaticum* Fischer showed a significant inhibitory effect in the inflammation models of mouse ear edema (50–400 mg/kg for 3 days) and rat paw edema (400–800 mg/kg for 3 days) induced by croton oil and multiple phorbol ester. The cyclooxygenase-2 expression was downregulated. Possible mechanisms of action are given in Figure 10.


7.8 Cardioprotective effects


S. aizoon lowered blood pressure, serum CK activity, and AT1 protein expression, reversed myocardial remodeling, and increased AT2 and catalase protein expression (Han et al., 2022). Chen (2000) showed that fresh *S. aizoon* grass could help stroke victims regain consciousness. It is thought that this herb has evident effects in improving blood circulation, reducing blood stasis, and decreasing blood pressure. Using the method of network pharmacology and molecular docking, studies found that *S. aizoon* had the effect of treating atherosclerosis and coronary heart disease (Zhu et al., 2022, 2023).

Interestingly, the extract of *S. aizoon* increased cardiac activity and decreased amphetamine toxicity (Zheng, 1975). According to the study of Wang et al. (2013), *S. aizoon* had the ability to regulating blood lipid levels and could dramatically lower the mice's liver index and fat coefficient. Additionally, when hyperlipidemia rats were treated with Yangxincao capsules (derived from whole grass extract), the serum levels of TC, TG, and LDL-C were decreased, while HDL-c and its subcomponents (HDL-c, HDL-3-C, and HDL-C/TC) were increased, implying that the mechanism of lipid regulation of *S. aizoon* was related to the enhancement of the activities of LPL, LCAT, and HDL2-C (Wu et al., 2006).

7.9 Other activities

In T1MD mice, it has been shown that *S. aizoon* extract has the ability to enhance glucolipid metabolism and organ coefficient and decrease liver tissue damage (Qi et al., 2022). In addition, polysaccharides from *S. aizoon* have an immune-stimulating effect by increasing the thymus index, spleen index, T- and B-lymphocyte transformation proliferation, and NK cell activity of mice, as well as enhancing the percentage values of CD3⁺, CD4⁺, and CD19⁺ and the percentage values of CD4+/CD8+ in the

peripheral blood. Such effect was associated with the increased secretion of IL-2 and IFN- γ (Huang, 2019).

pain, hepatomegaly, liver dysfunction, and ascites as the main symptoms (Wu et al., 2008; Shao et al., 2015).

8 Acute toxicity

A previous study showed that excessive consumption may cause small hepatic vein occlusion disease with upper quadrant abdominal

9 Quality control

The quality of traditional Chinese medicine is the basis for ensuring the stability of its efficacy and the safety of its application, and its standardization and modernization are the important prerequisites for promoting Chinese medicine toward internationalization. In order to better identify the plant, Scholars (Han, 2008) have controlled the quality of *S. aizoon* from four aspects: morphology, microscopy, TLC, and RAPD. It is required that the water content shall not exceed 10.53%, the ash content shall not exceed 14.70%, and the leaching content shall not be less than 32.57% (Wei et al., 2020). The linear ranges of quercitroside, quercetin, and kaempferol were 0.0029 ~ 0.183, 0.0016 ~ 0.1020, and 0.0045 ~ 0.260 µg/µL, respectively (He and Du, 2016), and those of luteolin and isorhamnetin were 1.12 ~ 112.00 and 0.98 ~ 97.60 µg/mL (Lin et al., 2013), respectively. However, these methods may not be sufficient to evaluate the quality of *S. aizoon*.

Traditional Chinese medicine (TCM) fingerprints can comprehensively and quantitatively reflect the chemical information contained in TCM and is an effective means of quality control of TCM. Lin et al. (2015b) used 11 standards to analyze the phytochemical profiles of the active extracts by HPLC fingerprints. Yang et al. (2023) established the HPLC-ECD fingerprint spectra of *S. aizoon* from different origins and identified 12 metabolites.

10 Conclusion and future perspectives

This review provides comprehensive and detailed information about the history, traditional uses, botany, phytochemistry, pharmacological activities, and acute toxicity of *S. aizoon*. So far, more than 200 metabolites have been identified with a variety of pharmacological activities. These modern pharmacological studies supported most traditional uses of *S. aizoon* as folk medicine. However, gaps still exist in the systematic study of *S. aizoon*.

First, *S. aizoon* has many nicknames, which results in being mixed with other herbs. Therefore, molecular biological studies are required to screen out the reference genes for better identification of *S. aizoon*.

Second, the pharmacological potential of *S. aizoon* has not yet been fully discovered, which may be further investigated by a combination of *in vitro* and *in vivo* bioactivity assays, metabolomics, network pharmacology, and *in silico* bioactivity prediction methods. In addition, the therapeutic potential of *S. aizoon* and its bioactive metabolites, safety, efficacy, and potential mechanism of action require further preclinical and clinical studies to validate for future clinical applications.

Third, S. aizoon is widely popular in herbal healthcare as a commonly used medicinal and edible substance and is especially

References

Bai, Y. L., Sun, T., Wang, Y. X., Liu, Z. Y., and Zheng, W. Z. (2016). Effect of sedum aizoon L. On platelet and vessel wall function in rats with gastrointestinal tract hemorrhage induced by aspirin. *Lab. Med.* 31, 131–134doi:10.3969/j.issn.1673-8640. 2016.02.013

Chen, E. D., Wang, X. M., Gong, L. L., Li, H. F., Rong, R., and Jiang, H. Q. (2014). Analysis of volatile components of above-ground parts of sedum aizoon by gas

used in immunomodulation and blood lipid regulation. Nevertheless, the use of *S. aizoon* in combination with other herbs in healthcare products should be strengthened, and studies on improving memory and promoting digestion may be conducted.

Fourth, the spectrum–efficacy relationship of *S. aizoon* in immunomodulation and anti-inflammatory therapy should be further investigated in order to better uncover its active metabolites.

Author contributions

B-LW: conceptualization, funding acquisition, methodology, and writing-original draft. Z-KG: writing-review and editing, formal analysis and validation. J-RQ: writing-review and editing, formal analysis and validation. S-QL: data curation, investigation, visualization, and writing-original draft. X-CH: funding acquisition and writing-review and editing. Y-HZ: writing-review and editing and visualization.

Funding

The authors declare that financial support was received for the research, authorship, and/or publication of this article. This research was carried out with the support of the Natural Science Foundation of Hubei Provincial Department of Education, grant number B2020104, the Innovation and Entrepreneurship Training Program for college students of Hubei University of Medicine, grant number X202110929016, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), grant number WDCM2023025.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

chromatography-mass spectrometry. Shandong J. Traditional Chin. Med. 33, 491–492. doi:10.16295/j.cnki.0257-358x.2014.06.001

Chen, K. K., and Qiang, Y. (2017). GC-MS analysis of fat soluble components from different parts of *sedum aizoon*. *China J. Exp. Traditional Med. Formulae* 23, 77–81. doi:10.13422/j.cnki.syfjx.2017200077

Chen, L. C. (2003). Sedum aizoon L. Treat insomnia. China's naturopathy, 60.

Chen, W. C. (2000). Fresh Sedum aizoon L for stroke, 46. China's Naturopathy.

Cao, N. F. (2011). Studies on bioactive constituents of sedum Aizoon and Euphorbia humifusa. Master: Henan University.

Chen, W. L., Qiu, Q., Lin, Z. C., and Guo, S. H. (2012). Screening of hemostasis effective fraction from *sedum aizoon L. J. Zhejiang Chin. Med. Univ.* 36, 182–183. doi:10.16466/j.issn1005-5509.2012.02.032

Chinese Academy of Medical Sciences, I.O.M.M (1972). Study on Chinese pharmaceutical active component (volume one). Beijing: People's Medical Publishing House, 424.

Chinese Herbal Medicine Research Group (1971). Clinical observation on hemostatic effect of herbal *sedum aizoon. J. New Med.*, 14–15.

Chinese Pharmacopoeia Committee (2005). Chinese Pharmacopoeia. Beijing: Chinese Medical Science and Technology Press, 590–591.

Ding, Q. (2019). *Experimental study on anti-exercise-induced fatigue of jingtian panax Notoginseng*. Beijing: Capital University of Physical Education and Sports.

Fu, Y. R., Bo, A. H., Sun, L., Guo, C. Y., Bai, X. M., and Li, H. F. (2008). The effect of tusanqi on ultrastructure of esophageal carcinama cells. *Lishizhen Med. Mater. Med. Res.*, 150, 368–369.

Gao, X. S., Xiao, S. S., and He, J. F. (2006). Analysis of alkaloids in *sedum aizoon* and establishment of hepatic veno-occlusive model in mice. *Chin. J. Integr. T Rad. West Med. Dig.*, 311–313.

Ge, Q., Wang, K., Shao, X., Wei, Y., Zhang, X., Liu, Y., et al. (2023). Inhibitory mechanism of flavonoids from *sedum aizoon* L. On *rhizopus nigricans*. *Foodborne Pathog. Dis.* 20, 197–208. doi:10.1089/fpd.2022.0083

Gong, P. J. (2020). Analysis of cutting propagation technique and principal nutrient components of excellent *sedum aizoon* variety. *J. Shandong For. Sci. Technol.* 50, 56–58.

Guo, S. H., Che, S. R., Zhu, Y. Q., Zhang, N., and Wang, Y. H. (2006). Analysis of the chemical composition of the volatile oil of *sedum aizoon* by gas phase - mass spectrometry. *China J. Traditional Chin. Med. Pharm.*, 689–690.

Guo, S. H., Huang, H. H., Lin, D., and Xu, F. (2010). Sedative and hypnotic effects of different extracted parts of *sedum aizoon* L. In mice. *J. Fujian Univ. Tradit. Chin. Med.* 20, 22–23. doi:10. 13261/j.cnki.jfutcm.002315

Guo, S. H., Huang, H. H., Xu, F., and Lin, D. (2009). Pharmacodynamic comparison of tranquilizing mind effect between water extract and alcohol extract of *sedum aizoon* L. J. Fujian Univ. Tradit. Chin. Med. 19, 28–29. doi:10.13261/j.cnki.jfutcm.002205

Guo, S. H., and Lin, Z. C. (2007). Studies on quality standard of *sedum aizoon L. China J. Traditional Chin. Med. Pharm.*, 761–763.

Han, R. C. (2008). Study on the pharmacognosy of four species plants of sedum L. Master. Liaoning: Liaoning University Of Traditional Chinese Medicine.

Han, R. J., Zhao, C., Chen, H. J., Sun, Y. J., Chen, H., Li, M., et al. (2021). Study on chemical constituents from *sedum aizoon L. Chin. J. Tradit. Chin. Med. Pharm.* 36, 4223–4226.

Han, W., Li, M. X., Lv, C. N., Hao, Y. M., and Lu, J. C. (2017). Study on chemical constituents from stems and leaves of *sedum aizoon* L. Chin. Med. Her. 14, 33-36.

Han, W. D., Xue, S., Chen, J. Y., He, Z. L., Zhao, X. M., Tan, R., et al. (2022). Analysis of the therapeutic effect of *sedum aizoon* L. On hypertension and its active ingredients. *Renowned* Dr. No 130, 42–44.

He, J. J., and Du, J. (2016). Simultaneous determinate the content of quercetin, quercitroside and kaempferol in *sedum aizoon* L. By HPLC. *Lishizhen Med. Materia Medica Res.* 27, 524–526. doi:10.3969/j.issn.1008-0805.2016.03.005

Huang, A. Y. (2014). "Study on ethyl acetate parts of hemostatic and antiinflammatory effect of *sedum aizoon* L," in *Activity screening. Master* (Fujian: Fujian University of Traditional Chinese Medicine).

Huang, R. (2019). *Study on the immunological activity of feicai polysaccharide. Master.* Jilin: Yanbian University.

Jia, L. Y., Xu, T. Y., Wang, J., Lv, C. N., and Lu, J. C. (2014). Chemical constituents from the stems and leaves of sedum aizoon L (II), 31. Liaoning: Journal of Shenyang Pharmaceutical University, 673–676.

Kim, D. W., Son, K. H., Chang, H. W., Bae, K., Kang, S. S., and Kim, H. P. (2004). Anti-inflammatory activity of *Sedum kamtschaticum. J. Ethnopharmacol.* 90, 409–414. doi:10.1016/j.jep.2003.11.005

Kim, J. H., Thart, H., and Stevens, J. F. (1996). Alkaloids of some asian *sedum* species. *Phytochemistry* 41, 1319–1324. doi:10.1016/0031-9422(95)00562-5

Li, M., Qi, Z., Hao, Y., Lv, C., Jia, L., Wang, J., et al. (2017). New adducts of iriflophene and flavonoids isolated from sedum aizoon L. With potential antitumor activity. *Molecules* 22, 1859. doi:10.3390/molecules22111859

Li, Q., Yu, Y., Li, M. X., Xu, T. Y., Lu, J. C., and Lv, C. N. (2020a). Isolation and ldentification of the chemical constituents from the rhizome of *sedum aizoon L. Mod. Chin. Med.* 22, 353–357. doi:10.13313/j.issn.1673-4890.20191203001

Li, Q. Y., and Wu, L. Q. (2011). Two new prenylated isoflavones from *sedum aizoon* L. *Fitoterapia* 82, 405–407. doi:10.1016/j.fitote.2010.11.021

Li, J. X., Cao, N. F., and Kang, W. Y. (2011). Antioxidant activity of *sedum aizoon* L. From henan. *Nat. Prod. Res. Dev.* 23, 337–340. doi:10.16333/j.1001-6880.2011.02.033

Li, W. L., Jing, Y., Luo, Q. Y., Bai, S. P., and Yan, F. L. (2008). Study of chemical constituents on sedum aizoon L. J. Xinxiang Med. Univ. 25, 558-561.

Li, W. L., Luo, Q. Y., Wu, L. Q., and Xiao, L. (2011). Two new flavonol glycosides from. *Sedum Aizoon L. Heterocycles.* 83, 135–141.

Li, Z. H., Hu, H. B., Chen, J., Wang, M. Q., and Du, G. H. (2007). Analysis of the constituents in *sedum aizoon* L. By HPLC ESI-MS/MS. *Chin. J. Nat. Med.*, 431-434.

Lin, Z., Fang, Y., Huang, A., Chen, L., Guo, S., and Chen, J. (2014). Chemical constituents from *sedum aizoon* and their hemostatic activity. *Pharm. Biol.* 52, 1429–1434. doi:10.3109/13880209.2014.895019

Lin, Z. C. (2014). Studies on hemostatic and anti-inflammatory effective substances of sedum aizoon *L. And its quality evaluation*. Nanjing, China: Nanjing University of Chinese Medicine.

Lin, Z. C., Fang, Y. J., Huang, A. Y., Chen, L. Y., and Guo, S. H. (2013). Simultaneous determination of four flavonoids in *sedum aizoon* L. From different origin and medicinal parts by high performance liquid chromatography. *J. Anal. Sci.* 29, 819–822.

Lin, Z. C., Huang, H. H., Chen, D. W., Chen, J. H., and Guo, S. H. (2011). Study on chemical constituents of active parts of calming the heart and tranquilizing the mind from *sedum aizoon L. China J. Traditional Chin. Med. Pharm.* 26, 3000–3002.

Lin, Z. C., Zhang, L., Zhang, R. Z., Huang, A. Y., and Guo, S. H. (2015a). Antiinflammatory effect of ethyl acetate extract of *sedum aizoon* L. LPS-stimulated RAW 264. 7 macrophages and its HPLC fingerprint. *J. Chin. Pharm. Sci.* 24, 647–653.

Lin, Z. C., Zhang, L., Zhang, R. Z., Huang, A. Y., and Guo, S. H. (2015b). Antiinflammatory effect of ethyl acetate extract of *sedum aizoon* L. In LPS stimulated RAW 264.7 macrophages and its HPLC fingerprint. *J. Chin. Pharm. Sci.* 24, 647-653. doi:10.5246/jcps.2015.10.082

Liu, K. Q., Yin, W. D., Zheng, H. Z., and Shi, Y. W. (2011). The influence of jingtiansanqi on platelet and coagulation function in rat treated with aspirin. *Labeled Immunoassays Clin. Med.* 18, 407–410.

Liu, X. F., Ma, Z. R., Wu, X. Q., Lai, M. Q., and Zhang, Y. (2012). Research progress of active principle and functional compounds of *sedum aizoon L. China J. Traditional Chin. Med. Pharm.* 27, 2135–2138.

Liu, X. M., Wu, F. H., and Huang, Q. F. (2005). Pharmacodynamic study on regulating lipid of *Yangxincao* capsule. *Chin. J. Pathophysiol.* 21, 1628.

Liu, Z. K., Min, C., Dong, H., and Zhang, Z. S. (2021). Improvement of adventitious root formation in *sedum aizoon* L. And the production of flavonoids. *South Afr. J. Bot.* 137, 483–491. doi:10.1016/j.sajb.2020.10.024

Liu, Z. Y., Wang, Y. X., Sun, T., Bai, Y. L., and Zheng, W. Z. (2015). Observation the effect of jingtian sanqi on hamostatic function and coagulation in rats with gastric hemorrhage. *Chin. Med. Mod. Distance Educ. China* 13, 142–144. doi:10.3969/j.issn. 1672-2779.2015.13.072

Luo, J., Xu, F., Zhang, X., Shao, X., Wei, Y., and Wang, H. (2020). Transcriptome analysis of *penicillium italicum* in response to the flavonoids from *sedum aizoon* L. *World J. Microbiol. Biotechnol.* 36, 62. doi:10.1007/s11274-020-02836-z

Ma, J., Gao, L., Shi, Y., Cai, D. B., and Xiong, S. L. (2019). Purification, free radical scavenging activity and preliminary identification of ethanol extract s from *sedum aizoon* L. *Sci. Technol. Food Ind.* 40, 207–213+219. doi:10.13386/j.issn1002-0306.2019.04.034

Qi, X., Lu, X. T., Sun, X. H., Lin, C. Q., and Cui, C. B. (2022). The regulatory effect of total flavonoids of *sedum aizoon* L. On oxidative stress in type 1 diabetic mice. *Curr. Res. Food Sci.* 5, 1140–1147. doi:10.1016/j.crfs.2022.06.010

Qian, Y. X., Li, Y., and Guo, D. G. (2018). An analysis of chemical constituents of volatile oil of *sedum aizoon L. J. Guiyang Coll. Tradit. Chin. Med.* 40, 47–49. doi:10. 16588/j.cnki.issn1002-1108.2018.01.012

Qiang, Y. (2013). Study on germplasm resources and bioactive components of sedum aizoon L. Doctor Shaanxi: Shaanxi Normal University.

Ren, M. J. (2020). Experimental study on the preventive effect of sedum aizoon L. On exercise fatigue in mice and humans. Master. Beijing: Capital University of Physical Education and Sports.

Shao, H., Chen, H. Z., Zhu, J. S., Ruan, B., Zhang, Z. Q., Lin, X., et al. (2015). Computed tomography findings of hepatic veno-occlusive disease caused by *sedum aizoon* with histopathological correlation. *Braz J. Med. Biol. Res.* 48, 1145–1150. doi:10. 1590/1414-431X20154563

Tan, B., He, X. C., Li, T., and Du, J. (2018). Research progress on chemical constituents and medical functions of phedimus aizoon. *Chin. J. Ethnomedicine Ethnopharmacy* 27, 49–52.

Tan, P., Yao, L. F., and Peng, C. X. (2001). *MIC test on 40 species of "Qi" herbs from Mt*•*Qinling*. Hubei: Lishizhen Medicine and Materia Medica Research, 484–485.

Wang, H., Ge, Q., Shao, X., Wei, Y., Zhang, X., Wang, H., et al. (2023a). Influences of flavonoids from *sedum aizoon* L. On biofilm formation of Pseudomonas fragi. *Appl. Microbiol. Biotechnol.* 107, 3687–3697. doi:10.1007/s00253-023-12526-z

Wang, H. F., Liu, F., Xu, C., Lin, Y., Li, H. S., Shao, X. F., et al. (2013). Study on blood lipid regulation and hepatocarcinoma proliferation of total flavonoid from *sedum aizoon* L. J. Chin. Inst. Food Sci. Tech. 13, 23–27. doi:10.16429/j.1009-7848.2013.04.002

Wang, H. X., Xu, F., Zhang, X., Shao, X. F., Wei, Y. Y., and Wang, H. F. (2022a). Transcriptomic analysis reveals antibacterial mechanism of flavonoids from *sedum aizoon* L. Against *Pseudomonas fragi. Food control.* 134, 108755. doi:10.1016/j.foodcont.2021.108755

Wang, J., Chi, Z., Zhao, K., Wang, H., Zhang, X., Xu, F., et al. (2020). A transcriptome analysis of the antibacterial mechanism of flavonoids from *sedum aizoon* L. Against *Shewanella putrefaciens*. World J. Microbiol. Biotechnol. 36, 94. doi:10.1007/s11274-020-02871-w Wang, K., Zhang, X., Shao, X., Wei, Y., Xu, F., and Wang, H. (2022b). Flavonoids from *sedum aizoon* L. Inhibit *botrytis cinerea* by negatively affecting cell membrane lipid metabolism. *Appl. Microbiol. Biotechnol.* 106, 7139–7151. doi:10.1007/s00253-022-12196-3

Wang, K. Y., Ge, Q. Q., Shao, X. F., Wei, Y. Y., Zhang, X., Xu, F., et al. (2023c). Influences of flavonoids from *sedum aizoon* L. On the cell membrane of *botrytis cinerea*. *Food Biosci.* 52, 102386. doi:10.1016/j.fbio.2023.102386

Wang, X. H. (2013). *Processing technology of leaf tea and its beverage of* sedum aizoon L. *Master* Shandong: Shandong Agricultural University.

Wei, X., Liu, C., Yao, Y. M., Liu, X. L., and Peng, L. J. (2020). Stduy on quality standard of sedum aizoon. Stud. Trace Elem. Health 37, 39-40+43.

Wolbi, M., and Olszewska, M. (1996). Polyphenolic compounds from sedum aizoon L.

Wu, F. H., Liu, X. M., and Guo, S. H. (2006). Study on mechanism of *Yangxincao* capsule in regulating lipid metabolism. *Chin. J. Integr. Tradit. West. Med.* 26, 131–134.

Wu, G. L., Yu, G. Y., and Chen, J. (2008). Clinical analysis of hepatic venoocclusive disease induced by *sedum aizoon*. *China J. Chin. materia medica* 33, 2402–2404.

Xiong, Y., Du, C. X., Duan, Y. S., Yuan, C. M., Huang, L. J., Gu, W., et al. (2019). Chemical constituents and pharmacological activities of *sedum aizoon* form guizhou province. *Chin. Tradit. Herb. Drugs.* 50, 5404–5410.

Xu, F., Cao, S., Wang, C., Wang, K., Wei, Y., Shao, X., et al. (2019). Antimicrobial activity of flavonoids from *sedum aizoon* L. Against *Aeromonas* in culture medium and in frozen pork. *Food Sci. Nutr.* 7, 3224–3232. doi:10.1002/ fsn3.1178

Xu, L. (2012). Evaluation of herb *sedi aizoon* in the treatment of peptic ulcer bleeding. *Hainan Med. J.* 23, 32–33.

Xu, T., Wang, Z., Lei, T., Lv, C., Wang, J., and Lu, J. (2015). New flavonoid glycosides from sedum aizoon L. Fitoterapia 101, 125–132. doi:10.1016/j.fitote.2014.12.014

Xu, Z. C., Wen, Y. H., Li, M. J., Liang, S., Wei, Y., and Zheng, W. Z. (2016). Study on hemostatic and activating blood effect and mechanism of jingtiansanqi in rat treated with aspirin. *Lishizhen Med. Mater. Med. Res.* 27, 84–85.

Xuan, X. M. (2014). Experimental study on anti-atherosclerotic effect of total phenolic acid in the sedum aizoon L. Clin. J. Chin. Med. 6, 139-141.

Xuan, X. M. (2015). The observation of the clinical efficacy of gynurajaponica in the treatment of cardiovascular diseases. *J. North Pharm.* 12, 28–29.

Xue, G. X. (2015). Research of fermented Sedum kamtschaticum tea beverage. China Brew. 34, 151–155. doi:10.11882/j.issn.0254-5071.2015.10.034 Yang, X. J., Wang, Y., Chen, Z. H., Liu, M. Y., Wu, J., Xiang, Y., et al. (2023). Study on the spectrum effect relationship of antioxidant activity of *sedum aizoon* L. Based on HPLC-ECD. *Sci. Technol. Food Industry* 44, 15–24. doi:10.13386/j.issn1002-0306. 2022100158

Yi, Y. J. (2000). Utilization value and planting of *sedum aizoon*. Special Econ. Animal Plant 3 (4), 38.

Zhang, G. S., and Wang, G. P. (2012). Effect of *sedum aizoon* L. On the antioxidase activity and MDA content of the liver in *Cyprinus carpio* Linnaeus. *Sichuan J. Zoology* 31, 909–911. doi:10.3969/j.issn.1000–7083.2012.06.013

Zhang, J. J., Wang, J., Xue, J., Cao, B. Y., and Lu, J. C. (2010). *Chemical constituents from the stems and leaves of* sedum aizoon *L*, 27. Journal of Shenyang Pharmaceutical University, 635–638.

Zhang, L., Lin, Z. C., Zhang, R. Z., and Guo, S. H. (2015a). Experimental study of the hypnotic effect of the compatibility of *sedum aizoon* L. And *semen ziziphus* spinosa by increase-decrease baseline geometric proportion design method. *Strait Pharm. J.* 27, 17–18.

Zhang, R. Z., Lin, Z. C., Qiu, Q., Zhang, L., and Guo, S. H. (2015b). Study on the sedative-hypnotic effect and acute toxicity of *Yangxincao* anshen granule. *J. Liaoning Univ. Tradit. Chin. Med.* 17, 31–33. doi:10.13194/j.issn.1673-842x.2015.11.010

Zhang, Y. X., Qiao, H. Y., Shan, Y. Q., Liu, W. J., Liu, Z. X., and Kang, M. (2011). Experimental study on the anti-bacteria effects of *sedum aizoon* L. *in vitro*. J. Hebei North Univ.:Nat. Sci. 27, 78–80.

Zhang, Y. X., Xu, X. H., Qiao, H. X., and Zhang, Y. T. (2012). Study on antibacterial activity of Sedum Aizoon L. against multi - drug resistant *Pseudomonas aeruginosa*. *J. Hebei North Univ.:Nat. Sci.* 28, 76–78. doi:10.3969/j.issn.1673-1492.2012.04.022

Zhao, C. S. (2015). Study on protective effect of total flavonoids of *sedum aizoon* L. On oxidative damage of rat pheochromocytoma cells induced by hydrogen peroxide. *Chin. Remed. Clin.* 15, 1268–1269. doi:10.11655/zgywylc2015.09.017

Zheng, H. C. (1975). Research of phytochemistry and biological action of sedum. J. Int. Pharm. Res., 32–34. doi:10.13220/j.cnki.jipr.1975.01.006

Zhong, L. M., Xia, X. H., Jiang, D. J., Zeng, G. R., and Gao, S. (2014). Study on gastricmucosal protective effect of different extracting-parts of stonecrop Notoginseng in mice. *Chin. J. Clin. Pharmacol.* 30, 208–211. doi:10.13699/j.cnki.1001-6821.2014.03.001

Zhu, B. J., Nai, G. Y., Pan, T. X., Ma, Z. F., Huang, Z. D., Shi, Z. Z., et al. (2022). To explore the active constituents of *Sedum aizoon* L in the treatment of coronary heart disease based on network pharmacology and molecular docking methodology. *Ann. Transl. Med.* 10, 1327. doi:10.21037/atm-22-5391

Zhu, B. J., Nai, G. Y., Pan, T. X., Ma, Z. F., and Zhou, W. J. (2023). Combining network pharmacology and bioinformatics to identify bioactive compounds and potential mechanisms of action of *sedum aizoon* L. In the treatment of atherosclerosis. *Qual. Assur. Saf. Crops Foods* 15, 104–116. doi:10.15586/qas.v15i3.1333

Glossary

Glossary		E.coli	Escherichia coli
ABTS	2, 2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonate)	ET-1	Endothelin 1
AGG		Glu	Glucopyranoside
APTT	Abrus agglutinin	GSH-Px	Glutathione peroxidase
BXPC-3	Activated partial thromboplastin time	HMBC	1H-detected heteronuclear multiple-bond correlation
САТ	Human pancreatic adenocarcinoma cells	HRESIMS	High-resolution electrospray ionization mass spectroscopy
CNKI	catalase	IC50	50% inhibitory concentration
	China National Knowledge Infrastructure	IL-6	Interleukin 6
СТ	Coagulation time	LAC	Lactic acid
DPPH	2, 2-Diphenyl-1-picrylhydrazyl	LD50	Semi-lethal dosage
EtOAc	Ethyl acetate	MAP	Mean arterial pressure
FBG	Fasting blood glucose	MCF-7	Human breast cancer
GP llb/llla	Platelet membrane glycoprotein	MDRPA	Multidrug-resistant pseudomonas aeruginosa
HepG2	Human hepatoma cell line	MTT	3-(4,5-Dimethylthiazol-2yl) –2,5-diphenyltetrazolium bromide
H/R	Hypoxia/reoxygenation	OGTT	Oral glucose tolerance test
HSQC	Heteronuclear singular quantum correlation	POD	Peroxidase
IL-1β	Interleukin 1β	РТ	Prothrombin time
IR	Infrared spectroscopy	Rha	Rhamnopyranosyl
LDH	Lactate dehydrogenase	SBP	Systolic blood pressure
LPS	Lipopolysaccharide	Staphy.Auren	Staphylococcus aureus
МАРК	Mitogen-activated protein kinase	тс	Total cholesterol
MDA	Malondialdehyde	T1DM	Type 1 diabetes mellitus
MTD	Maximum tolerance dose	TLC	Thin-layer chromatography
NMR	Nuclear magnetic resonance	ТРА	12-O-tetradecanoylphorbol 13-acetate
PC12	Adrenal pheochromocytoma cell line	TT	Thrombin time
Pseud. aeruginosa	Pseudomonas aeruginosa	Xyl	Xylopyranoside
RAPD	Random amplified polymorphic DNA		· •
ROS	Reactive oxygen species		
SOD	Superoxide dismutase		
STz	Streptozotocin		
TCM	Traditional Chinese medicine		
TG	Triglyceride		
TNF-a	Tumor necrosis factor-a		
T-SOD	Total superoxide dismutase		
UV	Ultraviolet and visible spectrum		
Ac	Acetate		
Ara	Arabinopyranoside		
A549	Human lung carcinoma		

- BUN
 Blood urea nitrogen

 CD
 Circular dichroic

 CGN
 λ-Carrageenan
- DEGS Differentially expressed genes