
Revisiting edible insects as
sources of therapeutics and drug
delivery systems for
cancer therapy

Barnali Sinha and Yashmin Choudhury*

Department of Biotechnology, Assam University, Silchar, India

Cancer has beenmedicine’smost formidable foe for long, and the rising incidence of
the disease globally has made effective cancer therapy a significant challenge. Drug
discovery is targeted at identifying efficacious compounds with minimal side effects
and developments in nanotechnology and immunotherapy have shown promise in
the fight against this complicated illness. Since ancient times, insects and insect-
derived products have played a significant role in traditional medicine across several
communities worldwide. The aim of this study was to inspect the traditional use of
edible insects in various cultures and to explore their modern use in cancer therapy.
Edible insects are sources of nutrients and a variety of beneficial substances with
anticancer and immunomodulatory potential. Recently, insect derived bioactive-
components have also been used as nanoparticles either in combination with
chemotherapeutics or as a nano-cargo for the enhanced delivery of
chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and
their antioxidant and anticancer effects. The crude extracts of different edible insects
and their active components such as sericin, cecropin, solenopsin, melittin,
antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory
effects by various mechanisms which have been discussed in this review.
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1 Introduction

The development of cancer involves the acquisition of hallmark capabilities and
enabling characteristics which are essential for the formation of malignant tumors
(Hanahan, 2022). The neoplastic micro-environment which is crucial for the
development, expansion, and metastasis of malignancies also contains potential
therapeutic targets (Xiao and Yu, 2021). Finding efficient treatment methods are crucial
since it is predicted that in the next 20 years, the number of newly diagnosed cancers will
rise by approximately fifty percent, globally (Mao et al., 2022).

The common approaches for tackling human cancers are chemotherapy, surgery,
radiotherapy and immunotherapy, among which chemotherapy and radiotherapy
remain the most widely used. However, these therapies have a wide variety of
undesirable side effects, including systemic toxicity, psychiatric issues, as well as the
development of highly drug-resistant tumor cells. While chemotherapeutics continue to
be widely used, they are not selective towards cancer cells, because of which a significant
percentage of healthy cells are also annihilated during the treatment (Liu et al., 2015).
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Indeed, the most difficult aspect of treating cancer is to eliminate a
tumor while sparing healthy cells. However, there have been
significant advancements in overcoming the constraints of
traditional cancer therapy in recent years (Debela et al., 2021)
with folk medicine eliciting much interest in the development of
modern medicines which have significantly influenced cancer
therapeutics (Yuan et al., 2016). Nature-derived nutraceuticals
are garnering great interest due to their structural flexibility
which enables them to interfere with crucial signaling
components of neoplastic cells, effectively hindering cancer
hallmarks (Newman and Cragg, 2020). There have also been
concerted efforts towards the discovery of novel peptides from
natural sources in order to combat the side effects of chemotherapy
and radiotherapy (Dutta et al., 2019). Peptides isolated from
natural sources have several benefits over small molecules and
biological agents, such as reduced production costs, better tumor
tissue penetration, lower immunogenicity and toxicity, binding
specificity to the targets, and more adaptable sequences (Abbas
et al., 2019; Zhang Y. et al., 2023). Another area of interest has been
the discovery of specific nature-derived nano-delivery systems to
combat drug resistance as well as adverse side effects (Patra
et al., 2018).

Arthropoda is the largest phylum in the animal kingdom,
comprising approximately 80% of all living organisms. Class
insecta under this phylum possesses vast diversity. Insects serve
as sources of medicinal products, therapeutics, and recycling of
biological material. Entomophagy, the consumption of edible insects
due to their high nutritional value, taste, or associated religious
beliefs, has been practiced in many regions of the world since ancient
times, particularly in nations like China, Thailand, India, Africa,
Latin America, and Mexico (Raheem et al., 2019). Insect extracts
have been used as components of folk medicines for various diseases
like flu, colds, infections, flatulence, and spasms (Ratcliffe et al.,
2011). Insects are also rich sources of proteins, vitamins, chitins,
essential amino acids, polyunsaturated fatty acids, and minerals
(Oonincx et al., 2010; Boland et al., 2013).

Developing innovative and environment-friendly approaches
for new food and drug sources through the effective use of natural
resources is amassing worldwide interest (Newman and Cragg,
2020). Insects generate food items and by-products that have a
variety of nutritional and practical values, as well as disease-
ameliorating properties (Quah et al., 2023). Thus, in recent
years, interest in consumption of insects as food has increased
due to their established health benefits. There is also increasing
interest in the use of insect derived products such as silk, and the
silk proteins fibroin and sericin as biomaterial for the formulation
of novel nanoparticles and drug delivery systems, owing to their
biocompatibility, biodegradability, non-toxicity and low
immunogenicity. The silk-based nanoparticles are loaded with
chemotherapeutics, natural drugs like curcumin, peptides and
proteins, and have also been used for the delivery of nucleic-
acid based therapeutics like small interfering RNA (siRNA), micro
RNA (miRNA) and antisense oligodeoxynucelotides (ASO)
(Florczak et al., 2020).

This review focuses on the role of natural products derived from
insects as anticancer therapeutics, and also summarizes their more
recent role in the formulation of nanoparticles and nano-cargoes for
effective cancer therapy.

2 Uses of insects and insect-derived
compounds in traditional medicine

Over 2,100 kinds of insects have been categorized as edible, and
it is believed that over 2.5 billion people, primarily in Asia, Africa
and Latin America ingest insects in various ways (Zhang E. et al.,
2023). The indigenous people of several nations such as South
America, India, Mexico, Korea, China and Nigeria have a long
history of treating ailments using insects (Devi et al., 2023).
Lepidoptera are the most commonly used therapeutic insects in
Japan, Hemiptera and Orthoptera in India, and Coleoptera,
Hymenoptera, Orthoptera, and Homoptera in Brazil (Costa-Neto,
2005). Traditional Chinese Medicine (TCM) has utilized silkworms
and flies for healing infected wounds (Sherman et al., 2000; Costa-
Neto, 2005) for at least three thousand years (Zimian et al., 1997).
Approximately 77 species of insects are also reported to be used in
TCM for anti-tumor effects. These include cantharis Mylabris spp.,
caterpillar, bees, wasps, silkworm Bombyx mori, house fly Musca
domestica, ants and grubs (Feng et al., 2009). In certain regions of
Brazil, adding ground ants to coffee or juice mixed with sugar is used
to alleviate eye ailments (Costa-Neto, 2002). Apitherapy involves
employing bee products for therapeutic purposes, which is the most
common traditional therapy used by indigenous people for the
treatment of cold, cough, stomach pain and fever. Numerous
antibacterial peptides and proteins, including cecropins, defensins
and lysozymes, are produced by butterflies (Siddiqui et al., 2023). In
sub-Saharan Africa, numerous insects are consumed as food
supplements because of their high protein and essential amino
acid content. They are also used to treat flu, asthma, bronchitis,
whooping cough, tonsillitis, sinusitis, and hoarseness (Jideani and
Netshiheni, 2017). Insect derived products are frequently used in the
Indian traditional medicine system of Ayurveda for treatment of
various diseases including anemia, asthma, rheumatism, malaria and
ulcer (Wilsanand et al., 2007).

3 Anticancer effects of insect derived
nutraceuticals in ethnomedicine

3.1 Insect extracts

Insects of the Helophoridae family are commonly employed in
traditional medicine in Central Asia and Africa. In vitro studies on
the prostate cancer cell line PC-3 indicated the antioxidant and
anticancer activities of protein extracts of Helophorus aquaticus and
Helophorus syriacus. The protein extracts of both insects showed
high efficacy in cell inhibition and produced significant apoptosis at
a dose 1,000 μg/mL (Elhazar et al., 2023). Several studies have
reported the anti-neoplastic activity of extracts of Periplaneta
americana which belongs to order Dictyoptera and family
Blattidae (Zhao et al., 2017). The isolated components of P.
americana, viz. “Xiaozheng Yigan Tablet,” “Kangfuxin Liquid,”
“Ganlong Capsule,” and “Xinmailong Injection” have been used
in TCM. Xiaozheng Yigan is reported to show potent anti-tumor
and anti-bacterial effects (Zhao et al., 2017). The impact of P.
americana on immunological control and anti-tumor activity has
also drawn considerable interest. Several in vitro studies on human
cancer cell lines have reported the anti-tumorigenic activities of the
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extract as well as isolated components of P. americana. It controlled
proliferation, downregulated the overexpression of C-erbB-2 and
upregulated p53 expression in tumor cells (Zhang and Zhu, 2015). It
induced apoptosis by upregulating death ligand Fas and receptor
FasR in a lung carcinoma cell line (3LL) while downregulating
Bcl2 expression (Jiang et al., 2006). In another study, P. Americana
extract induced apoptosis through the mitochondrial dependent
pathway by reducing mitochondrial membrane potential (Zhao
et al., 2017). Cyclohexane extract of P. americana L. lysate
showed anti-cancer effects on MCF-7 breast cancer cell line
whereas no cytotoxic activity was recorded against normal MRC-
5 human lung-cells. The lysate could inhibit proliferation and reduce
viability of tumor cells in a dose-dependent manner, with an IC50

value of 30.2 ± 1.62 μg/mL, whereas its cytotoxicity for normal cells
was low, with a CC50 value of 118 ± 3.4 μg/mL, which is much higher
than its IC50 value (Amin et al., 2022), thus indicating a high
therapeutic index.

Silkworms are well-known lepidopteron entomophagous insects
with high nutritional value and disease ameliorating properties.
There are several varieties of silkworms but Bombyx mori,
Antheraea pernyi, Antheraea yamamai, Samia ricini, Antheraea
mylitta, Antheraea royle and Philosamia cynthia are the most
commonly utilized commercial varieties in the silk industry and
for research (Sheikh et al., 2018; Shukurova et al., 2021). Several in
vivo and in vitro studies have reported their antioxidant, anti-
inflammatory and anti-cancer activities. The protein extract and
oil of silkworm pupae act as anti-neoplastic agents by inducing
apoptosis and cell cycle arrest. In vitro studies showed that protein
hydrolysates extracted from silkworm pupae upregulated the pro-
apoptotic proteins Bax and Bak, while downregulating
Bcl2 expression. Pupae extract has also been reported to disrupt
the mitochondrial membrane potential and induce apoptotic flux in
cancer cells (Zhou et al., 2022).

Silkworm protein extracts exhibit anti-tumorigenic properties
both in vitro as well as in vivo. Bombyx mori protein hydrolysates
exerted anti-proliferative, cell cycle arresting and pro-apoptotic
effects on the human gastric cancer cell line, SGC-7901 (Li et al.,
2018). It also exerted anti-tumorigenic effects on MGC-803 gastric
cancer cell line by impacting metabolic energy supply and
inducing cellular organelle rupture (Li et al., 2022). Pupae
proteins extracted from Bombyx mori and Samia. ricini acted as
anticancer agents in the breast cancer cell line, MCF-7, by
downregulating the inflammatory cytokines IL-6, IL-1β and
TNF-α (Chukiatsiri et al., 2020), and induced apoptosis in lung,
cervical and prostate cancer cell lines (Cho et al., 2019). Selenium-
rich amino acid extract of pupae of Ziyang Sp. inhibited cell
viability and induced apoptosis in human hepatoma cell line
through reactive oxygen species (ROS) production (Hu et al.,
2005). Fermented silkworm extract induced caspase dependent
and independent apoptosis, cell cycle arrest and DNA
fragmentation in the hepatocellular carcinoma cell line, HepG2
(Cho et al., 2019). Silkworm (Bombyx mori) pupa protein (SPP)
produced in vivo antitumor activity in colon cancer nude mice by
reducing inflammation, inhibiting proliferation and metastasis,
and inducing apoptosis (Ji et al., 2022; Zhou et al., 2023).

One of the most popular edible insect species worldwide is
mealworm larva (MWL) (Tenebrio molitor) belonging to order
Coleoptera and family Tenebrionidae. MWL extract showed

cytotoxic activity against prostate cancer (PC-3 and 22Rv1),
cervical carcinoma (HeLa), hepato-carcinoma (PLC/PRF5,
HepG2, Hep3B, and SK-HEP-1), colon (HCT116), lung (NCI-
H460), breast cancer (MDA-MB231), and ovarian cancer
(SKOV3) cell lines by reducing proliferation and inducing
apoptosis, necrosis and autophagy (Lee et al., 2015). Aqueous
extract of MWL and Anoplophora chinensis showed anti-
inflammatory activity against the colorectal adenocarcinoma cell
line, Caco-2, and human hepatocellular carcinoma cell line, HepG2,
and induced apoptosis by upregulating death receptor and caspase
3 expression (Ding et al., 2021). In vivo studies indicate that the
larvae and pupae extract of MWL showed anti-proliferative activity
against early hepatocellular carcinoma (HCC), while the adult insect
extract did not produce any significant changes (Zepeda-Bastida
et al., 2021). The anti-proliferative efficacy of MWL oil is attributed
to the presence of high concentrations of oleic acid, palmitic acid,
and omega-3 fatty acids (Wu et al., 2020).

Insects belonging to order Orthoptera are the fourth most
popular edible insects worldwide. The rice field grasshopper,
Oxyachinensis sinuosa (OCS), is an entomophagous insect and
in vitro and in vivo studies indicate that OCS protein extract
exhibited anticancer immunomodulatory activity. It enhanced
the maturation of dendritic cells and expression of surface
markers such as CD80, CD86, MHC-I, MHC-II on dendritic
cell. It also enhanced the differentiation of Th1 cells and CD8+

T cells by modulating the NF-Κβ and MAPK pathways (Kim
et al., 2020). In vivo studies on Kunming mice reported that grub
extract from Holotrichia diomphalia larvae administered by oral
gavage at a dose of 3.9 g/kg and 7.8 g/kg for 10 days inhibited the
S180 tumor growth, while its LD50 dose at 5 days was 48.73 g/kg
(Song et al., 2014).

The findings of other in vitro studies on the anticancer efficacy of
edible insect extracts are given in Table 1.

3.2 Insect derived bioactive-compounds and
their anticancer activities

3.2.1 Cecropin
Cecropin is an anti microbial peptide (AMP) found in the

hemolymph of insects, which provides innate immunity to the
insects. It was originally isolated from the hemolymph of Hyalophora
cecropia pupae. The peptide is 34–37 amino acids long (sequence:
KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK). It lacks
cysteine residues and is folded in an alpha helical structure (Hoskin
and Ramamoorthy, 2008; Lee et al., 2013; Yang M. et al., 2023). The
overall charge of this cationic peptide is +7 at pH 7, and it contains 47%
hydrophobic amino acid residues (Yang M. et al., 2023). The amino
terminal of the peptide contains both polar and non-polar amino acids
which gives it an amphipathic nature whereas the carboxy terminal has
hydrophobic amino acids. Cecropin is also derived from other edible
insects, namely, Bombyx mori, Musca domestica, Acalolepta luxuriosa,
Helicoverpa armigera, Papilio xuthus and Drosophila melanogestar
(Brady et al., 2019; Ziaja et al., 2020).

The cecropin protein family comprises proteins mainly present
in holometabolous insects which differ slightly in amino acid
sequence, resulting in different cecropins types viz., A, B, C, D
and P1 (Ziaja et al., 2020). AMPs belonging to the cecropin
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superfamily have also been identified from other animal classes,
such as, cecropin P from pig and cecropin-like styelin, isolated from
tunicates (Brady et al., 2019).

While the anti-microbial properties of cecropin and its
analogues are well established, its anti-neoplastic properties
are less documented. Cecropin interacts with the negatively
charged lipids in the cell membrane of bacteria through its
N-terminal helix and creates pores in the membrane through
its hydrophobic C-terminal helix, disturbing membrane
permeability. The wide spectrum anti-bacterial activity of
cecropin is attributed to this interaction with membrane lipid
bilayers (Vakili and Jahanian, 2023). The membranes of cancer
cells differ in lipid composition from normal cells and have an
elevated negative charge due to exposure of phosphatidylserine
on the outer leaflets of the membranes. Thus, cationic AMPs like
cecropin have a high affinity for interacting with and disrupting
the cell membranes of cancer cells by inducing pore formation,
while sparing healthy cells (Ziaja et al., 2020) thereby holding
great promise as anti-cancer agents. Cationic AMPs have
also been reported to disrupt the mitochondrial membranes
of cancer cells, to induce apoptosis by downregulating anti-
apoptotic genes and upregulating apoptotic genes, and to exert
immunomodulatory effects against cancer cells and tumor
microenvironment. They also inhibit tumor growth by
modulating several signaling pathways involved in cell
survival and proliferation (Lei et al., 2019; Jafari et al., 2022).
Indeed, Cecropin D, from Bombyx mori exhibits pro-apoptotic
features and targets esophageal cancer by destabilizing
mitochondrial membranes (Ramos-Martín et al., 2022). The
N- terminal amphipathic sequence is crucial for the
interaction with the anionic lipid components of the
neoplastic cell membrane, and the cecropin B3 analog, which

does not have the N- terminal fails to induce pore formation (Ye
et al., 2004).

Different types of cecropin isolated from H. cecropia (cecropin
A, B), B. mori (cecropin XJ) andM. domestica (cecropin Mdc) show
potent anti-neoplastic activity in several in vitro human and rodent
cancer cell lines (Brady et al., 2019). Cecropins in their conjugated
forms have also demonstrated anti-tumor action. An amalgamation
peptide called CA-ME, which includes 1–12 residues of another
AMP, melittin, and 1–8 residues of cecropin A is cytotoxic to small
cell lung cancer (SCLC) cell lines. Likewise, another hybrid peptide,
CA-MA has been demonstrated to have anticancer effects on SCLC
cell lines which contains sequences from cecropin A (1-8 residues)
and magainin 2 (1–12 residues) (Shin et al., 1998). Cecropin A
shows anti-neoplastic efficacy against human pro myelotic cell line
HL-60 by reducing cell viability and inducing cell cycle arrest and
cell death in a caspase independent manner. Cecropin A also
elevates ROS production in cancer cells and induces DNA
fragmentation in a dose dependent manner, ultimately inducing
caspase independent cell death (Cerón et al., 2010). An alpha helical
cyclic cationic peptide designed from cecropin B which has the same
hydrophobicity as cecropin B, was reported as a potent anti-cancer
agent against Dalton’s lymphoma ascites (DLA) and Ehrlich’s ascites
carcinoma (EAC) cell lines (Sharma et al., 2019). The IC50 value of
cecropin A and cecropin B against all bladder cancer cell lines
ranged from 73.29 μg/mL to 220.05 μg/mL (Suttmann et al., 2008).

Cecropin A in combination with chemotherapeutic drug 5-
fluorouracil or cytarabine produced more effective anticancer
activity in CCRF-SB lymphoblastic leukemia cells than 5-
fluorouracil alone (Hui et al., 2002). In another in vitro study,
cecropin B coupled with modified leutinizing hormone releasing
hormone (LHRH) showed potential anti-neoplastic activity against
drug resistant ovarian cancer (SK-OV-3, ES-2, NIH: OVCAR3) and

TABLE 1 Anticancer activity of extracts of edible insects.

Insect Order and
family

Experimental model Result References

Gryllus bimaculatus Order-Orthoptera H460, A549 human non-small
lung cancer cell

Induced apoptosis through caspase and Bcl2 mediated pathway Lim and Byun (2021)

Family- Gryllidae

Zophobas morio Order-Coleoptera MCF-7 Inhibited cell proliferation of MCF-7 breast cancer cells while
exerting no cytotoxic effects against HUVEC normal cell

Darbemamieh and Soltani
(2021)

Family-
Tenebrionidae

Vespa orientalis Order-
Hymenoptera

MCF-7 Cytotoxic effects against MCF-7 cells whereas no cytotoxicity
against normal cells. Shows antioxidant activity and induced
apoptosis by elevating Bax, Bak, p53 expression and reducing
Bcl2 expression. Also inhibits migration of MCF-7 cells

Zedan et al. (2021)

Family-Vespidae

Ulomoides
dermestoides

Order-Coleoptera Human lung cancer A549 cell
line

Induced DNA damage to A549 cells and reduced cell viability;
benzoquinones isolated from the extract is mainly responsible
for genotoxicity and cytotoxicity

Crespo et al. (2011)

Family-
Tenebrionidae

Ulomoides
dermestoides

Order-Coleoptera HaCaT cells Phenolic extract shows cytotoxic and genotoxic effects against
HaCaT cells

Mendoza-Meza and
España-Puccini (2016)

Family-
Tenebrionidae

Holotrichia
diomphalia larvae

Order-Coleoptera in vitro- HeLa cells Grub extract of the insect larvae induced apoptosis reduced
tumor growth

Song et al. (2014)

Family-
Scarabaeidae

in vivo- Kunming mice
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human endometrial adenocarcinoma-1 (HEC-1A) cell lines.
However, the combination did not produce any cytotoxic activity
against normal cells (Li et al., 2016). Cecropin in combination with
other anti-cancer agents like curcumin also resulted in enhanced
anticancer effects. Cecropin A levels were elevated in curcumin
treated Musca domestica hemolymph and also showed higher
cytotoxicity, anti-proliferative activity and induced G2/M cell
cycle arrest in MCF-7 cells, but was not cytotoxic to normal vero
cells (Mahmoud et al., 2022). The M1-8 peptide (G-W-L-K–K-I-G-
K) derived from the N-terminal region of cecropin isolated from the
hemolymph of M. domestica larvae induced lysosomal leakage and
lysosome mediated apoptosis in human hepatocellular carcinoma
cell line, HepG2, and HepG2 xenograft mouse model (Zeng
et al., 2023).

While the C-terminal helix of cationic cecropin is hydrophobic,
an anionic cecropin isolated from the larvae of Choristoneura
fumiferana belonging to the Lepidoptera family is characterized
by the presence of L-aspartic acids in the C-terminal region, which
make the C-terminus helix amphipathic in nature,. The BH3 like

motif (G-[KQR]-[HKQNR]-[IV]-[KQR]) which inhibits Bcl2 to
induce apoptosis may be found in both anionic and cationic
cecropin (Maaroufi et al., 2021).

Table 2 enlists the anticancer activity of cecropin on different
experimental models.

3.2.2 Sericin
Sericin is produced by silkworm during the metamorphic stage

while transforming from larvae to pupae (Kunz et al., 2016). It is
synthesized in the silk gland of the silkworms and acts as an
anchoring molecule for the fibroin to form the silk fibers
(Dhawan and Gopinathan, 2003). Sericin protein is discarded in
the silk industries during the degumming process of cocoons (Gupta
et al., 2013). It is a globular glycoprotein consisting of 18 amino acids
folded into β-sheet and can be transformed into a randomly coiled
structure under specific physiological conditions (Takasu et al.,
2007; Kunz et al., 2016). It is highly hydrophilic and
predominantly contains serine (40%), aspartic acid, threonine,
tyrosine and glycine in high amounts. Alternative splicing of

TABLE 2 Anticancer efficacy of cecropin on different experimental models.

Compound Experimental model Dose Result Reference(s)

Cecropin from Musca
domestica

Human hepatocellular carcinoma cell line,
BEL-7402

100 µM Induced extrinsic apoptotic pathway by
upregulating Fas, Fas-L, caspase-8, and
caspase-3and thus shows anti-tumor
effects

Jin et al. (2010)

Cecropin from Musca
domestica

Human hepatocellular carcinoma cell line,
BEL-7402

50 µM; 100 µM Anti-tumor effects on BEL-7402 cells by
cytotoxic effects

Jin et al. (2014)

Cecropin from B. mori Human esophageal cells, Eca109 and TE13 100 μg/mL Induced mitochondrial dependent
apoptosis by releasing cytC and upregulate
caspase3

Xu et al. (2020)

Cecropin from Musca
domestica

Human hepatocellular carcinoma cell line,
BEL-7402

50 µL of crp 24 mg/kg/day mice Induced apoptosis and produced anti-
tumor effects

Jin et al. (2013)

Cecropin A and B Human bladder cancer cell line RT4; 647V;
J82; 486P

IC50 value of cecropin A and B
against all tested bladder cancer
cell lines ranged from 73.29 μg/
mL to 220.05 μg/mL

Disrupted the cell membrane and induced
cytolysis of the tumor cells; anti-
proliferative effects

Suttmann et al.
(2008)

Cecropin A Promyelotic cell line HL-60 30 µM Inhibited cell viability and induced
apoptosis in mitochondrial caspase
independent manner; it also triggered ROS
generation and exposed
phosphatidylserine in the outer membrane

Cerón et al. (2010)

Synthesized cecropin
A and its analog

Human myelogenous leukemia (K562),
human monoblastic leukemia (U937), and
human acute monocytic leukemia (THP-1)

20, 40, 80, 160, 320, 640 µM Produced anticancer activity by changing
cell membrane permeability and
cytotoxicity

Sang et al. (2017)

cecropinXJ from B.
mori

Human gastric carcinoma
BGC823 xenograft tumor model

20, 50, 80, 100 μg/mL Elevated Bax level, downregulated Bcl2 and
induced apoptosis in mitochondrial
caspase dependent manner; prevented
tumor angiogenesis

Wu et al. (2015b)

CecropinXJ from B.
mori

Human esophageal cell line Eca109 10 µM Induced cytotoxicity in Eca109 cells
through cytoskeleton breakdown and
altered expression of cytoskeletal proteins

Xia et al. (2014a)

CecropinXJ from B.
mori

Hepatocellular carcinoma cells, Huh-7 1–50 µM CecropinXJ induced apoptosis in Huh-7
cells through caspase 3 and poly (ADP
ribose) polymerase. Additionally,
cecropinXJ elevated the expression of Bcl2-
associated X protein and the Bcl2-
associated death promoter while
downregulating the expression of B-cell
lymphoma 2 (Bcl2) protein

Xia et al. (2016)
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three genes namely ser1, ser2, ser3, results in a high level of
molecular heterogeneity of the sericin protein among insects of
the Lepidopterian family (Michaille et al., 1989; Kunz et al., 2016).
The physiochemical properties of sericin depends on the
extraction procedure and the insect source (Seo et al., 2023). It
acts as an antioxidant and can neutralize ROS by donating proton/
hydrogen ion (Mumtaz et al., 2023), and can counteract oxidative
damage induced by hydrogen peroxide (Dash et al., 2008). Several
studies have reported its disease ameliorating effects due to its
antioxidant and anti-inflammatory properties, making it of
potential use in the food and cosmetic industries (Kunz et al.,
2016; Seo et al., 2023).

Sericin can interfere with several signaling pathways associated
with the hallmarks of cancer and acts as a potent anti-neoplastic
agent by inducing apoptosis and cell cycle arrest (Kunz et al., 2016).

In vivo studies on a murine model of colon cancer induced by
1,2-dimethylhydrazine reported a 62% reduction of colonic
adenoma upon inclusion of sericin in the diet for 115 days
through reduction of oxidative stress, suppression of cell
proliferation and oncogene inhibition (Zhaorigetu et al., 2001). A
diet containing 3% sericin when administered for 5 weeks also
exerted anti-tumorigenic effects in colon carcinogenesis induced
by 1,2-dimethylhydrazine (Sasaki, 2000). Undigested sericin in the
colon reduced colon mucosal lipid peroxidation by 34% and
intestinal aberrant crypt foci by 36% (Zhaorigetu et al., 2007).
Sericin also exerted protective effects on mouse skin
tumorigenesis induced by 12-O-tetradecanoylphorbol (TPA) and
7,12-dimethylbenz (α)-anthracene (DMBA). Sericin protein delayed
tumor appearance, decreased inflammatory cytokines and also
c-myc, c-fos oncogene production in this model of mouse skin
tumorigenesis (Zhaorigetu et al., 2003).

In vitro studies on colon cancer cell line SW480 reported that
small sized sericin (61–132 kDa) effectively reduced SW480 cell
viability and induced apoptosis through caspase-3 activation and
suppression of expression of Bcl2. However, it had no apoptotic
effects on the normal colon cell line, FHC (Kaewkorn et al., 2012).
In an in vitro study, sericin extracted from the non-mulberry
silkworm, A. proylei J., showed apoptotic effects on the human
lung cancer cell line, A549; the cervical cancer cell line, HeLa; and
the prostate cancer cell line, PC-3. Sericin induced apoptosis in
PC-3 and HeLa cell lines by activating p38, and through the
phosphorylated ERK pathway in the A549 cell line, thus inducing
apoptosis in different cell lines by different mechanisms. Sericin
extracted from A. proylei J. showed antitumorigenic activity
against A549 and HeLa cells at IC50 values of 3.8 μg/mL and
3.9 μg/mL, respectively (Devi et al., 2023).

Sericin induced cell autophagy in the gastric cancer cell line,
MKN45, and in nude mice xenografted with MKN45 cells. It
elevated the expression of autophagy markers beclin and LC3-2,
and lowered the expression of p62 in these systems (Guo W.-H.
et al., 2018). Sericin from Bombyx mori, Antheraea assamensis, and
Philosamia ricini showed anti-cancer effects against A431, SAS, and
MCF-7 cell lines. It induced apoptosis by elevating Bax expression
while concomitantly downregulating the expression of Bcl-2
(Kumar et al., 2019). Sericin also showed potent anti-neoplastic
activity against triple negative breast cancer cell line MDA-MB-468,
by causing G0/G1 cell cycle arrest and inducing apoptosis by
suppressing PI3K/AKT signaling (Niu et al., 2021).

3.2.3 Solenopsin
Solenopsin is an alkaloid found in the venom of red ants

Solenopsis invicta and Solenopsis germinate. It has a piperidine
ring in its structural makeup, with a methyl group substituted at
position 2, and a long hydrophobic chain at position 6 (Park et al.,
2008; Kachel et al., 2018).

Solenopsin is reported to exert anti-angiogenic effects by
inhibiting the PI3K signaling pathway and also potentially
inhibiting neuronal nitric oxide synthase (nNOS). The solenopsin
analog, compound B (MU-06-SC-608-7), inhibits Akt activation by
downregulating its phosphorylation at Thr308 in ras-transformed
rat liver epithelial cells WBras1, and human lung cancer cells H2009,
while suppressing downstream target proteins along the Akt
pathway. A reduction in cell viability was noted at doses greater
than 5 µM (Uko et al., 2019). The anti-angiogenic activity of
solenopsin has been reported in vivo in zebra fish (Arbiser et al.,
2007). Solenopsin inhibits the phosphorylation of Akt and its
downstream transcription factor forkhead box 01a (FOXO1a)
(Arbiser et al., 2007; Kang et al., 2019). Table 3 lists the
anticancer efficacy of solenopsin on different experimental
models. Research on it is still in the early phases, but is
encouraging, and solenopsin may 1 day serve as a treatment for
various neoplasia. More research is required to confirm its safety and
efficacy in human populations.

3.2.4 Bee venom
Bee venom or apitoxin is synthesized by bees in their venom

gland situated in the abdominal cavity, and is used as a defensive
chemical weapon against predators (Kim et al., 2020; Nainu et al.,
2021; Ullah et al., 2023). It is a translucent acidic mixture containing
several bioactive components including enzymes, proteins, and non-
protein parts. Chemicals present in bee venom are reported to
possess several disease ameliorating properties. Its therapeutic
benefits have been known since ancient times. In ancient
medicine, bee venom was used to cure arthritis, rheumatoid
arthritis, back ache, and dermatitis (Ullah et al., 2023).

In recent years, several in vivo and in vitro studies reported that
chemical constituents found in bee venom can be used in the
treatment of diseases like cancer, arthritis, skin diseases, and
diseases associated with the vascular system. Its promising
positive effects have been reported against several cancers such as
hepatocellular carcinoma, ovarian, prostate, breast, lung and urinary
bladder cancer, and melanoma (Wehbe et al., 2019; Salama et al.,
2021; Shi et al., 2022). The main constituent of bee venom is melittin
which comprises 40%–50% of the total dry weight. It consists of
26 amino acids (+H-Gly-Ile-Gly-Ala-Val-Leu-Lys-Val-Leu-Thr-
Thr-Gly-Leu-Pro-Ala-Leu-Ile-Ser-Trp-Ile-Lys-Arg-Lys-Arg-Gln-
Gln-NH2), and is a cationic amphipathic peptide with six positively
charged amino acid residues and no negative charges. Most of the
positive charges occur at its C-terminal end which is hydrophilic in
nature and has lytic activity, whereas the N-terminal region is
hydrophobic in nature (Pincus, 2012; Lee and Bae, 2016). It can
create ephemeral or stable pores in the cell membrane in a
concentration dependent manner (Pino-Angeles and Lazaridis,
2018; Wehbe et al., 2019) and is thus cytolytic (Lee and Bae,
2016). Melittin was shown to have cytotoxic effects on certain
cancer cell types. It triggered apoptosis in the leukemia cell line,
U937, by blocking Akt signaling. Melittin also inhibited the
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proliferation of leukemia cells by blocking calmodulin protein. It is
reported to inhibit the TLR2, TLR4, CD14, NEMO, and PDGFR
signaling pathways while activating the p38, ERK1/2, AKT, and
PLC1 pathways, elevating calcium channel activation, activating
death receptors (DR4, DR5), and indirectly stimulating the
apoptosis-related caspase 3 and caspase 9 enzymes (Wehbe et al.,
2019; Abaci, 2022).

In vitro studies on HeLa CK and CK2 cells reported that pre-
treatment of these cells with melittin enhances the anticancer effects
of cisplatin by enabling cisplatin to permeate the cell membrane
more easily, thus increasing the cytotoxicity to cancer cells (Gajski
et al., 2014). Melittin also retarded the proliferation of colorectal
cancer in mice xenograft model by inducing apoptosis due to ER
stress and imbalance of calcium homeostasis, while not inducing
pathological changes in biomedical and hematological parameters
unlike the chemotherapeutic drugs, cisplatin and 5-flurouracil (Luo
et al., 2023). Melittin inhibited cell viability and induced apoptosis
by elevating Ca2+ and Zn2+influx and inducing mitochondrial
reactive free oxygen species (MitSOX) in the glioblastoma cells.
Melittin enhanced the anticancer effects of cisplatin in the
glioblastoma cells,DBTRG-05MG, through TRPM2 mediated
apoptosis (Ertilav and Nazıroğlu, 2023).

Melittin has been shown to have anti-neoplastic effects on lung
cancer cells by lowering the protein expression of vascular
endothelial growth factor (VEGF) and hypoxia-inducible factor 1
(HIF-1) (Zhang and Chen, 2017). The demethylation of the PTCH1
(protein patched homologue 1) promoter may be induced by
melittin, increasing the expression of PTCH1. Additionally,
melittin treatment dramatically decreased the expression of sonic
hedgehog (Shh) and human glioma-associated oncogene homolog
1(GLI1). Indeed, melittin reduced cell growth in SMMC-7721 cells
by lowering methyl CpG binding protein 2 (MeCP2) through Shh
signaling (Wu X. et al., 2015).

The ADAMTS (A Disintegrin And Metalloproteinase with
Thrombospondin Motifs) family stimulates or inhibits the
tumorigenic capacity of tumor cells through changes in the
cancer microenvironment, (Cal and López-Otín, 2015; Kelwick
et al., 2015). Long non coding RNA ADAMTS9 antisense RNA
2, ADAMTS9-AS2, plays a critical role in neoplasia by suppressing
cancer metastasis (Liu D. et al., 2020). In vitro studies on MHCC97-
H andHepG2 cell lines revealed that melittin elevated the expression
of ADAMTS-AS2 via downregulating DNA methyl transferase
protein-1 (DNMT1) protein, which causes demethylation of
ADAMTS-AS2 promoter. ADAMTS-AS2 subsequently hindered
the Akt signaling pathway to produce anti-cancer effects (Lv
et al., 2023).

Graphene nanoparticles used to deliver melittin to the breast
cancer tumors grown on chorioallantoic membrane from chicken

embryos resulted in more potent anti-neoplastic activity than
melittin alone, by elevating the cytotoxic effects of melittin,
increasing cytokine secretion and inhibiting tumor progression
(Daniluk et al., 2023). A hybrid peptide designed by conjugating
TAT (RKKRRQRRR) and a peptide from the N-terminal region of
melittin (GLPAL- ISWIKRKRQQ) possesses high potency of
penetration into cancer cells. In silico studies with this peptide
revealed that it has higher binding efficacy with CD147 and
CypA proteins and inhibits their interactions. The CypA/
CD147 interaction is a crucial route in some cancer types and is
also necessary for the COVID-19 virus to infect the host cell. Thus, it
is suggested that the designed peptide may prove to be an appealing
treatment target for controlling different tumor types as well as
COVID-19 infection (Maani et al., 2023). Melittin showed selective
cytotoxicity against HER2-enriched breast cancer cell lines (MDA-
MB-453 and SKBR3) and Triple Negative Breast Cancer (TNBC)
cell lines (SUM 159 and SUM149), while exhibiting minimal
cytotoxicity against normal cell lines (HDFa, and MCF 10A and
MCF-12A cells) (Duffy et al., 2020). While the in vitro anti-cancer
effects of melittin are well established, more in vivo studies are
required to elucidate its systemic toxicity and cytotoxicity against
normal cells.

4 Possible anticancer mechanisms of
bioactive compounds isolated from
edible insects

Anti-cancer therapeutics can exert their effects through various
mechanisms such as by influencing the genes that regulate the cell
cycle, by inducing apoptosis, or by inhibiting proliferation. The
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway
is an important signaling pathway controlling the proliferation and
survival of cells. Malignant neoplasia such as breast, lung, ovarian,
and prostate tumors exhibit aberrant activation of this pathway.
Increased activity of the pathway is frequently linked to the
development of tumors and resistance to cancer treatments. A
potential therapeutic agent can thus produce anti-cancer effects
by modulating the intermediates of the PI3K-AKT pathway (Yang
et al., 2019; Liu R. et al., 2020). Cecropin inhibits Bcl2 through its
BH3 like motif and also upregulates pro-apoptotic proteins (Jin
et al., 2010; Maaroufi et al., 2021). As forkhead box O proteins
(FOXOs) build up in the nucleus, they can bind to different
transcriptional cofactors and control the expression of genes
involved in the growth of cells, survival, proliferation, cell
division, apoptosis and metabolism. The primary route
controlling the transcriptional activity of FOXOs is the PI3K/Akt
pathway (Burgering and Medema, 2003). Solenopsin is reported to

TABLE 3 Anticancer efficacy of solenopsin on different experimental models.

Compound Experimental
model

Dose Result References

Solenopsin A Zebra fish 1 μg/mL, 3 μg/
mL, 6 μg/mL

Shows anti angiogenic activity by inhibiting PI3K pathway; it
also inhibit the phosphorylation Akt and FOXO1a

Arbiser et al.
(2007)

Solenopsin A and its analog
compound B (MU-06-SC-608-7)

WBras1; H2009 Human
carcinoma cell

>5 µM Anti-tumorogenic effects by inhibiting PI3K and Akt
phosphorylation

Uko et al. (2019)
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exert anti-cancer effects by inhibiting Akt phosphorylation and
activation of its downstream protein, FOXO1 (Arbiser et al.,
2007; Uko et al., 2019). Sericin induces apoptosis via caspase
dependent pathway, and enhances expression of the pro-
apoptotic proteins Bax, Bim, Puma and Noxa by inhibiting the
anti-apoptotic protein, Bcl2 (Kaewkorn et al., 2012; Kumar et al.,
2019). It also induces p53-dependent apoptosis in cancer cells (Jolly
Devi et al., 2023).

The anticancer mechanisms of insect-derived active
components sericin, cecropin, solenopsin and melittin have been
depicted in Figure 1.

The cGAS-STING pathway regulates several pathological
processes brought on by the immunological response to the
ectopic localization of self-DNA, including cytosolic
mitochondrial DNA, in addition to protecting cells against a
variety of DNA containing pathogens. Besides its well established
antimicrobial properties, melittin creates pores in the cell membrane
and the mitochondrial membrane, and may lead to exposure of
mitochondrial DNA in the cytoplasm of cancer cells (Díaz-Achirica
et al., 1994; Wang et al., 2022). It also causes morphological changes
in the cell membrane and DNA damage in leukocytes even at non-
cytotoxic doses (Guha et al., 2021). The presence of cytosolic DNA
and DNA damage are detected by cyclic GMP-AMP synthase
(cGAS) which activates the stimulator of interferon genes
(STING), leading to cGAS-STING mediated cell death, induction
of type-I interferons and cytokine production, ultimately inducing
apoptosis and anti-tumor immune activation. The generation of
type I interferons by the stimulation of the cGAS-STING pathway
has the potential to significantly enhance anti-tumor immunity

(Gan et al., 2022). It is reported that MnO2-melittin
nanoparticles activate the cGAS STING pathway to produce
anticancer activity (Tang et al., 2022). ER stress leads to release
of Ca2+ ions to the cytosol which trigger mitochondrial membrane
permeability and pore formation, resulting in leakage of
mitochondrial DNA to the cytosol (Smith, 2021). Melittin
induces ER stress and release of Ca2+ through IP3, thus inducing
ER mediated apoptosis (Luo et al., 2023). The anticancer
mechanisms of melittin and cecropin through the cGAS STING
pathway have been illustrated in Figure 2.

5 Immunomodulatory effects of edible
insect extracts and active components
on cancer

Inflammation is intimately linked to all phases of the onset and
spread of malignancy in the majority of cancers, as well as to the
effectiveness of anti-cancer treatments (Bader et al., 2020; Arner and
Rathmell, 2023). The immune system is assisted by immunotherapy
in identifying and eliminating cancer cells. By combining
vaccinations with immunostimulatory cytokines or by inhibiting
the mechanisms that cancer cells employ to dampen the response,
immunotherapy seeks to increase the immune system’s ability to
fight cancer (Markman and Shiao, 2015). Immunomodulation for
the treatment of cancer involves two factors: (1) enhancing the
immune system’s capacity to combat cancer by turning on anti-
cancer immune cells (2) Blocking pro-cancer immune cells or
causing them to polarize towards anti-tumor types by focusing

FIGURE 1
Anticancer mechanism of compounds isolated from insects through the PI3K/Akt pathway. The PI3K/Akt pathway actively promotes carcinogenesis
in metastatic tumor cells. Activated phosphoinositide 3-kinase (PI3K) phosphorylates Phosphatidylinositol 4,5-bisphosphate (PIP2) and converts it to
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) which further phosphorylates protein kinase B (Akt). Fully activated Akt exerts a variety of downstream
effects on signaling molecules. Akt phosphorylates several downstream target genes and proteins which helps to prevent apoptosis, autophagy and
promote cell survival, cell growth and proliferation. Insect derived bioactive compounds namely sericin, solenopsin, melittin, cecropin can induce
apoptosis and inhibit cell proliferation by modulating the PI3K/Akt pathway to produce anticancer effects.
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on essential signaling pathways which can slow the development of
cancer (Locy et al., 2018).

Various studies have reported that insect derived bioactive
compounds and insect extracts possess immunomodulatory
activity. A coleopteran insect Mimela sp. belonging to
Scarabaedae family is an entomophagous bug mostly consumed
in Korea, Northern Thailand, and the state of Arunachal Pradesh in
India. Studies reported that it has antioxidant, immunomodulatory
and anti-tumorigenic activities. Mimela sp. extract elevated the
leucocyte count in cyclophosphamide treated mice. It also
increased TNF-α and IL-6 in immunosuppressed mice (Tukshipa
and Chakravorty, 2022). Eupolyphaga sinensis Walker is a wingless
edible cockroach belonging to order Blattaria and the family
Polyphagidae. In vivo studies reported that E. sinensis extract
enhances immunity in mice, improves lymphocyte production
and also stimulates T-cell mediated delayed type hypersensitivity
(Tang et al., 2010). Lectins isolated from the edible insect pupae of
Musca domestica belonging to family Muscidae show
immunomodulatory and anti-tumor effects. Three galactose
specific lectins (40kDa, 55kDa and 80 kDa) show potent
immunomodulatory activity on murine peritoneal macrophages,
enhancing the phagocytic activity of macrophages via NF-kB
pathway and increasing the expression of TNF-α, IL-6 and INF-γ
(Cao et al., 2012). In vivo studies on mice model revealed that freeze
dried Tenebrio molitor larvae enhance the phagocytic activity of

macrophages in mice. It produces immunomodulatory effects by
intensifying the non-specific, cellular and antibody mediated
immune responses (Tang and Dai, 2016).

In vivo studies on mice injected with sarcoma S180 cells revealed
that a peptide fraction extracted from Musca domestica larvae
showed immunomodulatory activity by encouraging the growth
of splenocytes, NK and CTL activity, and boosting serum levels of
IgG, IgG2a, and IgG2b antibodies that are specific for the antigen in
S180 sarcoma cells in mice. Additionally, the peptide fraction
elevated the mRNA expression of INF-γ, and promoted
Th1 response by elevating the expression of transcription factor
T-bet and STAT-4 in sarcoma S180 cell bearing mice (Sun et al.,
2014). Bee products are well known for their antioxidant, anti-
inflammatory and anti-tumor effects. Recent in vivo and in vitro
studies reported the immunomodulatory effects of bee pupae
peptide, BPP-22. It enhanced the production of antibodies IgA,
IgE, IgM, IL-2, INF- γ and elevated the phagocytic activity of
macrophages in an immunosuppressied mouse model. It is
suggested that BPP-22 exerts its immunomodulatory effects by
elevating the phosphorylation of ERK and p38 and modulating
the MAPK signaling pathway (Chen et al., 2022).

Mellitin has been reported to have a range of immune-
modulating effects in several studies. Melittin alone or in
conjugation with other anticancer peptides enhanced the
secretion of IL-2 and TNF-α, elevated the proliferation of

FIGURE 2
Anticancer mechanism of melittin and cecropin through cyclic GMP–AMP synthase (cGAS) stimulator of interferon gene (STING) (cGAS STING) and
endoplasmic reticulum (ER)-mitochondrial stress mediated cell death. The cGAS-STING system, also known as the cyclic GMP-AMP synthase (cGAS)-
stimulator of interferon genes (STING) route, works as a cytosolic DNA sensing mechanism that initiates innate immunity and inflammatory responses.
The DNA sensor enzyme, CGAS, catalyzes the production of cyclic GMP-AMP (cGAMP), which binds to STING and activates downstream signaling
molecules. The cGAS-STING pathway is activated, which increases the production of type I interferons and pro-inflammatory cytokines and strengthens
the immune system of the host against viral infections, cancer, and autoimmune illnesses. STING activates its downstream molecules TBK1 and IRF3.
Activated IRF3 performs dual functions, triggers the release of apoptotic proteins bax, bak and also moves to the nucleus to induce the release of INF-I
and pro-inflammatory cytokines. Melittin and cecropin disrupt themitochondrial membrane potential dynamics, mediatemembrane pore formation and
induce mitochondrial dependent apoptosis and cGAS-STING pathway mediated antitumor response. They also induce ER stress and which results in
release of Ca2+ and induces mitochondrial pore formation. Melittin induces ER stress and results in ER mediated apoptosis.
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splenocytes and cytotoxicity of NK cells, enhanced Th1 specific INF-
γ production, and increased the activity of macrophages. Melittin is
also used as a tumor vaccine in vitro in conjugation with other
components to induce the immune reaction and enhance the activity
of dendritic cells to kill melanoma cells. Injectable hybrid vaccine
hydrogel was prepared by conjugation of melittin, RADA32 (cell
assembling peptide), CpG (immune adjuvant) and tumor lysate.
This hybrid vaccine showed anticancer activity in vivo by elevating
cytotoxic T lymphocytes (CTLs) and activating dendritic cells in
draining lymph nodes in melanoma B16-F10 xenograft mice (Yang
K. et al., 2023).

The immunomodulatory activity of different insect peptides
against cancer is depicted in Figure 3. Dendritic cells (DCs)
undergo functional morphological modification and activate T
helper cells (T CD4+) and T cytotoxic cells (T CD8+). T helper
cells release cytokines and other mediators that control other
immune cells. These cytokines activate and polarise monocytes
and macrophages as well as control the antibodies produced by
B cells. As a result, Th cells are essential to the anti-cancer immune
system. On the other hand, the T cytotoxic cells (T CD8+) migrate
towards the cancer cells and directly destroy them by releasing
granzymes and perforins. NK cells also enhance the maturation of T
CD8+ (Hosseinzade et al., 2019).

Melittin, in combination with tumor vaccine shows
immunomodulatory anti-cancer efficacy by enhancing the
maturation of DC to T CD4+ and T CD8+ cells (Yang K. et al.,
2023). Other insect peptides show their immunomodulatory activity
by enhancing the maturation of DC and NK cells. This in turn
activates T CD8+ cell and destroy cancer cells (Tang and Dai, 2016).
Insect derived lectins show anti-cancer immunomodulatory activity

through M1 macrophage mediated phagocytosis (Cao et al., 2012).
The capacity of insect peptides to modify the immune response
against cancer cells has been shown in several researches (Sun et al.,
2014; Chen et al., 2022; Yang K. et al., 2023). It has been seen that,
some insect peptide fragments interact with immune cells, including
DC, natural killer (NK) cells, and T lymphocytes, among others, and
enhance their activity. For instance, it has been demonstrated that
certain insect peptides can increase NK cells’ cytotoxic activity,
which aids in the elimination of cancer cells. Others have been
discovered to support dendritic cell maturation and activation,
enhancing antigen presentation and subsequent T cell activation.

6 Insect by-products in advanced
cancer therapy and drug delivery:
nanotechnology

The rise of multidrug resistance and the toxicity of standard
chemotherapy drugs drives research towards targeted medicine.
Efforts directed towards encapsulating and releasing anticancer
medicines more effectively, raise the possibility for the nano-
biomedical field to produce efficient, therapeutic, nano-sized drug
delivery systems (Yao et al., 2020). Nano-oncology imparts more
efficient delivery of chemotherapeutics by reducing systemic toxicity
and enhancing accumulation directly to the targeted tumor
microenvironment (Misra et al., 2010). Nanoparticles derived
from natural compounds have been reported to have better safety
profiles, revamped stability, biodegradability, and non-
immunogenicity in comparison to synthetically derived
nanoparticles. They also possess functional groups that can be

FIGURE 3
Immunomodulatory effects of insect (M. domestica; Mimela sp.; E. sinensis; P. vicina) peptides andM. domestica derived lectins, as well as melittin
on tumor cells and tumor microenvironment. Melittin in combination with tumor vaccine and insect peptides stimulate the dendritic cells (DCs) and
maturation and migration of CD8+ T cells to the tumor site. Several insect peptides produce anticancer effects by activating M1 anticancer macrophages
which show cytotoxic effects against cancer cells. Insect peptides and lectins isolated from insects elevate TNF-α, IL-6, IL-1 and induce NK cells to
release granzymes. The image was created using Biorender.Com.
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easily modified in order to improve effcicacy. Furthermore, their
high biocompatibility, hydrophilicity and lowered bio-toxicity,
make bioactive components good candidates for use as
nanoparticles or nano-cargo to deliver chemotherapeutics (Ion
et al., 2022). A crucial aspect of nano-cargo for delivering
therapeutics is their ability to target cancer cells precisely, which
boosts therapeutic effectiveness while shielding healthy cells from
damage (Cheng et al., 2021). Various by-products from insects have
been employed for this purpose.

Silk extracted from the silkworm consists of mainly two proteins
viz. sericin and silk fibroin (Kunz et al., 2016). The silk fibroin is an
amphipathic beta sheet secondary peptide consisting of one heavy
chain (365 kDa) and one light chain (26 kDa) joined together by
disulfide bond. The heavy peptide chain is composed of a repetitive
motif of 6 amino acids (Gly–Ala–Gly–Ala–Gly–Ser)n flanked by N
& C terminal domains. Silk fibroin is a promising biomaterial for
biomedical applications due to its distinctive structure, processing
adaptability, biological compatibility, variety of biomaterial
morphologies, facile sterilization, thermal resilience, surface
chemistry for chemical alterations, and water solubility (Zhou
et al., 2001; Jastrzebska et al., 2015; Philipp Seib, 2017), and has
received formal FDA approval as a biocompatible material (Cao
et al., 2017). It has been transformed to nanomaterials drug
administration following its modification into films, hydrogels,
coatings, capsules, micro- and nanoparticles. Fibroin
nanoparticles (FNPs) can encapsulate and deliver a variety of
therapeutic compounds, including small and large molecules,
proteins, enzymes, vaccines, and genetic materials to target cells
(Pham and Tiyaboonchai, 2020). Silk fibroin based nanoparticles are
used for drug delivery by intratumoral injections and intravenous
injections (Jastrzebska et al., 2015). Silk fibroin microparticles and
nanoparticles have been found to be active against inflammation and
its associated disorders such as arthritis and cancer (Dutta et al.,
2019). Silk fibroin nanoparticles (SFNPs) loaded with
chemotherapeutic drugs such as doxorubicin, cisplatin, paclitaxel,
methotrexate and 5-Flurouracil proved effective at delivering the
drugs and exerting anti-cancer effects in vitro. SFNPs loaded with
paclitaxel alone or gemcitabine conjugated with SP5-52 peptide also
showed anti-cancer efficacy in vivo in a mice model of gastric cancer
and Lewis lung tumor, respectively. SFNPs loaded with binary drugs
such as hydrophilic doxoribucin and hydrophobic paclitaxel were
effectively internalized and inhibited the growth of cancer HeLa and
HepG2 cells more effectively than when the nanoparticles were
loaded with a single drug, indicating the efficiency of these
nanoparticles as drug delivery systems for combination therapy.
B. mori SFNPs loaded with curcumin were also used to deliver the
phytocompound curcumin to different cell lines, resulting in
significantly higher uptake and stronger anti-cancer effects in the
breast cancer cell lines MCF-7 and MDA-MB-453, hepatocellular
carcinoma Hep3B cells and neuroblastoma KELLY cells and
HCT116 human colorectal cancer cells, compared to free
curcumin. Furthermore, SFNPs loaded with plant-derived
anticancer substances produced significant cytotoxic effects in
cancer cells while maintaining no cytotoxicity towards healthy
cells (Florczak et al., 2020).

Polyethyleneimine-modified SFNPs (PEI-SFNPs) used to co-
deliver doxorubicin and survivin siRNA effectively induced
apoptosis in the 4T1 mouse tumor cell line and remarkably

reduced the growth rate of breast tumor in 4T1 tumor bearing
mice by suppressing the survivin gene (Norouzi et al., 2021).

The silk cocoon protein, sericin, is also used in
nanobiotechnology for formulating drug delivery systems. It
contains hydroxyl group-containing amino acids which enable it
to copolymerize with other molecules for the synthesis of novel
biodegradable and biocompatible compounds that can be used for
drug delivery, in vivo cell imaging, and other biomedical uses (Ahn
et al., 2001; Cho et al., 2003; Kumar and Mandal, 2019; Elahi et al.,
2021). Sericin based nanostructures can potentially deliver
hydrophobic and hydrophilic chemotherapeutic drugs more
rapidly into cancer cells, compared with the chemotherapeutic
drug alone (Elahi et al., 2021). Sericin coated AgNO3

nanoparticles showed potent anticancer efficacy against the breast
cancer cell lines, MCF-7 and MDA-MB-231, by inducing apoptosis,
cell cycle arrest, and cancer cell specific cytotoxicity, while
simultaneously reducing the side effects of the nanoparticles
(Mumtaz et al., 2023; Kara et al., 2020 reported the use of
nanocarrier composed of a blend of albumin and silk sericin for
in vivo delivery of miRNA. They reported significant in vivo tumor
integration of miR-329 and inhibition of the eukaryotic elongation
factor-2 kinase (eEF2K) protein in multiple triple-negative breast
cancer (TNBC) models with pronounced anti-tumor efficacy and
without any side effects in mice. Albumin-sericin nanoparticles
(Alb-Ser NPs) further functionalized by complexing with poly-l-
lysine/siRNA and hyaluronic acid were also used for delivery of
siRNA targeting casein kinase 2 (CK2), Absent, Small, or Homeotic-
Like (ASH2L), and Cyclin D1 (CCND1) genes to the laryngeal
cancer Hep-2 cells. The nanoparticles loaded with siRNA silenced
the target genes significantly more effectively when compared with
naked siRNA, resulting in significant cytotoxicity of the targeted
cells (Yalcin et al., 2019).

Sericin is sensitive to pH due to its constituent amino acids with
strongly polar side groups, and has been extensively studied for
formulating pH-responsive delivery systems (Silva et al., 2022). In
one study, folate-conjugated sericin nanoparticles were used for
targeted subcellular delivery of doxorubicin to the folate-receptor-
rich human oral epithelium carcinoma cell line (KB). Once inside
the cells, the acidic environment of the lysosomes that contained the
endocytosed nanoparticles prompted the rapid release of
doxorubicin, producing significant anti-cancer effects (Huang
et al., 2016). In another study, synthetic poly(γ-benzyl-L-
glutamate) (PBLG) conjugated sericin micelles loaded with
doxorubicin (Sericin-PBLG-DOX) induced significant cytotoxicity
in adriamycin resistant MCF-7 ADR cells and HepG2 ADR cells
in vitro as well as in vivo in tumor bearing nude mice transplanted
with MCF-7 ADR cells and HepG2 ADR cells through enhanced
cellular uptake and pH-triggered drug release (Guo W. et al., 2018).
A surface charge reversal sericin-based nanocarrier used to co-
deliver resveratrol and melatonin to MCF-7 breast cancer cells as
combination therapy, also proved to be effective in delivering the
drugs effectively and inducing apoptosis of the breast cancer cells in
an acidic environment (Aghaz et al., 2023).

AgNO3 nanoparticles synthesized from the wings of Mang mao
insect showed broad spectrum anti-bacterial and anti-fungal
activities along with strong antioxidant efficacy (Jakinala et al.,
2021). Silver nanoparticles synthesized from the defensive gland
extract of Mupli beetle, Luprops tristis Fabricius showed potential
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anticancer efficacy against DLA (Dalton’s Lymphoma Ascites) cell
line (Ajaykumar et al., 2023).

Mealworm insect protein was designed as a nano cargo for the
delivery of curcumin to cancer cells by creating spherical biopolymer
nano complexes of sizes d = 143–178 nm which are loaded with
curcumin due to hydrophobic and non-covalent interaction between

curcumin and insect proteins. These nano complexes enhance the
release of curcumin efficiently to the cells but show moderate
binding efficacy (Okagu et al., 2020). When compared to
conventional approaches, the production of nanoparticles
utilizing insect by-products is a more economical strategy.
Natural substances found in insect byproducts such as wings,

TABLE 4 Nanoparticles derived from bioactive components of edible insects.

Silk biomaterial Associated
drug

Particle
size

Mode of
transfer

Model Results References

B. mori silk fibroin film Doxorubicin 7 mm ×
11 mm(silk
film)

Local
intratumoral

Human
neuroblastomaorthotopic
BALB/c mice model

Combining surgical
removal with a silk film
device that releases
doxorubicin slowly is a
successful method for
reducing neuroblastoma
tumor development

Chiu et al. (2014)

Engineered silk fibroin-elastin
miceller like nanoparticle

Doxorubicin 50, 50, 142 nm Local
intratumoral

In vitro HeLa cell line The protein polymers are
not cytotoxic, however the
doxorubicin-loaded SE8Y
nanoparticles are 1.8 times
more lethal than the drug
alone. Thus enhanced the
anticancer effects of dox.
Internalize into the cell
through endocytosis

Xia et al. (2014b)

PEG/GO/SF nano composite Doxorubicin 293.7 nm Local In vitro MCF-7 cell line Improved cell death as
compared to DOX alone.
PEG/GO/SF/DOX
releases more drug in the
acidic environment that
simulates tumor tissue. It
also has good drug
entrapment and loading
efficiency

Jeshvaghani et al.
(2023)

Silk fibroin NP surface modified
with cRGD

naphthalene
diimide derivative

<100 nm Local Glioma cell line U373and
D384

Deliver the drug to the
target active site-specific
tumor cells

Pirota et al.
(2023)

GO-CMC hydrogel/SF/
Fe3O4 Nanobiocomposite

- Hydrogel Local In vitro BT549 cancer cell line The nanobiocomposite
did not affect the normal
HEK293T cells while
induce death to
BT549 cells and act as
potent anticancer agent

Ghafori Gorab
et al. (2022)

Silk fibroin NP-CM prepared by
solution-enhanced dispersion by
supercritical CO2

Curcumin <100 nm Local In vitroHCT116 colon cancer
cells

Effects on normal
epithelial cells reduced
and the anticancer efficacy
of curcumin increased

Xie et al. (2016)

Silk fibroin –polyvinyl alcohol Doxorubicin 600–1,800 nm Intravenous
via tail vein

BALB/c nude mice
xenogratted with MDA-
MB-231

Excellent monodispersity
high effectiveness of the
drug encapsulation; 72 h
controlled medication
release. Drug release was
induced and accelerated
by external ultrasound

Cao et al. (2017)

SF-PVA Doxorubicin 2.8–6.8 µm KELLY Neuroblastoma cells High efficiency and
capacity for loading drugs
medication release that is
pH-dependent.
Medication release that
continues for
23 days.THP-1 monocyte
uptake Macrophage
activation upon exposure
to silk particles

Florczak et al.
(2020)

Frontiers in Pharmacology frontiersin.org12

Sinha and Choudhury 10.3389/fphar.2024.1345281

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1345281


exoskeleton, and extracts serve as economical stabilizers or reducing
agents during nanoparticle synthesis, lowering the total cost of
production (Jakinala et al., 2021). Characteristics of some
nanoparticles derived from different active components of edible
insects and their modes of transfer to the cancer tissue has been
listed in Table 4.

7 Limitations of natural products in
clinical trials

Crucial aspects of the drug development process include
identification and characterization of the active ingredients in
natural products, and guaranteeing their stability and
consistency. Current methods for drug discovery in
contemporary medicine prefer single compound-based treatment
over crude extracts of natural products. However, given the
multifaceted nature of many ailments including cancer, it is not
surprising that the search for effective treatments has not been
successful when relying solely on single compounds (Thomford
et al., 2018).

While natural products contain several bioactive
components, the complexity of the molecular combinations
from natural sources makes the search for novel therapeutic
possibilities challenging, There are also several limitations to
the use of natural products derived from insects and other
sources in clinical trials. These include: (i) In vitro preclinical
research frequently entails prolonged exposure to elevated
quantities of a target natural substance. In humans, this kind
of exposure is usually not achievable, especially when it comes to
oral drugs that may have a restricted bioavailability; (ii) Safety
and allergic reactions is a crucial subject for translation of nature-
derived products to human subjects; (iii) insects might acquire
diseases or contain residues of pesticides and heavy metals from
their natural ecosystem which may raise safety issues; (iv)
preclinical efficacy does not always translate into human
success, and no dietary supplement research has yet received
regulatory clearance; (v) the lack of established protocols for
evaluating natural products in preclinical and clinical research is
another significant barrier (Paller et al., 2016; Thomford
et al., 2018).

Changes in the experimental setting, such as assay methods,
dosing regimens, and primary extraction processes, can lead to
contradictory findings and reduce the comparability of data from
many trials. Establishing guidelines for the description, preparation,
and evaluation of natural products can improve the reliability of
study results and facilitate regulatory approval of clinical trials
(Andrade et al., 2016).

8 Future perspectives

Insects have been traditionally consumed as food and used
for the preparation of folk medicine by several populations,
globally. Due to rapid growth in population and rising food
demand, it is imperative that sustainable, nutrient-dense, and
environmentally sustainable alternative food sources explored.
Entomophagy has the potential to solve difficulties with

nutrition, sustainability, and global food security because
insects possess high nutritional value and insect farming is
economically sustainable, generates a significant amount of
edible biomass with far lower land, water, and feed
requirements, and also has a low emission of greenhouse
gases (Shah et al., 2022).

Insect extract and insect venom are crucial and time-tested
components of complementary and alternative medicine, having
been applied and improved by physicians over several
generations for treating various disorders (Wainwright et al.,
2022). There is strong evidence to support the rising use of insect-
derived products and crude extracts as a useful component of
treatment and a profusion of experimental evidence
demonstrating their vast diversity being used to successfully
cure various types of ailments and malignancies. Due to their
antioxidant and anti-inflammatory activities, insect extracts and
their byproducts have the ability to improve cancer treatment in
addition to successfully reducing side effects and symptoms
(Dutta et al., 2019). Indeed, various studies indicate that
insect-derived bioactive components such as cecropin, sericin
and mellitin exhibited significant cytotoxicity in cancer cells,
while producing no cytotoxicity in normal cells. This selective
action could significantly reduce the unwanted side effects
associated with chemotherapy, and warrant further
investigations into the cellular mechanisms involved.
Traditional medical systems from many cultures have long
acknowledged the therapeutic benefits of edible insects and the
substances they produce. Through the integration of this age-old
knowledge with contemporary scientific discoveries, we can open
up new avenues for the development of trustworthy anticancer
treatments. Both conventional wisdom and bioactive substances
obtained from insects have great promise as trustworthy
anticancer treatments. By funding research and fusing
traditional knowledge with contemporary technology, we can
create efficient medications that are accessible, inexpensive, and
sustainable on a global scale. To overcome the limitations related
to the use of natural products in clinical trials, more focus is
required on establishing standardized protocols for the
extraction of bioactive compounds and assessment of the
efficacy of natural products. It is also crucial to have strict
preclinical and clinical evaluation methodologies in place. As
these bioactive compounds show higher synergistic anticancer
efficacy in conjugation with other nature derived bioactive
compounds or in combination with chemotherapeutic agents,
more research should focus on combination therapy. For
example, cecropin shows higher anticancer effects in
combination with curcumin (Mahmoud et al., 2022); and, a
hybrid vaccine developed by conjugating mellitin with
RADA32 (cell assembling peptide), CpG (immune adjuvant)
and tumor lysate shows strong antitumor immunological
activity in melanoma B16-F10 xenograft mice (Yang K. et al.,
2023). There should also be more focus on the mode of delivery of
chemotherapeutic agents and/or natural products to the target
tumors or cancer sites in order to reduce systemic toxicity and
improve therapeutic efficacy. In this context, nano-cargo delivery
systems based on insect-derived bioactive components such as
silk fibroin and sericin protein hold great promise and should be
extensively explored.
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9 Conclusion

This evidence based review demonstrates the anti-cancer and
immunomodulatory efficacy of edible insect derived extracts and/or
bioactive compounds. Edible insects are rich in nutrients such as
proteins, amino acids, minerals, vitamins and fatty acids.
Additionally, edible insects contain a wide range of useful
compounds, including bee venom components; silk cocoon and
antimicrobial peptides which possess anticancer
immunomodulatory activity. Bioactive components derived from
insects act as potent nano-cargo to deliver the therapeutics directly
to the tumormicroenvironment by lowering the systemic side effects
of chemotherapeutic drugs.

Focused research would hasten the development of novel, potent
insect-derived therapeutics and drug delivery systems against
cancer. However, detailed investigations into the toxicological
effects, if any, of these bioactive components, as well as their
capacity to traverse the blood-brain barrier, their bioavailability,
skin permeability, lipophilicity, and pharmacodynamic qualities, are
required. It is also imperative to establish guidelines and
standardized protocols for the extraction and preparation of
natural products derived from insects, as well as for the
evaluation of their efficacy in preclinical and clinical studies.
These strategies will enable the transition of significant preclinical
findings to translational research, so that the therapeutic potential of
insect-derived bioactive components may be fully explored.
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