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The colossal global burden of diabetes management is compounded by the
serious complication of hypoglycemia. Protective physiologic hormonal and
neurogenic counterregulatory responses to hypoglycemia are essential to
preserve glucose homeostasis and avert serious morbidity. With recurrent
exposure to hypoglycemic episodes over time, these counterregulatory
responses to hypoglycemia can diminish, resulting in an impaired awareness
of hypoglycemia (IAH). IAH is characterized by sudden neuroglycopenia rather
than preceding cautionary autonomic symptoms. IAH increases the risk of
subsequent sudden and severe hypoglycemic episodes in patients with
diabetes. The postulated causative mechanisms behind IAH are complex and
varied. It is therefore challenging to identify a single effective therapeutic strategy.
In this review, we closely examine the efficacy and feasibility of a myriad of
pharmaceutical interventions in preventing and treating IAH as described in
clinical and preclinical studies. Pharmaceutical agents outlined include
N-acetyl cysteine, GABA A receptor blockers, opioid receptor antagonists,
AMP activated protein kinase agonists, potassium channel openers,
dehydroepiandrosterone, metoclopramide, antiadrenergic agents, antidiabetic
agents and glucagon.
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Hypoglycemia in diabetes

The global prevalence of diabetes mellitus is estimated to be around 420 million (WHO,
2023) whereas 8.4 million have type 1 diabetes (T1D) (Gregory et al., 2022). Around
72 million individuals with diabetes mellitus worldwide rely on insulin for optimal glycemic
control (WHO, 2023). Hypoglycemia is considered a limiting factor for optimal
management of diabetes in individuals who are on insulin therapy. The incidence of
symptomatic hypoglycemia is estimated to be one to two episodes per week per person in
T1D, whereas in individuals with type 2 diabetes (T2D) using insulin or sulfonylureas, it is
estimated to be 0.4 episodes per week per person (Emral et al., 2017). In one study, 14% of
individuals with T1D and 9% with T2D reported experiencing a severe hypoglycemia event
over a period of 4 weeks (Khunti et al., 2016). Risk factors of hypoglycemia, in addition to
the use of insulin, include advancing age, duration of diabetes, kidney disease, alcohol use,
malnutrition, prior history of hypoglycemia and presence of impaired awareness of
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hypoglycemia (IAH) (Davis et al., 2010; Seaquist et al., 2013; Karter
et al., 2017; Henriksen et al., 2018).

Hypoglycemia is defined as low plasma glucose that causes
physiological and/or clinical impairment of patients’ wellbeing or
increases risk of harm (Seaquist et al., 2013). American Diabetes
Association (ADA) classifies hypoglycemia as level 1 when the
glucose level is between 70 mg/dL and ≥54 mg/dL. Glucose
level <54 mg/dL triggers neuroglycopenic symptoms that
warrants urgent corrective intervention and is established as level
2 hypoglycemia. Lastly, level 3 hypoglycemia is defined as a severe
event characterized by altered mental and/or physical status
requiring assistance for the treatment of hypoglycemia
(Heller, 2017).

There are several counterregulatory mechanisms that get
triggered in response to lowering glucose levels. These
mechanisms have evolved to preserve consistent glucose supply
to the brain (Cryer, 2007). These measures can be broadly
categorized as either hormonal or neurogenic with studies
demonstrating an intricate interplay between these categories
(Palani et al., 2023). The human body is strategically equipped
with glucose sensing neurons both in central and peripheral nervous
systems. It includes the oral cavity, gastrointestinal tract, portal
mesenteric vein and carotid body (Donovan, 2002; Roper, 2007;
Nurse, 2009; Raybould, 2010). Changes in electrochemical activity
within these neurons in response to lowering glucose lead to changes
in centrally located neurons in the ventromedial nucleus of the
hypothalamus (VMH), tuberal nucleus, arcuate nucleus, amygdala,
nucleus of the solitary tract, dorsal motor nucleus of the vagus and
area postrema (Levin et al., 2006). This in turn causes reduction in
insulin and increase in glucagon secretion from β and α islet cells in
the pancreas respectively (Bloom and Edwards, 1975). Moreover,
changes in β and α cells’ activities are also the result of direct sensing
of lowering glucose levels by these cells due to the presence of
glucokinase and adenosine triphosphate sensitive potassium
(K-ATP) channels. Furthermore, increase in sympathetic activity
leads to increased epinephrine and norepinephrine levels from the
adrenal medulla (Sprague and María Arbeláez, 2011) whereas
cortisol and growth hormone are thought to play
counterregulatory roles in protracted hypoglycemia (Kittah and
Vella, 2017). Such shifts in hormonal balance lead to decrease in
glucose utilization by peripheral organs including liver, adipose
tissues and musculoskeletal system, increase in hepatic and renal
glycogenolysis and gluconeogenesis and increase in lipolysis thus
providing glycerol and free fatty acids which serve as substrates in
gluconeogenesis.

Impaired awareness of hypoglycemia

Repeated exposure to antecedent hypoglycemia blunts the
counterregulatory and symptoms responses to subsequent
hypoglycemic episodes (Briscoe and Davis, 2006) leading to
development of IAH. IAH is characterized by a diminished
capacity to recognize the onset of low blood sugar. People with
diabetes with IAH develop neuroglycopenic symptoms, that is,
altered mental status before the occurrence of autonomic
symptoms which include tremors, palpitations, anxiety and
diaphoresis (Martín-Timón and Cañizo-Gómez, 2015). It has

been estimated that 20%–25% of people with T1D and 10% with
T2D have IAH (McNeilly and McCrimmon, 2018; Van Meijel et al.,
2020; Li et al., 2023) which increases the risk of subsequent severe
hypoglycemia (Schopman et al., 2010; Li et al., 2023). Clinical
predictors associated with increased risk of IAH include longer
duration of diabetes, recent history of recurrent hypoglycemia, older
age and intensive diabetes regimen (Cryer, 2008). Genetic
predisposition has also been associated with altered risk of IAH
among people with T1D. In a study by Schouwenberg BJ et al. IAH
among T1D with homozygosity for Gly16 variants of ADRB2 gene
was 3.4 fold higher compared with other variants (Schouwenberg
et al., 2008).

The underlying mechanisms behind development of IAH are
not fully understood. There have been several postulated
mechanisms explaining the relationship between recurrent
hypoglycemia and IAH. The proposed mechanisms encompass
changes in neurotransmission and adaptations in energy
metabolism, both contributing to alterations in the brain’s ability
to sense glucose. These mechanisms include: 1) Increased glucose
uptake across the blood–brain barrier, enabling neurons to sustain
metabolism during hypoglycemic stress; 2) Utilization of non-
glucose substrates by the brain, such as lactate and ketones, to
maintain energy metabolism during hypoglycemia; 3) Elevation in
astrocyte glycogen levels post-hypoglycemia (supercompensation),
providing additional fuel during subsequent hypoglycemic episodes;
4) Alteration in hypothalamic neurosignaling, involving increased γ
amino butyric acid (GABA) signaling and diminished adenosine
monophosphate kinase (AMPK) activity; 5) Increased cerebral
oxidative stress; 6) Involvement of systemic mediators like
endogenous opiates, adrenal neuropeptide Y, and cortisol levels.
For a more detailed exploration of these mechanisms, please refer to
previously published reviews (Cryer, 2013; McNeilly and
McCrimmon, 2018; Stanley et al., 2019).

IAH can be partially restored by strict avoidance of
hypoglycemia. However, this can be difficult to achieve and
maintain long-term and could risk worsening hyperglycemia in
the clinical setting (Dagogo-Jack et al., 1994; Fanelli et al., 1994;
Leelarathna et al., 2013). Non-pharmacological clinical therapies
including education, technology and transplantation have been
eloquently explored in a recent review by Macon et al. (Macon
et al., 2023) This review offers a focused review of studies
investigating various pharmacological strategies aimed at
preventing or reversing IAH.

Pharmacological interventions to
prevent or reverse impaired awareness
of hypoglycemia

N-acetyl cysteine

N-acetyl cysteine (NAC), provides a rich source of glutathione
which is a powerful antioxidant (De Vries and De Flora, 1993). NAC
administration counters reactive oxygen species (ROS) which are
free radicals known to damage cellular integrity (De Vries and De
Flora, 1993). NAC is commonly and effectively used in the treatment
of acetaminophen poisoning for hepatocellular protection (Keays
et al., 1991). It has also been studied in the treatment of pulmonary
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disease (Raghu et al., 2021), psychiatric illness (Berk et al., 2008) and
HIV (Roederer et al., 1992) with conflicting results.

The role of NAC in preventing an impaired counterregulatory
response (CRR) to recurrent hypoglycemia was initially studied by
Fioramonti et al. (Fioramonti et al., 2013) in a healthy rat model.
NAC administration during antecedent hypoglycemia resulted in
decreased ROS production in the VMH and prevented attenuation
of the CRR to subsequent hypoglycemia (Fioramonti et al., 2013). In
contrast, NAC pretreatment did not prevent hypoglycemia
mediated autonomic failure in the setting of prior diabetic
hyperglycemia (Zhou and Routh, 2018). It was postulated that in
a diabetic state, the NAC-glutathione antioxidant system may be
overwhelmed by excess ROS production so targeting an additional
antioxidant systemmay be of value (Sengupta and Holmgren, 2012).

Given the preclinical potential of NAC therapy, Moheet et al.
explored its use in a randomized double blind crossover study in
humans (Moheet et al., 2020). Healthy participants without diabetes
were pre-treated with a 60-min 150 mg/kg NAC infusion followed
by a 4-h 50 mg/kg NAC infusion or saline starting 30 min prior to
the first experimental hypoglycemia clamp. Participants underwent
two 2-h experimental hypoglycemic clamps on day 1 and a third
hypoglycemic clamp on day 2. No significant difference in the
counterregulatory hormonal or symptom response was
demonstrated after NAC exposure compared to saline (Moheet
et al., 2020). Thus, the initial promise of NAC therapy observed
in preclinical non-diabetic rats, remained absent in non-diabetic
human trials. Further exploration of its role in patients with diabetes
is likely superfluous.

GABAA receptor blockers

GABA is an inhibitory neurotransmitter derived from glutamic
acid decarboxylase (GAD) expressed throughout the central nervous
system. Research in rodent models has indicated that hypothalamic
GABA signaling plays a crucial role in regulating the CRR to
hypoglycemia (Chan et al., 2006). Reduction in local glucose
availability within the VMH is believed to reduce local GABA
release, thereby influencing the magnitude of CRR to
hypoglycemia (Zhu et al., 2010). The concentration of GABA, as
measured by microdialysis, in VMH extracellular fluid has been
shown to be higher and did not significantly decrease with the onset
of acute hypoglycemia in rats subjected to insulin mediated
recurrent hypoglycemia as compared to normoglycemic controls
(Chan et al., 2008). Elevated GABAergic activity within the VMH
was associated with the development of impaired CRR to
hypoglycemia (Zhu et al., 2010; Chan et al., 2011). However,
VMH administration of bicuculline methiodide, a GABAA

receptor antagonist, restored glucagon and epinephrine response
to hypoglycemia 44 45, suggesting a possible clinical benefit of GABA
antagonists as a therapeutic tool to treat IAH.

There are only a handful of studies on the influence of GABAA in
hypoglycemia induced counterregulatory mechanisms in humans.
Blunting of CRR to hypoglycemia have been reported with the use of
alprazolam, a GABAA agonist (Breier et al., 1992; Giordano et al.,
2003; Hedrington et al., 2010). Hedrington et al. reported that
antecedent GABAA agonist exposure to alprazolam resulted in
blunting of autonomic and neuroendocrine CRR to hypoglycemia

in healthy individuals (Hedrington et al., 2010). Consequently,
pharmaceutical agents with inherent GABA antagonistic
properties like modafinil, which is primarily used to treat
narcolepsy, gained candidacy as a therapeutic option to treat
IAH. Smith et al. conducted hypoglycemic hyperinsulinemic
clamp studies in nine healthy male subjects after administering
100 mg modafinil vs. placebo (Smith et al., 2004). In response to
hypoglycemia, the modafinil group had modest but significantly
higher autonomic symptom scores, and reduced deterioration in
performance on the Stroop color word test and reaction task
accuracy as compared to placebo. However, no changes in
measured counterregulatory hormone levels were observed
(Smith et al., 2004). Mechanisms by which modafinil exerts these
effects are under study, with one study suggesting recurrent
hypoglycemia impairs glucose sensitivity of perifornical
hypothalamus (PFH) orexin glucose inhibited (GI) neurons
which may play a role in development of IAH. In this rodent
model, modafinil normalized glucose sensitivity to PFH orexin
GI neurons post recurrent hypoglycemia with restoration of IAH
(Patel et al., 2023). In 2021, Espes et al. published results from their
proof-of-concept trial of six patients with T1D who were given a
controlled release formulation of GABA, Remygen (Diamyd
Medical) (Espes et al., 2021). Although primarily pursued to
assess the GABA formulation for safety, hypoglycemic clamp
studies during the trial demonstrated increased CRR of glucagon,
epinephrine, growth hormone and cortisol (Espes et al., 2021).
While not powered sufficiently for generalizable conclusions,
these results were in stark contrast to prior studies supporting
GABA antagonist therapy. One potential theory is that GABA
has poor CNS permeability as compared to benzodiazepines, thus
it primarily exerts its counterregulatory hormonal effects
peripherally such as at the level of the adrenal gland (Harada
et al., 2016) and pancreas (Choat et al., 2019). A recent in vivo
protocol involving proton magnetic resonance spectroscopy to
visualize GABA within the human hypothalamus during
hypoglycemia can facilitate future studies to explore the exact
mechanism by which GABA acts within the CNS (Park et al.,
2021). There is a compelling need for large scale clinical trials
exploring the role of GABA agonists and antagonists in
preventing and treating IAH.

Opioid receptor antagonists

Opioid receptor antagonists have been examined as a potential
therapy to address IAH in diabetes. Endogenous opiates were shown
to modulate CRR to acute hypoglycemia (McCrimmon, 2011).
Intravenous administration of naloxone, an opioid receptor
antagonist, enhances the CRR to acute hypoglycemia in both
dogs and humans (El-Tayeb et al., 1986; Caprio et al., 1991). The
exact mechanism through which endogenous opiates might impair
the CRR to hypoglycemia is unknown. Opiate receptors are
expressed in the VMH and activation of opioid signaling in the
brain has been implicated in development of IAH (McCrimmon,
2011). Intravenous naloxone, when infused during antecedent
hypoglycemia, prevented the development of defective CRR to
subsequent hypoglycemia in healthy individuals and those with
T1D (Leu et al., 2009; Vele et al., 2011). However, 4-week oral
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administration of naltrexone, another opioid receptor antagonist,
did not show significant effects on hypoglycemia frequency in real-
life situations or on symptoms and CRR during experimental
hypoglycemia in patients with T1D and IAH (Moheet et al.,
2015). In another study (Naik et al., 2017), overnight
administration of two doses of oral naltrexone, showed modest
increase in plasma epinephrine during hypoglycemia compared to
placebo without changes in other counterregulatory hormones.

AMP-activated protein kinase agonists

AMPK is a serine-threonine kinase which is responsible for
phosphorylating several proteins involved in cell metabolism
(Garcia and Shaw, 2017). Given most neurons do not possess
energy stores; neuronal AMPK can act as a glucose sensor. The
role of AMPK in regulating CRR to hypoglycemia has been
investigated in animal studies. McCrimmon et al. injected agent
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) into the
VMH of rats to stimulate AMPK during hyperinsulinemic-
hypoglycemic clamp studies (McCrimmon et al., 2004). While no
change in hormonal counterregulation was observed; there was up
to fourfold increase in hepatic glucose production as compared to
controls. McCrimmon et al. repeated this study in rats with
antecedent recurrent hypoglycemia and reported a significant
improvement in the CRR (epinephrine and glucagon) in addition
to increased hepatic glucose production (McCrimmon et al., 2006).
Alquier et al. also demonstrated that intracerebrovascular injection
of AICAR to stimulate AMPK in a rat model of repetitive
neuroglycopenia partially restored the CRR (Alquier et al., 2007).
Fan et al. examined AMPK activation in a rat model of T1D (Fan
et al., 2009). Four rat groups were studied, two subjected to chronic
hyperglycemia and two to recurrent hypoglycemia for 3 days. This
was followed by a hyperinsulinemic hypoglycemic clamp study in all
four groups with concurrent AICAR vs. saline injection into the
VMH. They noted a significantly improved glucagon CRR to
hypoglycemia in the AICAR treated diabetic rats as compared to
saline treated controls indicating that AMPKmanipulation could be
a useful pharmaceutical tool to treat IAH (Fan et al., 2009).

Given AICAR requires intracerebral injection, the need for a
peripherally administered AMPK activator with central nervous
system (CNS) permeability was identified. Metformin is known
to activate AMPK and has recently been found to exert
neuroprotective effects by crossing the blood brain barrier
(Sharma et al., 2021; Sharma et al., 2023). The role of metformin
in treating IAH requires further study. In 2021, Cruz et al. did study
a novel, brain permeable compound R481, which is more potent
than metformin, in a healthy rat model. They demonstrated that this
metformin-like compound amplified peak plasma glucagon levels in
response to hypoglycemia in healthy rats (Cruz et al., 2021). The
efficacy and safety of R48 in preventing IAH in a diabetic rodent
population and in humans requires further exploration.

Potassium channel openers (KCO)

ATP sensitive potassium channels notably act as glucose sensors
in the pancreas for hormonal insulin mediated glycemic regulation.

ATP sensitive potassium channels comprise two subunits,
Kir6.2 and SUR-1 (Seino and Miki, 2003) and have also been
identified within the glucose sensing VMH region (Kang et al.,
2004). McCrimmon et al. injected the KCOs diazoxide and
NN414 into the VMH of healthy rats with significant
amplification of epinephrine and glucagon CRR to hypoglycemia.
This effect was maintained in diazoxide treated rats subjected to
antecedent recurrent hypoglycemia, suggesting a possible
therapeutic role for KCOs with an existing impaired CRR to
hypoglycemia (McCrimmon et al., 2005). However, there is
evidence that prolonged exposure to KCOs like NN414 may
result in a conformational change in the ATP sensitive potassium
channel, resulting in attenuated glucose sensing over time
(Haythorne et al., 2016).

In a human trial of patients with long-standing T1D,
diazoxide at a dose of 7 mg/kg was shown to significantly
upregulate the catecholaminergic CRR (George et al., 2015).
Moreover, E23K, a genetic polymorphism of the potassium
channel, was identified which predicted a blunted response to
diazoxide therapy (George et al., 2015). There was no
appreciable symptom score response, however this may have
been a result of the small sample size. Future large scale clinical
trials should investigate the impact of prolonged diazoxide
therapy as well as the clinical utility of genotype directed
stratification of participants (George et al., 2015; Farrell and
McCrimmon, 2021).

Dehydroepiandrosterone

Dehydroepiandrosterone (DHEA) and its sulfated metabolite
form is a steroid hormone. It is considered to play a role in CRR
to hypoglycemia, given its inherent stimulation of N-methyl-D-
aspartate and nitric oxide synthase along with GABA and
glucocorticoid antagonism (Mikeladze et al., 2016). Mikeladze
et al. administered oral DHEA or placebo as healthy humans
underwent a standard model of repeated experimental
hypoglycemia to induce IAH. High doses of oral DHEA given
prior to hypoglycemia clamps preserved the hypoglycemia
related hormonal, autonomic and symptom CRR (Mikeladze
et al., 2016). Future studies in patients with diabetes and at
submaximal doses will be needed to establish its clinical
efficacy in treating IAH.

Metoclopramide

Metoclopramide has antiemetic properties and is commonly
used in the management of diabetic gastroparesis and
gastroesophageal reflux disease. It antagonizes dopamine
D2 receptors peripherally as well as within the CNS. In rodent
models of IAH, metoclopramide has shown promising results as a
potential therapeutic agent to prevent or restore CRR to
hypoglycemia (VIEIRA DE ABREU et al., 2018; DEVORE et al.,
2022). There is an ongoing randomized clinical trial (Clinical Trials.
gov ID NCT03970720) examining the role of metoclopramide in
restoring hypoglycemia awareness in human subjects with T1D
(ClinicalTrials, 2023b).
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Adrenergic blockade

The adrenergic response to hypoglycemia is essential in triggering
sympathetic symptoms that make us aware of hypoglycemia. However,
repeated activation of the adrenergic system has been postulated to
contribute to development of IAH. In healthy humans, antecedent
activation of adrenergic receptors through repeated epinephrine
infusions, without inducing hypoglycemia, lead to impairment in
CRR to subsequent hypoglycemia (Lontchi-Yimagou et al., 2020). β-
adrenergic blockage has been shown to prevent the deleterious impact
of antecedent hypoglycemia on CRR to subsequent hypoglycemia
(Ramanathan and Cryer, 2011). In a diabetic rat model exposed to
recurrent hypoglycemia, administration of the non-specific β-
adrenergic receptor blocker, carvedilol, prevented the development
of impaired CRR to hypoglycemia (Farhat et al., 2021). Future
studies are needed to examine the impact of adrenergic blockage for
prevention or treatment of IAH in humans.

Other pharmacological agents

Glucagon-like Peptide (GLP) 1 receptor agonists and Sodium
glucose cotransporter (SGLT2) inhibitors are very effective classes of
medication approved for use in people with T2D. These medications
may reduce the risk of hypoglycemia by improving glycemic variability.
Studies with dapagliflozin, an SGLT2-inhibitor and exenatide, a GLP-1
agonist examined the impact of these agents on IAH in people with
T1D by potentially reducing the risk of hypoglycemia. However, in
short-term studies these agents did not improve the hormonal CRR or
symptom response in people with T1D (Van Meijel et al., 2019; van
Meijel et al., 2021; Boeder et al., 2023; Urakami et al., 2023). In another
study, administration of a fixed dose subcutaneous continuous infusion
of glucagon for 4 weeks, did not improve epinephrine response to
hypoglycemia in individuals with T1D and IAH (ClinicalTrials, 2023a).

Conclusion

The intricate web of complex pathophysiological processes
contributing to impaired awareness of hypoglycemia poses a

significant challenge in pinpointing a singular pharmaceutical
solution for treatment. While some studies have shown
promising candidates, there is a dearth of literature in
humans to identify a safe pharmaceutical agent to restore
hypoglycemia awareness. Considering the multitude of
factors influencing cerebral hypoglycemia sensing
mechanisms, it is probable that a combination of
pharmaceutical approaches will be necessary. Consequently,
there is an urgent need for further clinical trials in humans
to address this pressing issue.
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