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Introduction: Vasculogenic mimicry (VM) represents a novel form of tumor
angiogenesis that is associated with tumor invasiveness and drug resistance.
However, the VM landscape across cancer types remains poorly understood. In
this study, we elucidate the characterizations of VM across cancers based on
multi-omics data and provide potential targeted therapeutic strategies.

Methods:Multi-omics data from The Cancer Genome Atlas was used to conduct
comprehensive analyses of the characteristics of VM related genes (VRGs) across
cancer types. Pan-cancer vasculogenic mimicry score was established to provide
a depiction of the VM landscape across cancer types. The correlation between
VM and cancer phenotypes was conducted to explore potential regulatory
mechanisms of VM. We further systematically examined the relationship
between VM and both tumor immunity and tumor microenvironment (TME).
In addition, cell communication analysis based on single-cell transcriptome data
was used to investigate the interactions between VM cells and TME. Finally,
transcriptional and drug response data from the Genomics of Drug Sensitivity in
Cancer database were utilized to identify potential therapeutic targets and drugs.
The impact of VM on immunotherapy was also further clarified.

Results:Our study revealed that VRGs were dysregulated in tumor and regulated
by multiple mechanisms. Then, VM level was found to be heterogeneous among
different tumors and correlated with tumor invasiveness, metastatic potential,
malignancy, and prognosis. VM was found to be strongly associated with
epithelial-mesenchymal transition (EMT). Further analyses revealed cancer-
associated fibroblasts can promote EMT and VM formation. Furthermore, the
immune-suppressive state is associated with a microenvironment characterized
by high levels of VM. VM score can be used as an indicator to predict the effect of
immunotherapy. Finally, seven potential drugs targeting VM were identified.

Conclusion: In conclusion, we elucidate the characteristics and key regulatory
mechanisms of VM across various cancer types, underscoring the pivotal role of
CAFs in VM. VM was further found to be associated with the immunosuppressive
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TME. We also provide clues for the research of drugs targeting VM. Our study
provides an initial overview and reference point for future research on VM, opening
up new avenues for therapeutic intervention.
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Introduction

Sufficient blood supply is necessary to solid tumors growth,
proliferation, survival, and development (Hanahan and Weinberg,
2011). Vasculogenic mimicry (VM) was firstly proposed in 1999,
which refers to the ability of tumor cells to form their own blood
vessels without relying on angiogenesis or the involvement of
endothelial cells (Maniotis et al., 1999; Hendrix et al., 2003).
These altered cells create a matrix-enriched tubular network that
imitates the extracellular matrix of blood vessels (Wei et al., 2021).
These channels provide an irrigation system for tumors to meet their
metabolic and nutrient demands. VM is commonly observed in solid
tumors such as such as hepatocellular carcinoma, melanoma, gastric
cancer, colorectal cancer, lung cancer as well as breast cancer, and
promotes tumor growth and metastasis by providing a blood supply
(Luo et al., 2020). This phenomenon has been confirmed by multiple
studies to be linked to decreased survival rates in cancer patients and
associated with high tumor grade, progression, invasion, metastasis,
and poor prognosis in patients with malignant tumors (Cao et al.,
2013; Yang JP. et al., 2016; Lv et al., 2017; Ren et al., 2019). Moreover,
the existence of VM also leads to the failure of anti-angiogenic
therapy in tumor patients (Lin et al., 2023). Therefore, elucidating its
characteristics will help to deepen the understanding of tumor
aggressiveness and develop targeted drugs to improve
patient prognosis.

VM is a complex and multifactorial process that involves various
mechanisms, signaling pathways, and interactions with the tumor
microenvironment (TME), and plays a crucial role in tumor
progression and metastasis. Several potential mechanisms and
signaling pathways, such as epithelial-mesenchymal transition
(EMT), angiogenesis, hypoxia, WNT/β-catenin signaling, NOTCH
signaling and cancer stem cells (CSCs) promote this process (Luo
et al., 2020; Wei et al., 2021). Recent research suggests CSCs and EMT
may be the main factors in the formation of VM(10). Cancer cells with
VM competence often exhibit plasticity such that the cells have a
dedifferentiated phenotype (Murai andMatsuda, 2023). EMT can cause
tumor cells to lose epithelial markers and acquire mesenchymal
characteristics, giving tumor cells phenotypic plasticity, thereby
enhance the motility and invasiveness of tumor cells and facilitate
VM formation (Xiao et al., 2023). In addition, various cytokines have
been identified as contributing to the formation of VM, such as IL6, IL8,
IL17, VEGF and TGF-β (Yang et al., 2016; Sharma et al., 2018; Bajbouj
et al., 2022; Hu et al., 2022). Most of the them work by activating the
biological process of EMT. Moreover, the interaction between VM and
the TME has the potential to facilitate tumor progression (Luo et al.,
2020;Wei et al., 2021; Hu et al., 2022). Previous studies have shown that
tumor associated macrophages (TAMs) and cancer associated
fibroblasts (CAFs) can interact with tumor cells and activate
multiple signaling pathways, such as IL-6-JAK-STAT3, PI3K/AKT,

ERK1/2 and VEGFA -165/Flt-1, thereby promoting the formation of
functional VM channels (Luo et al., 2020; Barnett et al., 2016; Q et al.,
2022; Tan et al., 2022; Pan et al., 2020; Ding et al., 2018; Kim et al., 2019;
Liu et al., 2021; Wu et al., 2023). Although research on VM has made
increasing progress, the mechanism by which VM occurs has not yet
been fully elucidated. In addition, although previous studies have
demonstrated the promoting effect of TAMs and CAFs on VM,
relevant research is still limited. The relationship between VM and
other components of the TME is still unclear. And the interaction
between VM and various components in the TME remains to be
further studied.

The development of multi-omics, high-throughput, and single-cell
technologies has led to further exploration of the mechanisms of
tumorigenesis and development and identification of clinical
translational values. Here, we integrated multi-omics data from
21 epithelial-origin cancer types in TCGA along with single-cell RNA
(scRNA) sequencing data from seven cancer types. We firstly
characterized the molecular characterization of VM related genes
(VRGs) in different cancer types. We the developed a pan-cancer
VM score to provide a depiction of the VM landscape across cancer
types, and to enable the comparison and stratification of tumors based
on their VM level. The predictive ability of VM score on clinical
prognosis was further verified. To further dissect VM, We then
explored the potential regulatory mechanisms of VM by examining
the correlation between VM and cancer phenotypes. Our results
demonstrate that universal patterns of VM transcend different cancer
types and that intratumoral VM levels are precisely controlled by
multiple types of biological processes. In addition, the impact of VM
on the TME was also evaluated. Our study particularly emphasized that
VM shapes an immunosuppressive microenvironment to promote
tumor immune evasion. Moreover, we also provide potential
therapeutic drugs for targeted VM in clinical practice and construct a
predictive model to assess patient prognosis. To the best of our
knowledge, we are the first to elucidate the characterization of VM
across cancers based onmulti-omics data.Moreover, we performed a cell
communication analysis based on single-cell data to investigate the
interactions between VM cells and TME cells, which is a novel and
innovative approach to study the interaction of VM cell with
microenvironment. Our study provides an initial overview and
reference point for future research on VM to understand how this
unique feature can be exploited to improve outcomes for cancer patients.

Methods

Data collection

The transcripts per million (TPM) mRNA sequencing and
associated clinical data generated by The Cancer Genome Atlas
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(TCGA) for 32 cancer types were obtained from GDC Data Portal
(https://portal.gdc.cancer.gov/). 21 epithelial tumors with tumor
samples greater than 100 were used for subsequent analysis
(Supplementary Table S1). DNA methylation data
(Methylation450K), copy number variation (CNV) and DNA
methylation based stemness scores (DNAss) of TCGA samples
were downloaded from UCSC Xena portal (https://xenabrowser.
net/). The gene set of VM comprising 36 genes was collected from
previous studies (Supplementary Table S2). The 50 cancer Hallmark
gene sets were obtained from the Molecular Signatures Database
(MSigDB, http://www.gsea-msigdb.org/gsea/msigdb). Single cell
RNA (scRNA) sequencing datasets and related cell annotation
information of seven different cancer types including BRCA,
PAAD, STAD, HNSC, NSCLC, KIRC, LIHC were downloaded
from TISCH portal (http://tisch.comp-genomics.org/) (Sun et al.,
2021). The scRNA sequencing data of KIRC including 19 tumor
samples were downloaded from the Gene Expression Omnibus
(GEO) database with accession number GSE207493 (Yu et al.,
2023). The expression and clinical response data for the
immunotherapy cohort were obtained from Supplementary
Material of Braun DA, Hou Y, Bakouny Z, et al. article, and
GEO database with accession number GSE78220, GSE135222 and
GSE100797, respectively (Lauss et al., 2017; Taylor et al., 2018; Jung
et al., 2019; Braun et al., 2020). The mRNA sequencing and
associated clinical data of E-MTAB-1980 cohort was obtained
from EMBL-EBI database (https://www.ebi.ac.uk/). The above
contents are summarized in Table 1.

Analysis of vasculogenic mimicry profile
across cancers

Among 21 tumor types, 15 tumor types included more than five
pairs of tumor and normal samples were selected to explore
expression differences in the vasculogenic mimicry profiles
between tumor and adjacent normal tissue by using R package
‘limma’ with default parameters (Ritchie et al., 2015). The potential

protein–protein interaction (PPI) network of the VRGs was
constructed by using the Search Tool for the Retrieval of
Interacting Genes Database (STRING) database (https://string-db.
org/) and visualized by using Cytoscape (version 3.9.0) software
(Shannon et al., 2003). Genomic alterations of vasculogenic mimicry
associated genes were then explored at pan-cancer level.

Genomic variation and methylation analysis

The gene-level CNVs obtained from UCSC Xena portal was
estimated by using the GISTIC 2.0 threshold method (Mermel et al.,
2011). The estimated thresholds are set to −2, −1, 0, 1, 2,
representing homozygous deletion, single copy deletion, diploid
normal copy, low-level copy number amplification, or high-level
copy number amplification, respectively. We consider thresholds
equal to 2 as amplifications, and thresholds equal to −2 as deep
deletions according to previous study (Beroukhim et al., 2010).

Tumor mutation burden (TMB) of each sample were calculated
as the number of non-synonymous somatic mutations per megabase
according to the methods in previous publication (Lv et al., 2020).
Somatic mutations data of pancancer were further analyzed and
visualized by using R package ‘maftools’ with default parameter
settings (Mayakonda et al., 2018).

Pearson correlation analysis was performed to evaluate the
relationship between methylation levels and expression of VRGs
by using the DNA methylation data downloaded from UCSC Xena.

Evaluation of vasculogenic mimicry score

Single-sample gene-set enrichment analysis (ssGSEA) can
represent the extent to which genes in a specific gene set are
coherently increased or decreased within a sample by calculating
a separate enrichment score, which reflects the activity level of the
biological process or pathway associated with the gene set in each
sample (Barbie et al., 2009). To further investigate the potential

TABLE 1 Data sources used in this article.

Data set Database Data type Detailed information

Pancer cancer cohort TCGA TPM mRNA sequencing and clinical data 21 epithelial tumors

Pancer cancer cohort UCSC DNA methylation data, copy number variation data, DNA
methylation based stemness scores

21 epithelial tumors

Pancer cancer cohort TISCH scRNA sequencing and cell annotation data 7 cancer types including: BRCA, KIRC, LIHC, NSCLC,
OV, PAAD, STAD

E-MTAB-1980 EMBL-EBI mRNA sequencing and clinical data 101 KIRC patients

GSE207493 GEO scRNA sequencing data 19 KIRC samples

GSE78220 GEO Expression and clinical response for immunotherapy 28 melanoma patients with PD-1 checkpoint inhibition
therapy

GSE135222 GEO Expression and clinical response for immunotherapy 27 NSCLC patients with anti-PD-1/PD-L1 therapy

GSE100797 GEO Expression and clinical response for immunotherapy 25 melanoma patients with T-cell therapy

PMCID: PMC7499153 - Expression and clinical response for immunotherapy 311 KIRC patients with PD-1 checkpoint inhibition

BRCA, breast cancer; KIRC, kidney renal clear cell carcinoma; LIHC, liver hepatocellular carcinoma; NSCLC, non-small cell lung cancer; OV, ovarian serous cystadenocarcinoma; PAAD,

pancreatic adenocarcinoma; STAD, stomach adenocarcinoma.
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biological function of VM from the level of pathway activity, ssGSEA
was applied to quantify the enrichment score of vasculogenic
mimicry and Hallmark pathways in each individual TCGA
sample by using ‘GSVA’ R package with default parameters
(Hänzelmann et al., 2013). The enrichment score of VM for each
sample were defined as the VM score. The difference of VM score
between tumor and normal samples in each tumor was estimated by
applying the ‘ggpubr’ R package (Wickham, 2016). Then, Pearson
correlation analysis was performed between ssGSEA enrichment
score of each Hallmark gene sets and VM to explore the potential
biological function of VM. R package ‘pheatmap’ was used for
visualizing.

Survival analysis

R package ‘survival’ (https://github.com/therneau/survival) was
used to perform survival analysis. The ‘Survminer’ R package
(https://github.com/kassambara/survminer) was applied to screen
the optimal cut-off point of VM score to stratify patients in each
cancer type into high- and low-groups. The single variate COX
regression analysis, Kaplan-Meier survival curve, and log-rank tests
were then conducted to evaluate the prognostic difference between
the high- and low-VM score groups. Patients in the pan-cancer
dataset were stratified into four groups according to quartiles of VM
score. The pancancer Kaplan–Meier survival curve was also plotted
to evaluate the overall effect of VM on survival.

Tumor microenvironment and immune
infiltrating analysis

Cell contents in each sample microenvironment were inferred
by using six different algorithms, including CIBERSORT, cellreport,
xCell, QUANTISEq, MCPcount and EPIC (Newman et al., 2015;
Becht et al., 2016; Aran et al., 2017; Charoentong et al., 2017; Racle
et al., 2017; Finotello et al., 2019). CIBERSORT, xCell, QUANTISEq,
MCPcount and EPIC are five algorithms that use deconvolution to
estimate immune infiltration in the TME from gene expression data.
Cellreport takes a set of gene sets that represent specific immune cell
subpopulations and uses gene set enrichment analysis (GSEA) to
calculate the microenvironmental composition and cell densities
(Charoentong et al., 2017). Different algorithms are calculated based
on different cell expression profiles and include different immune
cell states. Characterizing the TME through multiple algorithms can
more accurately and comprehensively reflect the characteristics of
the TME. R package ‘complexHeatmap’ was used to illustrate the
infiltration levels of different cellular components in the
microenvironment between high and low VM score groups (Gu
et al., 2016; Gu, 2022). Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data (ESTIMATE)
algorithm was applied to calculate the immuneScore
(representing immune cell infiltration level), stromalScore
(representing stromal cell infiltration level) and ESTIMATEScore
(negatively correlated with tumor purity) for each cancer patients.
Pearson correlation analysis was applied evaluate to correlations
between VM score and these three scores for each cancer type
(Yoshihara et al., 2013). Tumor immune dysfunction and exclusion

(TIDE) (http://tide.dfci.harvard.edu/) was used to compute immune
dysfunction, immune exclusion scores, CAFs of TME at pan-cancer
level. The TIDE score which can serve as a surrogate biomarker to
predict the response to immune checkpoint blockade was also
calculated (Jiang et al., 2018). In addition, immunotherapy effect
prediction data are also obtained from TIDE. The activity of tumor-
infiltrating immune cells in the seven-step cancer immune cycle was
also obtained from the http://biocc.hrbmu.edu.cn/TIP/to further
analyze the immune characteristics of the microenvironment (Xu
et al., 2018).

Drug sensitivity analysis

The gene expression profile of 809 tumor cell lines and
corresponding response data of 198 compounds of each cell lines
were downloaded from the Genomicsof Drug Sensitivity in Cancer
(GDSC) (https://www.cancerrxgene.org/) dataset (Yang et al., 2013).
VM score of each cell was also calculated by using ssGSEA method.
Pearson correlation analysis was then conducted to explore drugs
that potentially associated with vasculogenic mimicry.

scRNA-seq data analysis

The R package ‘Seurat’ was applied for quality control (QC) and
downstream analysis (Hao et al., 2021). Seurat objects of seven
individual cancer types including STAD, KIRC, NSCLC, LIHC,
BRCA, PAAD were firstly generated. The function merge was
used to merge Seurat objects of different cancers. Non-negative
matrix factorization (NMF) is a matrix factorization method that
can reduce the dimension of expression data from thousands of
genes to a handful of metagenes in single-cell transcriptomic data.
Based on the cell type annotation results, we extracted the malignant
cells for NMF analysis to explore distinct molecular patterns in VM
cells by using ‘NMF’ R package (http://renozao.github.io/NMF/).
First, the number of modules for each tumor is obtained based on
the optimal factor of the similarity matrix. Scores in each module for
all VM cells were calculated by using AddModuleScore function.
Next, Pearson correlation analysis was used to calculate the
correlation between modules to explore similar gene programs
among tumors. The top scoring 30 genes in each program were
considered to represent the characteristics of the module.

The Seurat object of 19 KIRC samples was generated with the
filter criteria of cells with less than 500 genes detected and the
number of genes more than twice of the median number of detected
genes (potential doublets). After data normalization, the top
3,000 highly variable genes were identified by using FindVariable
function. The R package ‘Harmony’ was used to eliminate the batch
effect between different cancer samples (Korsunsky et al., 2019). We
performed cell clustering based on the top 30 principal components
(PCs) and dimension reduction using uniform manifold
approximation and projection (UMAP). Function
AddModuleScore was conducted to calculate VM score of tumor
cells. ‘CellChat’ R package was applied to analyze and visualize cell
interaction communication networks in the TME (Jin et al., 2021).
‘pySCENIC’ package (https://github.com/aertslab/pySCENIC) in
python was conducted to infer transcription factors that
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potentially regulate VM with default parameters. ‘SCENIC’ package
was applied to infer VM cell-specific transcription factors (Aibar
et al., 2017). Unless otherwise stated, all functions and algorithms
described above use default parameters.

Construction of VM related prognostic
models based on multiple machine learning
algorithms

Univariate COX regression analysis is used to determine
potential prognostic markers in VRGs. Then, 10 machine
learning algorithms such as random forest survival (RSF), elastic
network (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, Cox least
squares regression (plsRcox), principal component analysis
(SuperPC), generalized additive regression model (GBM) and
survival support vector machine (SVM) were combined into
101 algorithms to establish a stable prognostic model. The
combined machine learning algorithms are similar to previous
studies, and detailed information about the functions and
parameters of the scripts can be found in the GitHub website
(https://github.com/Zaoqu-Liu/IRLS) (Liu Z. et al., 2022; Li et al.,
2023). In our study, TCGA cohort is set as the training cohort,
E-MTAB-1980 cohort as the test cohort. Harrell concordance index
(C-index) was calculated for each cohort. The optimal model is
defined as a model that has a high C-index in both training and
validation cohorts. Each patient’s VM related score (VRS) was
calculated based on the expression of genes and their
corresponding coefficients. In each cohort, patients were divided
into high VRS group and lowVRS group by usingmedian VRS as the
cutoff value. Univariate and Multivariate Cox analysis were used to
determine predictive value of VRS. Finally, the predictive value of
VRS immunotherapy was validated in an KIRC immunotherapy
treatment cohort.

Statistical analysis

R (version 4.1.1) was used for all statistical analyses in the study
except the pySCENIC analysis. pySCENIC was conducted by using
Python (3.12.0). Student’s t-test or Wilcoxon test was used for
comparisons of continuous variables between groups. The
Kruskal–Wallis test was used for comparisons of multiple groups
of continuous variables. Survival differences between different
groups were determined by log-rank test. p-value less than
0.05 was considered statistically significant.

Results

Expression, Somatic alteration, methylation
and interactions of vasculogenic mimicry
genes in pan-cancer

To understand the expression, somatic alteration and
interaction of the 36 VRGs at the pan-cancer level, the mRNA
profile, SNP, CNV and methylation data of TCGA samples were
obtained for following analyses.

The distribution expression of 36 VRGs was shown in Figure 1A.
Out of these 36 genes, LGALS3, HSP90B1, MMP2, MMP14,
CXCR4, TGFB1, HIF1A were observed significantly
overexpressed in all cancer types, especially LGALS3, HSP90B1.
While the expression levels of TF, NODAL, SNAI3, PIK3CA,
RUNX2, TWIST1, TWIST2 remain low. The expression of PTK2,
USP19, LAMC2, VEGFA, EPHA2, and MMP2 varies greatly among
different cancer samples and has relatively high expression.
Differential expression analysis between tumor and adjacent
normal tissues in each individual cancer types was then
conducted to exhibit the dysregulation patterns of VRGs
(Figure 1B). Similar to expression profiles, MMP14, MMP1,
LOXL2, MMP9, HSP90B1 are the most upregulated in different
types of tumors (Figure 1B; Supplementary Figure S1A). Notably,
STAD, HNSC, LIHC, KIRC, ESCA and COAD, exhibited the
highest accumulation of upregulated VRGs (Figures 1A,B;
Supplementary Figure S1B). Although both KIRC and KIRP are
originated from kidney tissue, their gene dysregulation profiles vary
widely, reflecting heterogeneity among tumors of the same tissue
(Figure 1B; Supplementary Figure S1C). Potential protein–protein
interaction among VRGs were further explored by using the
STRING database, which demonstrates VM is a complexly
co-regulatory process involving a series of genetic
interactions (Figure 1C).

Having investigated the transcriptome landscape of VRGs
among different cancer types, we explored whether variation of
VRGs could be explained from the aspects of genomics and
epigenetics. We firstly analyzed the CNV data of VRGs to
characterize their genomic changes within different cancer types.
As shown in Figures 1D,F, most of the genes related to VM were
mainly amplified. OV and LUSC had the highest amplification
frequency of VRGs, especially for OV, which had the most genes
amplified. PTK2 and PIK3CA were the most amplified genes in
different tumors. PTK2 was generally amplified among different
tumors, with highest amplification frequency in OV. PIK3CA was
highly amplified mainly in CESC, ESCA, HNSC, LUSC, OV and was
most frequently amplified in LUSC. VEGFA, SNAIL1, SNAIL1,
MMP9, PTGS2, LAMC2, TF, TFPI2 also have a certain
amplification in different tumors (Figure 1D). LOXL2 was the
gene with the highest deletion frequency (Figure 1E). The
deletion frequency of POSTN in PRAD is as high as 12.04%,
while the deletion frequency of USP19 in KIRC is 10.71%. We
further analyzed the relationship between gene CNV and expression.
Supplementary Figure S1C shows that significantly higher gene
expression in samples exhibiting amplification than in non-
mutated and deletion samples, which suggests that CNV affects
gene expression levels. Somatic mutation analysis showed that
PIK3A was the gene with the highest mutation frequency, and
missense mutations were dominant (Supplementary Figure S1D).

Subsequently, we explored the relationship between gene
expression and gene methylation to identify epigenetic regulation
at pan-cancer level. The results reflected the heterogeneity of
methylation levels among different tumor types. LGG had the
highest level of methylation. Among 36 genes, MMP1, HSP90B1,
PTK2, MMP3, NOTCH1 and CDH5 had higher methylation status
at pan-cancer level (Supplementary Figure S1E). Correlation
analysis results suggest that the expression levels of most VRGs
are negatively correlated with methylation levels. Only SNAI3,
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TGFB1, TWIST1, and TWIST2 are mainly positively correlated with
methylation levels (Figure 1F). While their frequency of CNV is not
high, which indicates that their expression may be regulated by more
complex mechanisms. Our results show the dysregulation pattern of
VRGs in different tumors, which is significantly heterogeneous. We
also suggest that multiple regulatory mechanisms are involved in the
regulation of VRGs expression, and CNV and methylation may be
important regulatory mechanisms.

Construction and characterization of
vasculogenic mimicry score in pan-
cancer level

To enable quantification of VM levels and evaluate the
heterogeneity of VM activity among different types of cancer,
enrichment score was calculated by ssGSEA. As shown in
Figure 2A, the VM score varied widely across different cancer
types and even within the same cancer. PAAD, HNSC, STAD,
ESCA, LUSC exhibited relatively higher VM score, which are

consistent with the expression level of VRGs. While the scores of
LGG were the lowest, which is consistent with the findings that the
methylation level of VRGs in LGG is the highest in the previous
study (Supplementary Figure S1E). Interestingly, although KIRC
and KIRP are both derived from kidney, their enrichment scores
vary greatly. Similar results were also observed between LGG and
GBM, LUSC and LUAD. These results demonstrated highly inter-
tumor and intratumor heterogeneous VM status, which profoundly
affects the prognosis and treatment outcomes of cancer patients
(Dentro et al., 2021).

Given the abnormal activity of VM among various typed of
cancer, we aimed to further dissect the underlying mechanisms of
vasculogenic mimicry and its biological effects on association
with tumor phenotypes, we further explored the relationship
between VM and 50 cancer Hallmarks at pan-cancer level. VM is
highly correlated with tumor associated pathways such as EMT,
angiogenesis, hypoxia, WNT/β-catenin and NOTCH signaling
(Figures 2B,C). Herein, VM was found to be the most strongly
associated with EMT (R = 0.87, p < 0.001) (Figure 2D). EMT has
been repeatedly reported to play a key role in VM formation (Qi

FIGURE 1
Expression, Somatic alteration, methylation and interactions of vasculogenic mimicry genes (VRGs). (A) Expression patterns of VRGs in pan-cancer.
(B) Expression changes of VRGs in tumor tissue and para-tumor tissue in different tumor types. (C) Protein–protein interactions network of VRGs. (D) The
amplification ratio of VRGs in different tumor types. (E) The deletion proportion VRGs in different tumor types. (F) The relationship between the expression
and methylation levels of vascular mimicry-related genes in different tumor types.
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et al., 2014; Yang et al., 2015; Luo et al., 2020; Kang et al., 2021).
Strong association between VM and hypoxia (R = 0.65, p <
0.001), angiogenesis (R = 0.77, p < 0.001), NOTCH (R = 0.42,
p < 0.001), WNT/β-catenin (R = 0.31, p < 0.001) were also
exhibited (Figures 2E–H). It is notable that EMT,
angiogenesis, hypoxia and NOTCH signaling were positively
correlated with VM in all tumors (Figure 2C). WNT/β-catenin
and NOTCH signaling pathways were confirmed to be involved
in the process of EMT and VM in (Benjakul et al., 2022; Yuan
et al., 2022). Cancer hallmarks such as P53 signaling, glycolysis,
KRAS signaling pathways, and immune-related pathways such as
TNF-α, TGF-β, IL2/STAT5, IL-6/JAK/STAT3, interferon-γ
response, and inflammatory response pathways were also
positively associated with VM (Figures 2B,C). Prior studies
have suggested that immune response-related pathways can
modulate VM formation by influencing the expression of VM
related genes genes and activity of VM related genes proteins
(Yang et al., 2015; Yang et al., 2016; Luo et al., 2020; Pan et al.,
2020; Hu et al., 2022). TMB can indirectly reflect the ability and
degree of neoantigen production by tumors. Further analysis
showed that there was a positive correlation between the VM
score and TMB (Figure 2I). In addition, we explore the
relationship between VM and stemness characteristics of
cancer samples (Figure 2J; Supplementary Figure S2). These
results illustrated that VM is highly correlated with tumor
malignancy and tumors with VM may activate multiple
tumorigenic pathways, which may indicate a poor prognosis.

Vasculogenic mimicry is associated with
unfavorable tumor phenotypes and
clinical outcomes

Subsequently, the impacts of VM on survival were further
decoded to reveal the clinical relevance of VM. We first assessed
the prognostic impact of VM score in each cancer type individually.
Patients of each cancer type were stratified into two groups based on
the cutoff determined by the ‘Survminer’ R package. The results of
single variate Cox analysis and log-rank test demonstrated that the
prognostic impact of VM varied between different cancers. In most
cancer types, including KIRP, THCA, PAAD, LGG, CESC, STAD,
READ, GBM, BLCA, OV, LIHC, HNSC, KIRC, LUAD, LUSC and
BRCA, higher VM score were related to poorer survival. On the
contrary, in COAD, SKCM, ESCA, UCEC and PRAD, higher VM
score scores were associated with better survival (Figure 3A). These
results suggest that VM is detrimental to prognosis in most cancer
types, which is consistent with previous reports. We further explored
its survival effects in a pan-cancer context. We first divided the
patients into four groups according to the quartile of VM score. The
Kaplan-Meier survival analysis plot indicates that the survival rates
of different quartile groups vary that the group with the higher score
has worse survival. In particular, patients in the highest quartile
group have a significantly worse prognosis compared to other
groups (Figure 3B). For the convenience of follow-up research,
we divided the tumor samples into two groups according to the
median of VM score. The Kaplan-Meier survival plot shows that

FIGURE 2
Construction and characterization of vasculogenic mimicry score (VM score) at pan-cancer level (A) pan-cancer distribution of VM score. (B)
Correlation of VM level and 50 clearly definedHallmark in different tumor types. (C) Summary of the correlation between different Hallmark and VM. (D–I)
VM was associated with epithelial-mesenchymal transition, hypoxia, angiogenesis, NOTCH signaling pathway, WNT/β-catenin signaling pathway, and
tumor mutation burden in pan-cancer. (J) VM level is positively correlated with cell stemness in pan-cancer.
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patients in the low group had a significantly better overall prognosis
than patients in the high group (Supplementary Figure S3). Since
VM is a novel type of tumor microcirculation model, which is
commonly found in highly invasive malignant tumor cells, we
further compared the distribution of VM score among tumors of
different clinical stages (Figure 3C). As expected, VM score increases
gradually with the increase of tumor stage. In addition, higher VM
score were also seen in metastatic tumors (Figure 3D). The above
results indicate that VM is a biological marker of poor prognosis and
may promote tumor progression and metastasis.

Vasculogenic mimicry is associated somatic
mutation at pan-cancer

Genomic instability is a hallmark of cancer and is characterized
by a high frequency of mutations and chromosomal rearrangements,
which is thought to be a driving force behind the oncogenic
transformation of tumor evolution (Gorodetska et al., 2019).

Since VM was validated to be associated with tumor progression,
we further explore the differences in somatic mutation landscape
between high VM score group and low VM score group at pan-caner
level. We firstly identified the top mutated genes in two groups,
respectively. TP53, TTN, MUC16, CSMD3, and PIK3CA were the
top five mutated genes in two groups, with significantly higher
mutation frequency in the high VM score group than that in the low
VM score group. In addition, ZFHX4, USH2A have a higher
mutation frequency in the high VM score group, while IDH1,
PCLO ranks higher in the mutation frequency ranking in the low
VM score group (Figures 4A,B). Furthermore, High VM score group
also had higher variants per sample. And among the gene mutation
types, most of them are missense mutations (Supplementary Figures
S4A, B). Allele frequency analysis showed that the TP53 allele
frequency in tumor samples in the high VM score group was less
than 50% while more than 50% in the low VM score group
(Supplementary Figures S4C, D). To further explore the detailed
mechanisms behind the various landscapes of somatic mutations,
SNP-based analysis showed that C>T was the most dominant

FIGURE 3
Vasculogenic mimicry (VM) is associated with unfavorable tumor phenotypes and clinical outcomes (A) A forest plot showing the hazard ratio of VM
score in different cancer types. (B) A pan-cancer Kaplan–Meier curve shows survival associated with quantile stratified VM score. The log-rank test was
used for the test of survival differences between all four groups. (C) A pan-cancer box plot shows that VM score is associated with tumor stages. The
higher the tumor stages, the higher the VM score. (D) The box plot shows higher VM score in metastatic tumors. *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Pharmacology frontiersin.org08

Tang et al. 10.3389/fphar.2024.1346719

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1346719


mutation form between the two groups, and the frequency was
higher in the low VM score group. And the frequency of transitions
in the high VM score group is lower than the frequency of
transitions in the low VM score group (Figures 4C,D). Mutual
exclusion and co-occurrence analysis showed that there was a
significant mutual exclusion of mutations in TP53/PIK3CA in
the high VM score group (Figure 4E). There are many mutually
exclusive mutations in the low group, among which IDH1 is
mutually exclusive with other genes except TP53 and ATRX
(Figure 4F). To understand the potential impact of these different
somatic mutational backgrounds on the biological behavior of
tumors. Analysis of the number and proportion of gene
mutations in 10 oncogenic signaling pathways showed that
although most pathways had a high proportion of mutations
between two groups, the frequency of gene mutations was higher
in the high VM score group. Moreover, the proportion of NOTCH
signaling pathway affected in the high VM score group is also higher,
indicating that NOTCH signaling may potentially regulate VM
(Figures 4G,H). The above results show that samples with high
VM levels have more mutations, and the oncogenic pathways are
greatly affected by mutations, which further indicates that their
malignancy is higher.

Vasculogenic mimicry is associated with
immunosuppressive microenvironment

Immune cells infiltrating in the TME interact with tumor cells
and jointly affect tumor development and metastasis. Therefore, we
further analyzed the relationship between VM and tumor immunity
and tumor microenvironment. We selected six algorithms including
Cellreport, CIBERSORT, EPIC, MCP-counter, quanTIseq and xCell

to quantify the diverse types of cells within TME of different tumors.
Strikingly, as shown in Figure 5A, the results of six different
algorithms consistently show that patients with higher VM score
have significantly higher infiltration level of immune cells.
Moreover, the content of CAFs in the high VM score group was
also significantly higher than that in the low VM score group. To
verify these findings, the immune score, stromal score and
ESTIMATE score were also found to be significantly positively
correlated with VM levels in all tumors, especially BLCA, COAD,
PRAD, READ and THCA (Figure 5B). These above results indicate
that the high VM score group has higher levels of immune
infiltration, more stromal cells and more complex components in
its microenvironment, which may have more complex cell
interaction patterns. Considering that regulatory T cells and
M2 are important immunosuppressive cells in the TME and are
widely used to evaluate the level of immunosuppression
(Luckheeram et al., 2012; Ju et al., 2021). While CD8+ T cells
and M1 are considered anti-tumor immune cells. We therefore
examined the ratio of between CD8+ T cells and regulatory T cell,
M1 and M2 to evaluate immunological status in different groups.
We found that in BLCA, BRCA, KIRP, THCA, and PAAD, the ratio
ofM1 toM2was higher in the high VM score group. In GBM, LUSC,
and SKCM tumors, the ratio of M1 toM2 in the low VM score group
was higher. In most tumors, there was no statistical difference
between these two groups (Figure 5C). Different from the
macrophage ratio results, based on the prediction results of
cellreport, we found that the ratio of activated CD8+ T cells to
regulatory T cells in the low VM score group was significantly higher
than that in the high VM score group in all tumors (Figure 5D). The
above results suggest that although the level of immune infiltration is
higher in high VM score group, its infiltrating immune cells may be
in an inactivated or suppressed state. This further indicated that the

FIGURE 4
Vasculogenic mimicry (VM) is associated somatic mutation at pan-cancer (A, B) The top 10 genes with the highest mutation frequency of high (A)
and low VM score groups (B) and the distribution of different mutation types in pan-cancer. (C, D) The proportion of transitions and transversions, and the
overall distribution of the six different substitution of a single base in high (C) and low VM score groups (D). (E, F) Somatic interactivity mutations are co-
occurring in the high VM score group (E), while IDH has extensive exclusiveness in the lowVM score group (F). (G, H)Oncogenic pathwaysmutations
in high VM score group (G) and low VM score group (H).
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high VM score group was in a more malignant state. Except for the
abundance of immune cell in TME, we also evaluate the functional
status of these cells, which showed that the VM score was positively
correlated with the immune cell dysfunction, exclusion and TIDE
score of the tumor, which illustrates that the high VM score group is
immunosuppressed (Figure 5E). It is noteworthy that a high
correlation between VM score and CAFs was also observed,
indicating that CAFs may play an important role in VM
(Figure 5E). We also found that VM score is lower in samples
with CTL. flag is true (Figure 5F). And the results of further
immunotherapy prediction also showed that the low VM score
group may have a better treatment response, which is consistent
with the result that VM level is negatively correlated with MSI
(Figure 5G). According to the existing studies, MSI-H tumors tend
to have a better immunotherapy response (O’Malley et al., 2022).
The gene raking results analyzed by TIDE regulator prioritization
module showed that most genes were negatively correlated with
immunosuppression. Interestingly, some genes are strongly
correlated with CAFs and Myeloid-derived suppressor cells

(MDSC), which were recognized to play an important role in
immune suppression (Figure 5H). Therefore, we hypothesized
that VM is involved in immunosuppression in the
microenvironment. Analysis of cell communication at the single-
cell level based on KIRC provides us with some evidence. Compared
with malignant cells, VM cells emit stronger TGFb1 pathway signals,
which may promote the TAM-mediated immune suppression
process (Figure 5I). Further analysis also showed that TGB1 is
positively related to immune dysfunction and VM cells are also
the type of cell with the highest TGB1 expression level in the
microenvironment of KIRC patients (Figures 5J,K). Previous
study has defined the tumor immune microenvironment into six
subtypes, including wound healing, IFN-γ dominant, inflammatory,
lymphocyte depleted, immunologically quiescent and TGF-β
dominant (Thorsson et al., 2018). Analysis at the pan-cancer
level found that TGF-dominant subtype was found to have the
highest VM score (Supplementary Figure S5A). Moreover, KIRC
patients with TGF-beta Dominant subtype were considered to
belong to high VM score group (Figure 5L). Furthermore, we

FIGURE 5
Vasculogenic mimicry (VM) is associated with immunosuppressive microenvironment (A) Heatmap shows the infiltration levels of different cellular
components in the tumor microenvironment (TME) of different VM score groups. The results are based on six different TME algorithms. (B) VM score is
positively associated with immune score, stromal score and ESTIMATE score calculated by ESTIMATE algorithm in different tumor types. (C) Differences
in M1/M2 ratio between high and low VM score groups in different tumor types. (D)Differences in activated CD8+ T/Regulatory T cell ratio between
high and low VM score groups in different tumor types. (E)Correlation between VM score and TIDE results. (F) The rose chart shows that VM score is lower
in the samples with CTL. flag is true. (G) The rose chart shows the immunotherapy prediction results of TIDE. Patients with immune response have lower
VM score. (H) Regulator prioritization results of TIDE. (I) Cellchat identifies dominant senders, receivers, mediators and influencers in the
TGFb1 intercellular communication network. (J) The relationship between TGFβ1 and immune cell dysfunction in KIRC. (K) TGFβ1 expression levels in
different cell types in KIRC TME. (L) Sankey diagram shows the distribution of different immune subtypes. (M) Correlation between VM and immune
response steps. The heatmap shows the correlation between each immune step. The line between the VM and each step represents the correlation. Red
represents positive correlation, and green represents negative correlation. (N) Immunity-related factors, including chemokines, MHC molecules,
immunostimulators, and immunoinhibitors were highly expressed in high VM score group.
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FIGURE 6
Single-cell analysis explains potential regulatory mechanisms of vasculogenic mimicry (A) Correlations between gene modules inferred by NMF.
Three highly correlated gene programs were identified. (B) The expression of genes in the three gene programs. Red represents high expression, while
blue represents low expression. The darker the color, the higher or lower the expression. (C) UMAP plot shows various cellular components in the KIRC
tumor microenvironment (TME). (D) Top 10 transcription factors enriched in VM cells. The higher the specificity score, the greater the association
with VM. (E) The stength of signals emitted and received by different cellular components in the TME. The larger the value on the y-axis, the more signals
are received, and the larger the value on the x-axis, the more signals are emitted. The size of the point represents the amounts of cells. (F) Cell
communication circle diagram. Demonstrating the communication landscape of tumor and VM cells when they serve as senders and receivers. (G)
Demonstrate cell communication pathways in the TME and the contribution of different cells to different signaling pathways. The darker the color, the

(Continued )
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also found that VM cells, who are mainly influencer and mediator,
have extensive and unique interactions with immune cells in the
microenvironment through the LAMININ pathway (Supplementary
Figures S5B–D). There have been previous reports that laminin is
involved in immunosuppression, which indicates that the
LAMININ pathway may also be an important way for VM to
promote or mediate the formation of a suppressed immune
microenvironment (Simon et al., 2019; Phillippi et al., 2020;
Lepucki et al., 2022; Flies et al., 2023). Moreover, we further
analyzed the correlation between VM and immune response
steps in KIRC. Similar to the previous results, VM was related to
the immune cell infiltration process, but was negatively correlated
with the immune effector stage (Figure 5M). Similar phenomena are
observed in most other tumors (Supplementary Figure S5E).
Multiple previous studies have shown that immune checkpoints
play a crucial role in cancer immune evasion (Gordon et al., 2017;
Jiang et al., 2019). In addition, increasing evidence also suggested
that some MHC molecules, such as HLA-E, can also drive tumor
immunosuppression (Salomé et al., 2022; Liu et al., 2023). Thus, we
analyzed the expression of immune-related molecules between the
two groups. Our results shows that the most of MHCmolecules and
immunoinhibitors were highly expressed in high VM score group
(Figure 5N). The above results indicate that VM is related to the
immune microenvironment and may be involved in shaping the
immunosuppressive microenvironment.

Single-cell analysis explains potential
regulatory mechanisms of
vasculogenic mimicry

In order to further explore the potential regulatory mechanism
of VM and its interaction with the TME, we took advantage of the
ability of single-cell data to characterize cell characteristics at the
subpopulation level for subsequent analysis. After extracting the
malignant cells from seven individual cancer types, we calculated the
VM score for each tumor cells and considered cells in the top
10 percent of the scores in each cancer types as VM cells. Next, NMF
was used to identify expression patterns shared across different
tumors to explore the underlying mechanism of VM. As shown in
Figure 6A, three expression programs that including highly
correlated were identified by using gene module correlation
analysis. We focused on the top 30 genes in these expression
programs to explain the biological functions. The genes of
metaprogram one are enriched in glycolysis, which are
considered to be metabolism-related modules. Metaprogram two
contains EMT genes, which are also highly expressed in VM cells,
are considered to be EMT modules. Metaprogam3 mainly contains
genes related to cell growth and migration. The above results further
strengthen the evidence of the connection between EMT and VM,

and also suggest that the biological process of VM may be the
product of a hypoxic microenvironment because its glycolysis
metabolic process. These results also suggest that our analysis
using the gene set score is reasonable.

Next, scRNA-seq data from 19 different renal carcinoma
samples was integrated with batch effects eliminated by using
RunHarmony function (Supplementary Figure S6A). Based on
the graph-based clustering analysis, resolution is set equal to
0.3 and cells were divided into 18 cell clusters and were
annotated to seven cell types using known lineage marker
(Supplementary Figures S6B, C). In order to identify potential
regulators of the biological process of VM, we performed single-
cell regulatory network inference and clustering (SCENIC) analysis
and illustrated the top 10 most active transcription factors in VM
cells (Figure 6D). Among them, some transcription factors have
been reported to mediate the EMT process, such as TBL1XR1,
STAT6, ETV6, and SMARCA4, indicating their potential to regulate
VM and promote tumor invasion (Fararjeh and Liu, 2019; Zhao
et al., 2019; Chen et al., 2023; Xu et al., 2023). Furthermore, SP1 has
also been reported to mediate VM formation by interacting with the
TWIST/VE-cadherin/AKT pathway (Han and Lee, 2022).

We hypothesized that different cell populations in the
microenvironment participate in complex crosstalk and
interaction patterns with VM cells. Thus, CellChat was used to
analyze and visualize the communication strength and number of
each cell in the tumor environment to further analyze the at the
single-cell dimension (Figures 6E,F). VM cells have extensive
communication with various components in the
microenvironment, and their communication intensity and
number are much higher than that of tumor cells, indicating that
they are active in the microenvironment (Figure 6F). In addition, we
were surprised to find that the number of interactions between CAFs
and VM cells was much greater that of cancer cells (Figure 6F). Our
previous results also found that there is a strong correlation between
VM score and the infiltration level of CAFs, which indicates that
CAFs may be involved in plays an important role in VM. Further
analysis also found that the active signaling pathways of VM cells are
significantly different from those of malignant cells, and that VM
cells have unique communication patterns in the microenvironment
(Figure 6G). Therefore, we further explored the interaction patterns
and signaling pathways between CAFs and VM, malignant cells. We
found that communication is mainly active in multiple signaling
pathways that were known to regulate EMT and VM, such as
Laminin signaling, Collagen signaling, HGF signaling,
FN1 signaling and CPSG4 signaling (Figure 6H). We also show
the crosstalking ligand-receptor pairs of signaling pathways that are
significantly upregulated in VM cells (Figure 6I). The results show
that strong communication between CAFs and VM cells occurs
mainly between ligands such as collagen (types I, IV and VI),
fibronectin (FN1), laminin (LAMB2, LAMA4, LAMA5, LAMC1),

FIGURE 6 (Continued)

greater the contribution. (H) Chord diagram shows the interaction pathways between CAFs, VM and tumor cells. The wider the channel, the higher
the strength. (I) Communication possibility based on ligand receptor pairs. Red represents a higher possibility of communication. (J) Cellchat identifies
dominant senders, receivers, mediators and influencers in Collagen, HGF, FN1 and CPSG4 signaling intercellular communication network. (K) The violin
plot shows the expression of HGF and CSPG4 pathway ligand receptor pairs in different cells. (L) Positive correlation was observed between HGF/
MET score and VM, EMT in KIRC.
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CSPG4 and HGF and receptors such as integrins family (ITGA2,
ITGA3, ITGAV, ITGB8, ITGB1), SDC4 and MET (Figure 6I). We
further show the role and signal intensity of the microenvironment
in the above-mentioned signaling pathways. It can be seen that CAFs
is the main sender of the Collagen and FN1 signaling pathways, and
VM cells also participate in communication as important
influencers (Figure 6J). It indicated that CAFs may mediate VM
through these pathways. It is worth noting that HGF and CSPG4 are
specific communication modes for VM cells and malignant cells.

And HGF is jointly emitted by CAFs and affected by TAMs.
CSPG4 is only released by CAFs and acts on VM and malignant
cells (Figure 6K). It has been previously reported that HGF/MET is
associated with EMT and promotes the generation of VM(21). This
indicates that HGF and CSPG4 are likely to be the potential
mechanisms by which CAF regulates VM. We further
demonstrated the expression of ligand receptor pairs of the above
two pathways. It can be seen that CSPG4 and HGF are mainly
expressed in CAFs, and the expression of the corresponding

FIGURE 7
Vasculogenic mimicry (VM) is associated with drug sensitivity and immunotherapy outcome (A) The relationship between VM score and drug
sensitivity (IC50 value). Each row represents a drug and drug target. The length of the line represents the correlation coefficient. The blue represents a
negative correlation. The size of the point represents the statistical significance. (B, C, D) Kaplan–Meier curves show the difference in survival prognosis
between high and low VM score groups in two SKCMcohorts (B, C) and aNSCLC cohort (D). The stacked column chart shows the immune response.
Higher response levels were investigated in low VM score group.
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receptors in mimic cells is also significantly higher than that in
malignant cells (Figure 6K). Bulk-based data analysis also showed
that HGF/MET ligand receptor pairs were positively correlated with
VM score and EMT (Figure 6L). The above results emphasize the
relationship between EMT and VM, and further point out the
potential regulatory mechanism by which CAFs promotes VM.

Vasculogenic mimicry is associated with
drug sensitivity and immunotherapy
outcome

Previous results in this paper have shown that VM is
closely related to tumor prognosis, invasion, metastasis,
microenvironment and immune status. At present, traditional
anti-angiogenic drugs have no obvious effect on inhibiting the
formation of VM in malignant tumors (Angara et al., 2017; Fathi
Maroufi et al., 2020; Luo et al., 2020). Thus, we further
investigate to explore potential therapeutic drugs for VM.
Through calculating the correlation between VM score and
half-maximal inhibitory concentration (IC50) of drug
treatment response in GDSC, we screened out seven drugs
that were negatively correlated with IC50 as potential
therapeutic agents (Figure 7A). These seven drugs mainly
targeted ERK/MAPK and RTK pathways. The ERK/MAPK
pathway is an important signal transduction pathway that
plays a key role in cellular processes such as growth,
proliferation, differentiation, and survival, which can promote
VM by activating EMT(5,21,61,84,85). In view of the fact that
previous results have found that VM is closely related to the
tumor immune microenvironment and immune status, and the
prediction results of TIDE also showed that the VM score has the
ability to predict the effect of immunotherapy. We used the
immunotherapy cohort to test the predictive ability of the
scoring system. Consistent with the previous results, the low
VM score group had a better response to immunotherapy and
could obtain a better immunotherapy response. However,
further analysis of clinical prognostic data found that there
was no statistical significance in survival between the two
groups, indicating that the prognosis may be affected by other
factors, and more detailed grouping of VM is needed to achieve
precise treatment to benefit patients (Figures 7B–D).

VRS can predict prognosis and
immunotherapy outcomes in KIRC patients

To promote clinical translation, we developed a VRS system in
KIRC. First, we identified 20 potential prognosis-related VM genes
and incorporated them as potential prognosis biomarkers into the
integrated machine learning program (Supplementary Figure S7A).
The CoxBoost + Lasso achieved a high C-index on both training and
validation data sets, making it the best prognosis model (Figure 8A).
The method selected 11 genes, and their coefficients are shown in
Supplementary Figure S7B. Based on median of VRS, we divided
patients into high and low risk groups. As expected, patients with
higher risk had worse prognosis than those with lower risk, and
patients with higher risk scores had shorter survival periods and

lower survival rates (Figures 8B,C). The 1-, 3- and 5-year AUC of
TCGA cohort were 0.71, 0.69 and 0.71 respectively, and E-MTAB-
1980 cohort were 0.77, 0.71 and 0.72 respectively. The above results
prove the robustness of the model (Figure 8D). Moreover, this model
was also proven to be an independent prognostic factor in KIRC
patients (Supplementary Figures S7C, D). Next, the model was also
shown to have the potential to predict immunotherapy outcomes.
Patients with low risk were more likely to benefit from immune
treatment, and had higher response rates after treatment
(Figures 8E,F).

Discussion

Aberrant activation of angiogenesis within tumor
microenvironment is considered as a hallmark of cancer
(Hanahan and Weinberg, 2011). While tumor cells can exchange
nutrients and metabolic products with their surrounding
environment via simple diffusion, the formation of blood vessels
becomes essential when the tumor diameter surpasses 2 mm to
ensure an adequate supply of nutrition and oxygen (Folkman, 1971).
Tumor-induced angiogenesis play a pivotal role in rapid growth,
infiltration, and metastasis of malignant cells to other organs
(Weidner et al., 1991). VM is a unique vascular structure distinct
from the classical tumor angiogenesis pathway and formed by tumor
cells themselves mimicking endothelial cells to provide blood
perfusion (Maniotis et al., 1999; Hendrix et al., 2003). However,
a comprehensive analysis of the role of VM across different cancers
is currently lacking. Hence, our research employed a multi-omics
approach based on VRGs collected from literature retrieval
combined with transcriptomics, epigenetics, genomics, single-cell
omics to characterize the potential regulatory mechanisms of VM
and further characterized its complex relationships and interactions
with the TME. Finally, seven drugs were screened that may benefit
tumor patients with VM.

Genes associated with VM contribute to several biological
processes, including EMT, CSC, Extracellular Matrix (ECM)
remodeling, and hypoxia response (Wei et al., 2021). Our study
finds most VRGs are dysregulated. Importantly, genes from the
MMP family are significantly upregulated across various tumors.
MMPs, a family of zinc-binding metalloproteinases, are involved in
the degradation of ECM components and were reported play a
pivotal role in the formation of vasculogenic networks by cancer
cells (Gorodetska et al., 2019; Benjakul et al., 2022). The expression
of genes is commonly regulated by genomics and epigenetics.
Analysis of genetic variation indicates a positive association
between the copy number of most genes and their gene
expression, particularly PTK2 and PIK3CA, which exhibit a high
degree of amplification in nearly all tumors. Both PI3K and
PTK2 are involved in pathways integral to tumor initiation and
progression (Lee et al., 2015; Alqahtani et al., 2019). Previous studies
have reported that mutations in PI3K can augment the formation
and functionality of VM (Huang et al., 2023). Meanwhile,
correlation analysis between methylation levels and transcriptome
expression levels reveals a negative correlation for most genes. In
conclusion, our findings suggest that aberrant genomic and
epigenetic variations could lead to dysregulation in the
expression of VRGs, thereby triggering VM.
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Next, we explored the characteristics of VM and find a strong
correlation with hypoxia, angiogenesis and EMT. Numerous reports
have highlighted the critical role of these characteristics in the
formation and regulation of VM(4,5). Hypoxia is a trigger factor
for angiogenesis (McDonald and Baluk, 2002; Zheng et al., 2021).
Previous research reported that HIF can enhance the expression of
EMT regulatory factors and ECM remodeling enzymes, thereby
conferring plasticity and stemness to tumor cells and promoting
tumor invasion and metastasis (Comito et al., 2011; M et al., 2017).
EMT, a process that imparts mesenchymal and stem cell-like
characteristics to tumor cells, plays a central role in VM (Qi

et al., 2014; Yang et al., 2015; Wang et al., 2019; Luo et al., 2020;
Kang et al., 2021; Wei et al., 2021; Benjakul et al., 2022). It enables
epithelial cells to adopt mesenchymal cell characteristics, thereby
facilitating the formation of new vascular structures. Research
indicates that EMT can promote the formation of vascular
structures by prompting cells to express VRGs. Additionally,
EMT can induce VM by augmenting the migratory and invasive
capabilities of tumor cells, as well as ECM components and hardness
(Luo et al., 2020; Wei et al., 2021). Our findings also demonstrate the
highest correlation (R = 0.87) between EMT and VM. Single-cell
analysis further reveals EMT as a key feature of VM cells.

FIGURE 8
VRS can predict prognosis and immunotherapy outcomes in KIRC patient (A) C-index for 101 machine learning algorithm combinations in training
and validation cohorts. (B) Kaplan–Meier curves show survival differences between high and low risk groups in the TCGA (left) and E-MTAB-1980 cohort
(Right). (C) Distribution of survival status and survival time of patients in high and low risk groups in the TCGA (left) and E-MTAB-1980 cohort (Right). (D)
Time-dependent ROC curves of the model in the TCGA (left) and E-MTAB-1980 cohort (Right). (E) Kaplan–Meier curve show survival differences
between patients in high- and low-risk groups in immunotherapy cohort. (F) Stacked column chart showing the proportion of patients benefiting from
immunity within different risk groups. ROC, receiver operating characteristic; AUC, area under the ROC curve. CB, clinical benefit; ICB, intermediate
clinical benefit; NCB, no clinical benefit.
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Furthermore, we discovered that NOTCH and WNT signaling
pathways, which are associated with EMT, also exhibit a high
correlation with VM. In summary, our results suggest that
multiple factors participate in VM, with EMT playing a crucial
role in this biological process. It may serve as a core feature and
central hub for VM, linking multiple signaling pathways and
molecular events to coordinate the induction of VM in tumor
microenvironment.

Interactions between TME components and tumor cells
constitute a focal point in cancer research (Thorsson et al., 2018;
Li et al., 2022; Chen L-X. et al., 2023; Chhabra and Weeraratna,
2023). Our results suggested that samples with a high propensity for
VM exhibit elevated levels of immune and stromal infiltration.
Earlier studies reported an association between VM and
increased immune cell infiltration in cancers such as melanoma,
renal carcinoma, and hepatocellular carcinoma (Q et al., 2022; Tan
et al., 2022; Zhao et al., 2023). TAMs and CAFs within the TME have
also been reported to promote VM formation through interactions
with tumor cells (Luo et al., 2020; Barnett et al., 2016; Q et al., 2022;
Tan et al., 2022; Pan et al., 2020; Ding et al., 2018; Kim et al., 2019;
Liu et al., 2021; Wu et al., 2023). Further analysis reveals that
interactions between tumor cells and CAFs and the interactions
VM cells and CAFs were the most different, suggesting a potential
hub for promoting VM formation. Our results reveal that CAFs
interact with VM cells via Laminin, Collagen, and FN1 signaling
pathways. Previous research demonstrates that CAFs can modulate
the extracellular matrix (ECM) by producing collagen, fibronectin,
laminin, and MMPs, thereby creating a conducive
microenvironment for EMT in tumor cells, thereby endowing
them with VM capabilities (Seftor et al., 2001; Yang et al., 2016;
Poltavets et al., 2018). We also found that CAFs interact uniquely
with VM cells and tumor cells via HGF/MET and CSPG4 signaling
pathways in clear cell renal carcinoma, and its effect on VM cells is
significantly higher. HGF is a growth factor known to promote VM
signaling pathways and induce EMT across various cancers (Wang
et al., 2015; Ding et al., 2018). It can activate multiple signaling
pathways such as PI3K/AKT, ERK1/2 signaling, and TWIST1/
2 signaling via the HGF/MET signaling pathway (Wang et al.,
2015; Han et al., 2016; Ding et al., 2018). This activation also
promotes the EMT process and the expression of VM related
genes genes. Additionally, prior studies also report that
CSPG4 may foster proliferation, migration, and invasion of
tumor cells by regulating EMT-related pathways (Winship et al.,
2017; Wilms et al., 2022). To sum up, CAFs promote VM formation
through multiple pathways including fibronectin and laminin as
well as potentially key mechanisms such as HGF/MET and
CSPG4 pathways. Our findings underscore the pivotal role of
CAFs in VM and reiterate the centrality of EMT in VM.

It is noteworthy that the prognosis of high VM score samples is
markedly worse despite higher immune infiltration. Numerous
studies have shown that a high content of immune components
does not necessarily correlate with a better prognosis, which is
influenced by multiple factors such as tumor invasiveness, tumor
microenvironment composition, and relative advantage of immune
stimulation (Fridman et al., 2017; Li et al., 2019). Previous
investigations have indicated that tumor-induced angiogenesis
contributes to immune suppression and evasion (Tu et al., 2023).
Therefore, we characterized the functional status of immune cells in

the TME and revealed a negative correlation between the VM level
and the ratio of anti-tumor to pro-tumor immune cells. In addition,
we further found that VM is positively correlated with
immunosuppressive molecules in the TME. Research have
reported that VM TME can induce the expression of immune
suppression factors like TGF-β(15). The TGFβ signaling pathway
is a critical determinant of immune regulation. TGFβ derived from
cancer cells has been proven to promote the transformation of CD4+

T cells into Treg cells and exclusion of T cells (Mariathasan et al.,
2018; Gu et al., 2022). Our research also indicated that VM cells are a
type of cell in TME with the highest expression of TGFβ and interact
extensively with immune cells through the TGFβ signaling pathway.
In addition, VM cells interact uniquely with immune cells through
laminin, which has been reported to have both immune promotion
and suppression properties (Huard et al., 1985; Simon et al., 2019;
Phillippi et al., 2020; Lepucki et al., 2022; Flies et al., 2023). We
speculate that VM cells may mediate immune evasion by utilizing its
immunosuppressive effect. Moreover, tumors undergoing VM are
often in a severe hypoxic state. Hypoxia and HIF have also been
proven to participate in immune evasion (McGettrick and O’Neill,
2020). Notably, high CAFs infiltration in VM TME may also play a
significant role in immunosuppression (Koppensteiner et al., 2022).
Therefore, we postulate that due to their incomplete morphology,
mimicry vessels have higher permeability, facilitating entry of
immune cells into tumor tissues. However, when tumor cells
form VM, there may be multiple factors in their
microenvironment mediating immunosuppression, thereby
causing tumor cells evasion from immunity.

Anti-angiogenic therapy has emerged as an efficacious
strategy for cancer treatment in recent years, yielding
promising results (Huang et al., 2022). However, mounting
evidence suggests that tumor samples with VM positive
exhibit resistance to prevalent anti-angiogenic drugs such as
bevacizumab and sunitinib (Angara et al., 2017; Zhang et al.,
2019; Fathi Maroufi et al., 2020; Luo et al., 2020). Some studies
even indicate that sunitinib can foster VM and resulting cancer
invasion by inducing tumor hypoxia (Zhang et al., 2014; Sun
et al., 2017; He et al., 2022). Therefore, developing or finding
drugs that can accurately target VM is the focus of research.
Utilizing our screening strategy, we identified seven potential
drugs targeting VM. These drugs primarily obstruct ERK/MAPK
and RTK signaling pathways. Research indicated that both these
pathways are involved in the regulation of EMT and VM
formation, and targeting them could potentially inhibit or
block this biological process (Han et al., 2016; Ding et al.,
2018; Luo et al., 2020; Kang et al., 2021; Liu et al., 2022; Du
et al., 2023). VM is a prevalent feature of late-stage tumors. The
potential clinical application of these drugs in VM positive tumor
samples could improve patient prognosis and enable more
personalized treatment. Future research should focus on
conducting clinical trials to validate these findings.

To summarize, our multi-omics analysis has elucidated the
principal regulatory mechanisms and associated factors involved
in VM formation. We have also uncovered its potential role in
immune suppression. Subsequent analysis has identified potential
drugs that target VM. Finally, we constructed a model with good
predictive performance in KIRC. Nevertheless, a significant
limitation of this study is that our current findings are derived
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from an extensive analysis of big data. Therefore, a substantial
number of experiments are required to validate these results and
to uncover potential mechanisms and their clinical implications.

Conclusion

In summary, we characterized the features of VM based on multi-
omics data for the first time at the pan-cancer level. We systematically
analyzed the comprehensive alterations in VRGs at the genomic,
epigenomic, and transcriptional levels based on the TCGA pan-
cancer cohort. Our results support that VM is a manifestation of
higher malignancy in tumor patients. Furthermore, our results
highlight the critical role of EMT in VM, as well as the important
promoting role of CAF in VM formation. Our study elucidates the
association between VM levels and immune-suppressive
microenvironments across various cancer types, and highlight the
intricate interactions between VM and TME. In order to promote
clinical translation and precision medicine, a prognostic prediction
model and potential targeted drugs have also been identified. Our
research offers novel insights into the occurrence of VM and its
contribution to tumor progression and drug resistance. A deeper
understanding of these relationships could enhance our
comprehension of tumor growth and metastasis mechanisms,
thereby paving the way for innovative anti-cancer therapeutic strategies.
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